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ABSTRACT 
 

The self-affine exponents associated with the crack propagation phenomenon are evaluated on samples of 
aluminum alloys both on 2D and 3D experimental conditions. Fracture surfaces were generated by Charpy 
impact tests on samples of A319-type aluminum cast alloy. Roughness exponents and correlation length on 
the perpendicular and parallel directions with respect to the crack propagation direction were determined, 
this analysis was also performed for the arrested crack propagation front. In the two-dimensional case, 
cracks were propagated on notched tension specimens of aluminum foil and the resulting self-affine crack 
paths were recorded and analyzed, the self-affine parameters were determined for both longitudinal and 
perpendicular direction in order to investigate the effect of the microstructural anisotropy.  
 
Self-affine analysis was carried out using the Zmax variable bandwidth method. The combined use of 
different techniques (SEM, AFM, Optical microscopy and  stylus profilometry) enabled the analysis over up 
to seven decades of length scales. The results are analyzed in terms of recent crack propagation models and 
the self-affine parameters are found to be correlated with microstructural characteristic lengths. 
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INTRODUCTION 
 
Crack propagation and the fracture of materials are catastrophic phenomena of considerable scientific, 
technological an economical importance [1-4]. Despite the scale of the problem and the considerable effort 
that has been undertaken by engineers and scientists of different disciplines, there is at present no clear 
understanding of the fracture process. In recent years much interest has been devoted to the self-affine 
character of fracture surfaces and crack propagation [5-7]. The fractal nature of fracture surfaces was first 
quantitatively studied in the mid-eighties [8]. At about the same time it was suggested that the fracture of 
heterogeneous media has some universal properties similar to critical phase transitions [9]. Later, 
experimental evidence led to the conjecture of the existence of a universal roughness exponent [10] for the 
fracture surfaces of many different materials [11], though this is still a controversial topic [7,12]. Anyway, it 
is now clearly established that fracture surfaces are self-affine objects that can be quantitatively described by 
self-affine parameters like one or more roughness exponents and one or more characteristic lengths such as 
cut-off lengths separating different scaling regimes, and the correlation length. 



One of the main goals of materials scientists is to find clear and useful relationships between the 
microstructure of materials and their macroscopic properties. In our particular field of interest this traduces 
to finding quantitative relationships between the microstructural features and the relevant self-affine 
parameters associated with the fracture surface and the crack propagation process that led to its creation. 
From the statistical physics point of view the question is related to how disorder affects crack propagation 
considering that rupture is the culmination of a self-organization of cumulative damage and cracking 
characterized by power-law regimes which result from the fact that disorder is present at different length 
scales in the form of impurities, vacancies, grain boundaries, porosity, phase boundaries and so forth. 
 
The first attempts to relate fractal parameters of the fracture surfaces [8] of maraging steels with mechanical 
properties were very promising and inspirational though unsuccessful, it is clear that the fractal dimension of 
a fracture surface is not clearly correlated with the toughness of the material. Moreover, fractal dimension is 
not an appropriate parameter to describe self-affine surfaces [13], the roughness or Hurst exponent should be 
used instead. At present [6, 7], results from experiments in a wide variety of materials tested in different 
kinetic conditions and analyzed with different topometric techniques over up to seven length scales [14] 
suggest the coexistence of two self-affine regimes, at high enough propagation speeds and/or large enough 
length scales the so-called universal exponent ζ ≈ 0.78 is detected, whereas at slow propagation conditions 
and/or small enough length scales the detected exponent has a value close to 0.5. The cut-off length 
separating these two regimes is apparently dependent on the propagation speed [15], it also appears to be 
affected by local plastic deformation at the crack tip in ductile materials. Neither of the two above mentioned 
exponents seems to be associated in any manner whatsoever with the microstructural features of the 
materials. Experiments in Al-Ti alloys suggested that the cut-off length might be linked to the size of  
intermetallic compounds embedded in the metallic matrix [16]. Recent results [17-19] have shown that the 
correlation length, i.e. the upper limit of the self-affine regime(s) is directly related with the largest 
heterogeneities in materials such as metals [14, 17, 18], polymers [19, 20] and certain glasses [19].  
 
With the hope to provide more experimental evidence that can help to improve our knowledge and refine the 
existing theoretical models of crack propagation, in this work we report the experimental analysis of the self-
affine parameters of fracture surfaces and crack paths in aluminum alloys. A cast aluminum alloy is broken 
in mode I and the three associated roughness exponents are recovered along with the respective correlation 
length is some cases. We have also tested an aluminum foil in 2D mode I condition and have analyzed the 
self-affine nature of the crack paths. In both cases special attention is paid to the possible relationships 
between the microstructural features and the self-affine parameters. 
 
 
EXPERIMENTAL PROCEDURE 
 
We have performed the self-affine analysis of the fracture surfaces of aluminum samples, the same analysis 
was done for the crack paths generated in mode I in 2D conditions using samples of aluminum foil. The 
quantitative analysis was carried out using height profiles which were recorded by different techniques. The 
resulting topometric data sets are processed using the variable bandwith method [21] in which the following 
quantity was calculated:  
 
 
 
 

Zmax(r) = < max{z(r’)}x<r’<x+r - min{z(r’)} x<r’<x+r >x ∝  rζ 

 

Where r is the width of the window and Zmax(r) is the difference between the maximum and the minimum 
height z within this window, averaged over all possible origins x of the window. A log-log plot of Zmax(r) 
vs. r gives a straight line for a self-affine profile. 
 



The experimental details and results for the two cases considered in our work are presented below. 
 
3D case, A319-type Aluminum alloy 
 
The cast aluminum alloy employed for this part of our work is an A319-type alloy, which is commonly used 
in the automotive industry. The typical chemical compositon is as follows (wt %): Si:7.147, Cu:3.261, 
Fe:0.612, Zn:0.664, Mn:0.0374, Ni:0.041, Ti:0.154, Mg:0.313, Sr:0.014, Al: balance. Fig.1 shows the 
microstructure of this alloy as observed by optical microscopy, the dendrites of alpha aluminum-rich phase 
is observed along with a numbre of different phases in the interdendritic regions. There is also a grain 
structure which was revealed using a special preparation. Image analysis measurements showed that the 
largest heterogeneities were the dendrites and the grains, with characteristic lengths identified as the primary 
dendrite arm length (800 µm) and the grain size (950 µm). 
 
Samples of this material were broken in Charpy impact tests according to ASTM standard E-23-93. The 
resulting fracture surfaces were examined by Scanning Electron Microscopy (SEM), Atomic Force 
Microscopy (AFM) and an stylus profilometer. These three techniques were used to obtain topometric 
profiles both in the perpendicular and parallel direction with respect to the crack propagation direction, see 
Fig. 2. Profiles of the arrested crack front were also recorded using a different procedure which is described 
later in this section. Using these profiles we were able to determine the perpendicular out-of-plane roughness 
exponent ζ⊥, the parallel out-of-plane roughness exponent ζ//, and the roughness exponent of the crack front 
ζf, Fig. 2. 
 

           
 
Fig.1 Optical micrography showing the microstructure 
of the A319-type alloy. 

Fig. 2 Scheme illustrating the height profiles in the 
parallel and perpendicular directions with respect to the 
propagation direction, the crack front and the three 
roughness exponents are also included. 

 
The SEM topometric profiles in the parallel and perpendicular directions were obtained by sectioning the 
surfaces previously plated with nickel, then SEM images are recorded using backscattered electrons and the 
profile is extracted by image analysis procedures. More details of these technique can be found in references 
[6, 15-17]. SEM profiles of 1024 points were obtained at magnifications ranging from 100X to 4000X. The 
AFM profiles are directly recorded by scanning the uncoated surfaces, we have used the contact mode in air. 
Profiles of 512 points with scan sizes ranging from 0.5 to a maximum of 6 µm were obtained. The stylus 
profilometer provided us with profiles of a maximum length of around one centimeter, a typical profile 
consisted of around 10,000 points with resolution of 0.25 µm. 



Figures 3 and 4 show the self-affine curves obtained for the perpendicular and parallel directions, 
respectively. The exponents ζ ⊥, ζ//  have very similar values: 0.81, 0.78, repectively. 
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Fig. 3 Self-affine curve for the profiles in the 
perpendicular direction, the roughness exponent ζ ⊥  has 
a value of 0.81. 

Fig. 4 Self-affine curve for the profiles in the parallel 
direction, the roughness exponent ζ//  has a value of 
0.78. 

 
 
Profiles of arrested crack fronts were obtained by a very different method, we have run interrumpted torsion 
tests over hollow cilindrical specimens then marked the crack front using a commercial penetrating die 
commonly used in crack inspection and failure analysis. The specimens were then broken in the torsion 
machine and the arrested crack front was registered by SEM using secondary electrons, profiles were 
extracted by image analysis. Figure 5 shows the self-affine plot for the crack front which has a roughness 
exponent ζf = 0.79.  
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Fig. 5 Self-affine curve for the arrested crack front, the roughness exponent ζf has a value of 0.79 

 
These self-affine curves permit only an estimation of the correlation length. However,  as it can be observed, 
in all cases it has a value of the order of 1 millimeter, which is very close to the size of the largest dendrites 
and grains. 
 
 
2D case: Self-affine crack propagation in aluminum foil 
 
Tension specimens of aluminum foil (alloy 1145-O) were prepared as shown in Fig. 6, then fractured in 2D 
mode I condition. We have then performed the self-affinity analysis of the resulting crack paths. The purpose 
of these experiments was to evaluate the self-affine parameters paying special attention to the possible effect 



that the anisotropic grain structure might have on the self-affine character of the crack paths. As it is shown 
in Fig. 7, the grains are elongated in the rolling direction, it is known that this causes anisotropic behavior of 
mechanical properties so one can expect an analogous effect on the self-affine parameters. 
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Fig. 6 Scheme showing the orientation of the tension 
specimen with respect to the rolling direction. 

Fig. 7 Microstructure of the aluminum foil showing 
grains elongated in the rolling direction. 
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Fig. 8 Samples of the recorded crack paths in the 
rolling direction (//) and the perpendicular direction 
(⊥). 

Fig. 9 Self-affines curves for the profiles in the parallel 
and perpendicular direction respectively, both curves 
reveal that the roughness exponent ζ has a value of 
0.67 

 
 
The crack paths obtained as a results of the tension test were recorded at various magnifications using SEM, 
optical microscopy and a conventional document scanner. Samples of the recorded self-affine paths are 
shown in Fig. 8 where paths belonging to cracks propagating in the rolling direction are “wider” and clearly 
distinguishable from those propagating in the perpendicular direction. The self-affine plot shown in Fig. 9 
reveals that the roughness exponent has about the same value for both directions, ζ = 0.67, this value is in 
good agreement with the results predicted by the random fuse model and a 2D simulation of crack 
propagation reported in reference [16]. It is not possible to estimate with good precision the correlation 
lengths but Fig. 9 suggest that this parameter  is larger for the parallel direction compared to that of the 
perpendicular direction, one can speculate that this can be interpreted as an effect of the elongation of the 
grains caused by the rolling process. 



CONCLUSIONS 
 
We have determined the self-affine parameters of the fracture surface of a cast aluminum alloy. The parallel 
and perpendicular out-of-plane roughness exponents were determined with values of 0.78 and 0.79, 
respectively. The roughness exponent of the arrested crack front was also determined, with a value of 0.79. It 
was corroborated that the correlation length is in all the cases related to the size of the largest heterogeneities 
present in the complex microstructure. The analysis of the crack paths in aluminum foil as developed in 2D 
mode I loading allowed the determination of the respective self-affine parameters. It was found that the 
roughness exponent has a value of 0.67 for both the parallel and transverse direction of propagation with 
respect to the rolling direction. The anisotropy of the microstructure has an observable effect in the 
correlation length whereas the roughness exponent is apparently unaffected by this condition. 
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ABSTRACT 
 
   The shear lag analysis was combined with the Monte Carlo method, and applied to two-dimensional model 
composite to simulate the tensile behavior of unidirectional continuous fiber-reinforced brittle matrix composites with 
weak interface. The features particular to weakly bonded composites such as intermittent breakage of components and 
interfacial debonding, serrated stress-strain curve, pull-out of fibers, deleterious effects of residual stresses on strength 
of composite, overall unnotched strength determined by fiber bundle, longitudinal cracking arising from the tapered 
portion in unnotched specimen and from the notch tip in notched specimen and the notched strength given by the net 
stress criterion, were simulated well.  
 
KEYWORDS: tensile behavior, simulation, unidirectional composite, weak interface, damage map 
 
 
INTRODUCTION 
 
   When the interface in brittle fiber/brittle matrix composites is strong, the crack arrest-capacity is low and high 
strength and toughness cannot be achieved. Thus the interface is controlled to be weak. For the design and practical 
use, it is needed to describe and predict the behavior of weakly bonded composites. 
   Under tensile load, damages (breakage of fiber and matrix, and interfacial debonding) arise at many places, being 
distributed spatially. The damages interact mechanically to each other. Such mechanical interactions determine the 
species and location of the next damage, one after another. Thus the damage map and therefore the mechanical 
interaction among damages vary with progressing fracture. As a result of consecutive variation of them, mechanical 
properties such as stress-strain curve, strength and fracture morphology are determined. Thus, for description of the 
behavior of composites, as the damage map varies at every occurrence of new damage, the new interaction shall be 
calculated for the new damage map one after another  
   One of the tools to solve this problem may be the shear lag analysis [1,2]. However, the ordinary shear lag analysis 
have been developed using the approximation that only fibers carry applied stress and the matrix acts only as a 
stress-transfer medium. Due to this approximation, it had two disadvantages; it can be applied only to polymer- and 
low yield stress-metal –matrix composites but not to intermetallic compound- and ceramic-matrix ones; and the 
residual stresses cannot be incorporated. Recently, the authors [3-5] have proposed a modified method to overcome 



these disadvantages, with which the general situation (both fiber and matrix carry applied stress and also act as stress 
transfer media) can be described and residual stresses can be incorporated, to a first approximation. 
   In the present study, the modified shear lag analysis mentioned above will be combined with the Monte Carlo 
method and be applied to 2D model, to simulate the tensile behavior of unidirectional weakly bonded brittle matrix 
composites. 
 
 
MODELING AND SIMULATION METHOD 

 

   A two-dimensional model composite employed in the present work is shown in Fig.1. The components (fiber and 
matrix) were numbered as 1,2,…i,... to N from left to the right side. Each component was regarded to be composed of 
k+1 short component elements with a length ∆x. The position at x=0 was numbered as 0 and then 1, 2, 3,...j... k+1 
downward, in step of ∆x.. The "i" component from x=(j-1) ∆x to j∆x was named as the (i,j)-component-element, and 
the interface from x=(j-1/2) ∆x to (j+1/2) ∆x between "i" and "i+1" components as the (i,j)-interface-element. The 
displacement of the (i,j)-component-element at x=j∆x was defined as Ui,j. Two parameters (αi,j and γi,j) were 
introduced to express whether (i,j)-interface is debonded (αi,j=0) or not (αi,j=1) and whether (i,j)-component is broken 
(γi,j=0) or not (γi,j =1). From the spatial distribution of debonded interface-elements with αi,j=0 and broken 
component-elements with γi,j=0, the damage map was expressed. The values of αi,j and γi,j were determined at each 
occurrence of damage. The values of Ui,j were calculated by the procedure elsewhere [3,4], from which the tensile 
stress σi,j of each component and shear stress τi,j at each interface were calculated .    
  The simulation of the stress-strain behavior was carried out in the following procedure. 
  (1)The strength of each component Si,j was determined by generating a random value based on the Monte Carlo 
procedure using the Weibull distribution.  
  (2)Two possibilities arise for the occurrence of damage; one is the fracture of the component which occurs when the 
exerted tensile stress σi,j exceeds the strength Si,j and another is the interfacial debonding which occurs when the 
exerted 
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Figure1 Modeling for simulation. 
shear stress τi,j exceeds the shear strength τc. To identify which occurs, σi,j for all component elements were calculated  
and the component element having the maximum σi,j/Si,j -value, say (m,n)-component , was identified. Also, the 
interface element with the maximum shear stress, say (m',n'), was identified. (i)If σm,n/Sm,n<1 and τm',n'/τc <1, no 
breakage of component and no interfacial debonding occur. Thus the applied strain was raised. (ii)If σm,n/S,m,n>=1 and 
τm',n'/τc <1, (m,n)-component-element is broken. If σm,n/Sm,n <1 and τm',n'/τc>=1, (m',n')-interface-element is debonded. 
If σm,n/Sm,n >=1 and τm',n'/τc>=1, (m,n)-component-element is broken when σm,n/S,m,n>τm',n'/τc, while (m',n')-interface- 
element is debonded when σm,n/Sim,n <τm',n'/τc. In this way, what kind of damage occurs is identified. Then a similar 
process was repeated and the next damage was identified one after another. Such a procedure was repeated until no 
more occurrence of damage at a given strain. 
  (3)When no more damage occur, the applied strain εc was raised, and the procedure (2) was repeated until overall 
fracture of the composite.  
 
 
RESULTS AND DISCUSSION 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2 An example of the stress-strain curve and variation of damage map of the 
composite caused by progress of the interfacial debonding under the given geometry of the 
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broken components.  
Progress of Interfacial Debonding and the Resultant Stress-strain Curve of the Composite with the Fixed 
Geometry of Broken Components 
  In this work, a mini sized model composite was used to describe the fundamental process of fracture, and following 
values were used for calculation: N=9, k=12, df=dm=0.1mm, ∆x= 0.2 mm (=2df), Ef=400GPa, Em=200GPa, Gf=160 
GPa, Gm=80GPa, τc= 50- 200 MPa. and τf =0 MPa. 
  First, in order to know the influence of pre-existent broken component element on the progress of debonding, the 
change of damage-map and overall stress-strain curve of composite was simulated under the given geometry of the 
broken components. In this case, it was assumed that no breakage of the components occurs. Figure 2 shows the stress 
(σc)-strain (εc) curve and damage map at various strains.  
  The feature of the debonding progresses is read as follows. The first debonding starts at εc=0.0021, followed by the 
2nd to 6th debonding at the same strain, as indicated by 1 to 6. Then the debonding stops. Due to the progress of 
debonding at many interface-elements, the stress-carrying capacity of composite is reduced. The reduction of stress at 
εc=0.0021 in the curve corresponds to such an interfacial debonding-induced loss of stress carrying capacity. After 
occurrence of the 1st to 6th debonding at εc =0.0021, the overall debonding stops since the shear stresses of all bonded 
interface-elements become lower than the critical value at this strain. Beyond εc=0.0021, no debonding occurs and the 
composite stress increases up to εc=0.0025, at which the 7th to 10th debonding occur one after another, resulting in 
loss of stress carrying capacity. After the stoppage of debonding, the composite stress again increases with increasing 
strain. As shown in this example, the overall debonding progresses intermittently with repetition of growth and 
stoppage, resulting in the serrated stress-strain curve. 
  
Stress-strain Curve of the Composite in Which Both Breakage of Components and Interfacial Debonding Occur 
  Figure 3 shows examples of the stress-strain curve of the composite in which both breakage of components and 
debonding of interface occur consecutively. (a) shows the case where the coefficients of thermal expansion of 
fiber( αf) and matrix(αm) are the same (5x10-6/K) and therefore no residual stress exists and (b) the case where they 
are different(αf =5x10-6/K and αm=10x 10-6/K) and the residual stresses are introduced by cooling from 1500K to 
300K. As the number of elements of broken fiber (NF), matrix (NM) and interface (NI) were quite different to each 
other and could not be clearly shown on the same scale, the normalized values with respect to the final values NF,f, 
NM,f and NI,f, respectively, are shown in this figure. Figure 4 shows the fracture process of unnotched composite with 
tapered grip portion. From Figs.3 and 4, following features are read.   
  (i)The stress-strain curve shows also serration due to the intermittent breakage of the components and interfacial 
debonding. 
  (ii)In case (b) in Fig.3, as αf < αm, the matrix and fiber have tensile and compressive residual stresses along fiber 
axis, respectively. In the example of Fig.3, the average failure strain of the matrix was taken to be comparable with 
that of fiber under no residual stresses. The authors [3,4] have shown that the tensile residual stress in the matrix 
enhances the breakage of matrix and also hastens the matrix breakage-induced debonding, while the compressive one 
in the fiber retards the fracture of fiber and also suppresses the fiber breakage-induced debonding. Comparing the 
variation of broken matrix-elements NM and debonded interface-elements NI with increasing applied strain in case (b) 
with that in case (a), the former evidently shifts to lower strain range. As known from such a difference under the 
existence of the present residual stresses, the matrix breakage and matrix breakage–induced debonding occur in the 
early stage, resulting in loss of stress carrying capacity and therefore low strength of composite. On the other hand, in 
the composite without residual stresses (a), the matrix is broken nearly at the same strain of breakage of fiber and the 
premature debonding does not arise so much until the ultimate stress, resulting in high strength. As the deleterious 
effect of the present residual stresses on the strength of weakly bonded composites, the strength of the composite with 
residual stresses (b) was 930MPa, which was far lower than 1500MPa of the composite without residual stresses (a).  



  (iii) In the case of (b) in Fig.3, the matrix breakage and the interfacial debonding have occurred in the early stage.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3 Comparison of the stress-strain curve, strength and accumulation process of 
damages between the composites (a) without and (b) with residual stresses. 

 
 
 
 
 
 
 
 
 
 
 
 

Figure 4  (a): Schematic drawing of the longitudinal cracking in the unnotched specimen. 
(b): Modeling for simulation. (c) to (e): Simulated fracture process accompanied with 
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longitudinal cracking and the fracture morphology   
Once such a situation has occurred, the fibers are separated to each other and behave like a fiber bundle without 
matrix. Thus the strength of such composite is given by the strength of the fiber bundle. Further simulation using the 
low failure  
strain-matrix composite without residual stresses showed the same feature.     
  (iv) It has been known that, in weakly bonded composites, longitudinal cracking occurs ahead of the notch. 
Furthermore, even in the unnotched samples, the longitudinal cracking between the parallel gage portion and the 
tapered one occurs (Fig.4(a)). Such a feature is also well realized in Fig.4 (b) to (e).  
  (v) It has been well known that the fiber is pulled-out in weakly bonded composites. The final fracture morphology 
of the composite, shown in Fig.4(e), describes such a feature also.  
  (vi) In notched samples, the longitudinal cracking occurs in the whole length between the grips at lower applied 
stress level than that in unnotched samples. Thus, the notch does not cause mode I type fracture but enhance 
longitudinal cracking. As a result, the strength of notched samples could be expressed by the net strength criterion. 
 
 
CONCLUSIONS 

    
   The variation of the damage map, stress-strain curve, strength and fracture morphology of two-dimensional model 
composite with weak interface were simulated by combining the shear lag analysis with the Monte Carlo method. 
Following features of weakly bonded composites were described.  
  (1) Both of the breakage of components and interfacial debonding occur intermittently. 
  (2) As a result of (1), the stress-strain curve is serrated.  
  (3) When the fracture strain of matrix is low, the residual stresses (tensile and compressive stresses along fiber axis 
for matrix and fiber, respectively) enhance breakage of matrix and matrix breakage-induced debonding at low applied 
strain. As a result, the stress carrying capacity of the composite is reduced, resulting in low strength.  
  (4) The strength of weakly bonded composites whose matrix has low failure strain is practically given by the 
strength of the fiber bundle.  
  (5) Longitudinal cracking arises at the notch tip in notched specimens and also at the tapered corner in the 
unnotched specimens.  
  (6) The notched strength is given by the net stress criterion. 
 
Acknowledgement 
  The authors wish to express their gratitude to The Ministry of Education, Science and Culture of Japan for the 
grant-in-aid for Scientific Research (No.11555175).   
 
 
REFERENCES 
 
1.   Hedgepeth, J. M.. (1961). Stress Concentrations in Filamentary Structures. NASA TN D-882, Washington,. 
2.   Oh, K. P. (1979) J. Comp. Mater., 13, 311. 
3.   Ochiai, S., Okumura, I., Tanaka, M. and Inoue, T. (1998) Comp. Interfaces, 5, 363. 
4.   Ochiai, S., Tanaka, M. and Hojo, M. (1998) Comp. Interfaces, 5, 437. 
5.   Ochiai, S. Hojo, M. and T. Inoue. (1999) Comp. Sci. Tech., 59, 77. 
 



ICF100844OR 
 
 
 
 
 
 

A BOUNDARY ELEMENT BASED MESO-ANALYSIS ON THE 
EVOLUTION OF MATERIAL DAMAGE 

 
 

H. Okada, Y. Fukui and N. Kumazawa 
 

Department of Mechanical Engineering, Kagoshima University 
1-21-40 Korimoto, Kagoshima 890-0065, JAPAN 

 
 
 

ABSTRACT 
 
In this paper, we present efficient numerical formulations for the analyses of particulate composites, 
underging meso-structural changes such as particle fracture, stress induced phase transformation, etc. The 
formulations are derived based on the homogenization method and the boundary element method (BEM). 
Proposed formulations can efficiently deal with problems, in which particles randomly distribute and 
orient in the composites, by combining analytical solutions for the ellipsoidal inclusions such as 
Eshelby’s tensor and the boundary element method. Hence, there is no need to carry out any numerical 
integrations for the particles. Proposed numerical methods are computationally efficient and accurate. The 
formulations and numerical results for effective elastic moduli of composites and problems of particle 
fracture and stress induced phase transformation, are presented.  
 
 
INTRODUCTION 
 
In this paper, efficient boundary element formulations (see [1-6] for the boundary element method) for 
solids containing ellipsoidal inclusions/particles, as shown in Fig. 1, are presented (see Ashby [7] for 
various types of composite materials). First, a boundary element based formulation for homogenization 
analysis is discussed and is combined with analytical solutions for ellipsoidal inclusions in which constant 
initial strains are specified inside of them. A special case of the analytical solutions is given as the well 
known Eshelby’s tensor [8,9]. The analytical solutions for ellipsoidal inclusions such as Eshelby’s tensor, 
are based on the fundamental solution of linear isotropic elasticity, which is also used in the boundary 
element method as its kernel functions. The analytic solutions and boundary element formulation can 
easily be combined. 
 
Homogenization method [10-12] based on the finite 
element method has been applied to a various class of 
problems, such as identifying macroscopic elastic moduli 
and nonlinear behavior of meso-structure for a prescribed 
macroscopic deformation mode. Homogenization method 
assumes that the microstructure of solid is spatially 
periodic, and finite element analyses for a unit of periodic 
structure (unit cell) are carried out. However, the 
homogenization method can not be applied to the problems 
of particulate composite materials in a straight forward 
manner, since the orientations and distributions of particles 

 

Densely  Distribute Particles  
 

Figure 1: Particulate composite material 



would be somewhat random. Therefore, defining a unit cell model containing one or a few particles may 
be an over simplification of the problem. To accurately model such solids, a unit cell containing many 
particles should be analyzed. Thus, one needs to build and carry out analyses for a unit cell model having 
tens and hundreds of particles. Finite element model, which is required for such analyses, would be 
gigantic. Generating the finite element model as well as solving the problem would pose many problems. 
However, mechanical interactions between the particles, and between matrix material and particles are 
fully accounted for, when the finite element method is adopted. 
 
On the other hand, methodologies in micromechanics, such as self-consistent method [9,13,14] and 
Mori-Tanaka theory [9,15] have been presented. For particulate composites, Eshelby’s tensor [8,9], takes 
a central role (see, for example, [9,16,17]). These methodologies have advantages over the finite element 
method such that the effective mechanical behaviors of composites can be estimated in a closed or 
semi-closed form, based on the elastic moduli of matrix and particles, the distribution, orientation and 
volume fraction of the particles. Large scale computations are not required. However the methods in 
micromechanics do not account for detailed mechanical interactions between the distributed particles. The 
mechanical interactions may have significant roles when the particles are densely distributed or when we 
attempt to account for the damage evolution or meso-structural changes, such as phase transformation of 
the particles.  
 
Boundary element based homogenization formulation, which is developed in this paper, have advantages 
of both the above mentioned methodologies. Since the method is based on the boundary element method 
(BEM [1-6]), detailed mechanical interactions between all the material constituents can be accounted for. 
This nature is similar to that of the finite element method. A unit cell modeled by the boundary element 
method can contain many particles and the computation is simplified by using analytical solutions for 
ellipsoidal inclusions, such as Eshelby’s tensor [8,9]. In this regard, proposed method is similar to the 
methodologies in micromechanics.  
 
 
HOMOGENIZATION FORMULATION FOR PARTICULATE COMPOSITES 
 
In this section, equation formulations for boundary element based homogenization analysis for particulate 
composites are briefly discussed (see [18,19] for homogenization method based on BEM). In 
homogenization method, the microstructure of solid is assumed to be spatially periodic, as shown in Fig. 
2. A unit of the periodic  microstructure is modeled by the boundary element method and is called “unit 
cell”. As shown in Fig.1 in a two dimensional illustration, the size of the unit cell is represented by ε . We 
introduce two different coordinate systems. One is ix  coordinate system, which is fixed in space and the 
other is iy  coordinate system, which is scaled by the size ε  of unit cell, as: 
 

iii cxy += ε    (1) 
 
where ic  are the components of an arbitrary vector. 
Displacements iu are expressed by the two scale 
asymptotic expansion, by following Guedes and 
Kikuchi [10], as: 
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For small deformation linear elasticity problem, 
Hooke’s law and the equation of linear momentum 
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Figure 2: Two dimensional illustration for a solid 
whose microstructure is periodic and its unit cell. 



where lijkE  are the fourth order tensor, representing Hooke’s law. Based on Eqns. (2) and (3), it can be 

shown that ( )xuu o
i

o
i =  [ o

iu  are the functions of ix  only.], and one can obtain an integral equation 
formulation for 1

iu  for the analysis of unit cell (see Okada et al. [19] for the derivation).  
 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )[ ]Y
qpqm

Y
mkp

m

o
k

j

Y
mip

k
M
ijkk

Y
mkpY

Y
mjp

Y
j

Y
mqpq CYyt

x
u

Y
y

u
EYutYutuC ξ∂ξ

∂
∂

∂

ξ∂
ε∂ξ∂ξξ ∂∂∂ +−−−= ∫∫∫∫ Y

*
Y

*
*

Y
1**1 dddd * y,

y,
y,y, ll

  (4) 

 
where lkε  are the fictitious initial strains, which are defined by,  
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Displacements 1

iu  at the source point Y
mξ  is evaluated by the integral equation (4). A two phase 

composite material is assumed and elastic constants for matrix and second phase materials are represented 
by M

ijkE l  and ∗
lijkE , respectively. ∗

ipu  and ∗
ipt  are the Kelvin solutions (see [4]). Y  and Y∂  represent 

the domain and boundary of the unit cell. *Y  denotes the region of second phase material in Y .  
 
We assume that the solid contains ellipsoidal particles as its second phase material and that the stresses 
and strains are constant values inside a particle, by following the result of Eshelby [8] and many of 
micromechanics analyses [9,17]. We then rewrite the volume integral term of integral equation (4), as: 
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where ( )Y

m
I
pij ξΛ  are the analytical expressions for the integral (see Mura[9]) and I

klε  are the fictitious 
initial strain in the Ith particle. Thus, we write: 
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When the source point Y

iξ  is at the interior of the Jth particle, we can derive an integral equation for the 
displacement gradients ji yu ∂∂ ˆ , by differentiating Eqn. (7) with respect to Y

iξ , as: 
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where J

pqkS l  are the components of Eshelby’s tensor [8,9] for the Jth particle. Singular volume integrals, 
whose numerical evaluations are known to be troublesome, are replaced by the analytical formulae such 
as Eshelby’s tensor. Therefore, proposed integral equations are computationally efficient and accurate.  
 
Taking the last term in Eqn. (7) as the forcing term and following the standard boundary element analysis 
procedures by imposing the so called periodic boundary conditions on displacements 1

iu  and tractions 
Y
it , we can evaluate the displacements and tractions at the boundary of the unit cell. An initial strain 

iteration method is adopted to obtain the equilibrium (see [5,6] for the initial strain iteration for solving 
elastic-plastic problems using BEM). Thus, the solutions for given j

o
i xu ∂∂  are obtained. We repeat the 

analyses for six times for a three dimensional problem to determine the responses of microstructure to all 
the macroscopic deformation modes (six strain modes). The characteristic functions ( )ylikF , which relate 

j
o
i xu ∂∂  to 1

iu , and the effective elastic moduli H
ijkE l  of the composite are written to be:  
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ANALYSIS FOR PROGRESSIVE DAMAGE (MESO-STRACTURAL CHANGE) 
 
Here, we deal with the problems of particle fracture and of the stress induced phase transformation of 
particles (see [17,20] for stress induced phase transformation). We make small extensions on the integral 
equations (7) and (8), as follows. 
 
Particle Fracture 
An incremental analysis is carried out for the problems of particle fracture. The simplest scenario is 
assumed that when the stresses in a particle satisfy a criterion for particle fracture, the elastic modulus of 
the particle reduces to zero (in actual calculation, the elastic modulus is reduced to be 1/1000 of the 
original value). Therefore, the analysis is entirely based on the elastic analysis for the unit cell. The 
integral equations, which are developed in the previous section, are applied by specifying different elastic 
moduli for fractured and unfractured particles. Algorithms for the analysis are shown in Fig. 3. 
 
Stress Induced Phase Transformation of Particles 
The problems of dilatational stress induced phase transformation (see Okada et al. [17]) are considered 
and an incremental algorithm is adopted. It is assumed that at the instance, when hydrostatic stress ( 3kkσ ) 
inside a particle reaches a critical value, the particle transforms its phase and dilatational transformation 
strain is produced. The dilatational transformation strain is modeled as an additional initial strain. The 
integral equations [Eqns. (7) and (8)] are modified to include the effects of the transformation strain, as: 
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where I

ijε  are fictitious initial strains, which are related to the dilatational transformation strain tε , as: 

Start (all the particles have original properties): set load factor  α=0

Homogenization analysis for given ∂ui
o ∂x j

Update load factor  α  to satisfy the particle 
fracture criteron in a particle (K=1,2,3,...,N) 

Evaluate macroscopic stresses

Reducing the elastic moduli of the fractured 
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Figure 3: Algorithms for the analysis of problem 

of particle fracture 
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Figure 4: Algorithms for the analysis of problem of 

stress induced phase transformation 
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The effective stress for the solid can be given as average values of stresses in the unit cell, as:  
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Algorithms for the analysis of the stress induced phase transformation problem are given in Fig. 4. 
 
 
RESULTS OF NUMERICAL ANALYSIS 
 
A limited number of numerical results are presented in this section due to the restriction of pages (results 
for the problem of particle fracture are omitted.). Unit cell models used for numerical computations are 
shown in Fig. 5. Randomly distributed spherical particles are assumed. The volume fraction of the 
particles is about 10%, and the number of the particles are 27 and 125. Linear quadrilateral boundary 
elements are used. Total number of boundary elements on each face of the unit cell is 36 (6 x 6). 
 
Evaluation for Effective Elastic Moduli 
The results are shown in Fig. 6. Isotropic elasticity is assumed for the particles and the ratio of Young’s 
moduli of matrix and particles are varied from 10-3 to 103. Poisson’s ratio is assumed to be 0.3 for both 
the material constituents. Results, which are analyzed by the 125 particle model, are presented. 
 
For a comparison purpose, the results obtained by using self-consistent method and Eshelby’s method 
theory (see Mura [9]) are also plotted in the figures. The results by three different methods are within an 
agreement. Though exact solutions are not known, three different methods are within a reasonable 
agreement and, therefore, the proposed technique is, at least, proven to be reliable. 
 
Stress Induced Dilatational Transformation 
Relationships between the effective hydrostatic stress ( 3kkσ ) and effective dilatational strain ( i

o
i xu ∂∂ ), 

when Young’s moduli of matrix and of particles are set to be the same, are shown in Fig. 7. Dilatational 
transformation strain is assumed to be 05.0=t

kkε  and the phase transformation is assumed to take place 
when the hydrostatic stress in a particle reaches transformation stress Tσ . The elastic moduli for matrix 
and particles are set to be the same in this case. 
 
The stress-strain relationships follow zigzag paths and have negative slopes while the phase 
transformation is undergoing. The path is smoother for the 125 particle model than for the 27 particle one.  
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(a)                    (b) 
 

Figure 6: The results for effective elastic moduli (125 
particles). (a) Bulk modulus, (b) Shear modulus. 

     
 

(a)                  (b) 
 

Figure 5: Distributions of spherical 
particles in the unit cell. (a) 27 particles 
whose volume fraction is 0.1, (b) 125 

particles whose volume fraction is 0.089 



CONCLUDING REMARKS 
 
In this paper, a new but simple method for the analysis of particulate composite material is presented. 
Though the numerical results, which are presented here, are rather limited, the method is proven to be 
quite effective. If one carried out a three dimensional analysis with 125 randomly distributed particles in a 
unit cell using the finite element method, a large scale computation must be carried out and the state of art 
mesh generation software would be necessary for the generation of analysis model. All the numerical 
analyses, which are presented in this paper are carried out using a workstation within a reasonable amount 
of computational time. Therefore, it can be concluded that present numerical technique can deal with the 
meso-mechanics problems of particulate composites effectively and efficiently. 
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                  (a)                                    (b) 
Figure 7: Hydrostatic pressure stress-dilatational strain curves for the problems of stress induced 
phase transformation. (a) 27 spherical particles, (b) 125 spherical particles. The straight lines are 

stress-strain curves following the results of Ramakrishnan, Okada and Atluri [20]. 
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ABSTRACT  

This paper summarizes the recent formulation by Wang and Chau [1] on a new boundary element method 
(BEM) in terms of complex variables for plane elastic bodies containing cracks, holes and rigid inclusions 
subjected to mixed displacement/ traction boundary conditions. A complex boundary function H(t), which 
is a linear combination of the boundary traction and boundary displacement density, is introduced. The 
present Boundary Integral Formulation can be related directly to Muskhelishvili’s formalism. Singular 
interpolation functions of order 2/1−r  (where r is the distance measured from the crack tip) are introduced 
such that singular integrand involved at the element level can be integrated analytically. The interaction 
between a rigid circular inclusion and a crack is investigated in details. Our results for the stress intensity 
factor are comparable with those given by Erdogan and Gupta [2] and Gharpuray et al. [3] for a crack 
emanating from a stiff inclusion, and with those by Erdogan et al. [4] for a crack in the neighborhood of a 
stiff inclusion. 
 
 
KEYWORDS 
 
Crack, Circular inclusions, Boundary element method, Complex variable 
 
 
INTRODUCTION 
 
In recent years, boundary element method (BEM) has widely been applied in solving linear elastic problems 
and fracture mechanics problems, and has been developed into a powerful numerical technique.  In the 
traditional approach, boundary integral equations are derived by from the Somigliana’s identity (e.g. Rizzo 
[5]; Cruse [6]; Lachat and Watson [7]; Brebbia [8]). The application of BEM has been focused mainly on 
traction boundary value problems (BVPs), and there is relatively few BEM studies on solving mixed BVPs, 
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to which displacements and tractions may be prescribed on disjoint portions or on the same segment of 
boundary but along different directions (e.g. Bonnet [9]; Gaul and Schanz [10]).  Note, however, that the 
so-called "mixed BVPs" are sometimes simply referred as BVPs regardless of whether displacement or 
traction is prescribed on the boundary.  A typical example of the mixed BVPs is the interaction between 
rigid circular inclusions and cracks in plane elastic bodies. There is no BEM that has been proposed in the 
literature for such problems. Therefore, Wang and Chau [1] recently proposed a robust BEM to solve this 
problem.  This conference paper will present and summarize the main findings by Wang and Chau [1].  For 
the case of interactions between non-rigid circular inclusions and cracks, we refer to the works of Wang et 
al. [11], Erdogan et al. [4], Erdogan and Gupta [3], Isida and Noguchi [12], and Gharpuray et el. [3].   
 
The present formulation closely resembles the Muskhelishvili [13-14] formalism. For mixed BVPs 
formulation in complex variables, we refer to the works by Sherman [15-18] and Lu [19]. These 
formulations, however, do not originate from the Somigliana’s identity and, thus, their relationship to the 
classical BIE formulation is unclear.   But this missing link between these formulations and the usual BEM 
was considered by Wang and Chau [1]. 
 
The main obecjtive of the present paper is to summarize the main findings by Wang and Chau [1].  The new 
BIE formulation originates from the Somigliana’s identity and involves singular integrals of Cauchy type. The 
present BIE formulation is of the same mathematical form as that derived by Chau and Wang [20]. Thus, 
the numerical implementation proposed by Wang and Chau [21] will be adopted here for our BEM 
formulation. One main advantage of the present "complex" variable formulation over the traditional "real" 
variable formulations (e.g. Ghosh et al. [22]; Bonnet [23]; Frangi and Novati [24]) is that the kernal 
functions involved in the boundary integral equations are much simpler and, as shown by Wang and Chau 
[21], they can be dealt with analytically. 
 
 
BOUNDARY INTEGRAL FORMULATION IN COMPLEX VARIABLE 
 
By consider a two-dimensional linear isotropic elastic body containing m holes and n cracks of arbitrary 
shape under plane condition (see Figure 1), Chau and Wang [20] derived the following boundary integral 
formulation for stresses and displacements in terms of a complex unknown function H(t):    

)1(],)()([2 212211 −=Ω∈+=Φ+Φ=σ+σ iandixxzzz ,    (1) 
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Before we continue to consider the boundary values of our complex functions, it is useful to note from (8) 
that q(t) can be expressed in terms of H(t) and  w(t) as 
 

q t H t w t e for t y iy Si t( ) ( ) ( ) ( ) ( )= + − = + ∈ +−κ α1 1 2 Γ .                                   (9) 

 

 
Figure 1: A sketch for an infinite elastic body � containing n cracks �j (j = 1,...,n) and m holes Si (i=1,..., 

m) subjected to far field stressesσ1
∞ , σ2

∞   and σ12
∞ . 

 
In obtaining the above formula, we have let the outer boundary tends to infinity and the components of 
stress at infinity are given as σ1

∞ , σ2
∞  and σ12

∞ . This formulation bears a close resemblance with 
Muskhelishvili’s formalism (1975).  In these formulas, S  denotes the union of the holes S1 , S2  , ... , Sm , 
C G= +∞2 1ε κ/ ( )  with ε∞  being the rotation at infinity, and the outer boundary S0  , and Γ    the union 
of the cracks Γ1  , Γ2  , ... , Γn  .  The shear modulus and Poisson’s ratio are denoted by G and � 
respectively.  The plane parameter � equals 3�4� for plane strain or (3��)/(1+�) for plane stress.  The 
angle between the tangent at t on S+� and the global coordinate axis ox1 is denoted by �(t).  And �ij and ui 

(i,j =1,2) are the components of stress and displacement in the Cartesian coordinate system ox1x2 , 
respectively. �n and �ns respectively are the normal and shear stresses on the boundary. The superscripts 
“+” and “�” denote the upper and lower crack faces respectively. The complex integration constants � and 
�� relate only to rigid displacements. 
        
 It is obvious that the only unknown function in the boundary integral formulation for �(t), �(t), �(t) and �(t) 
is H(t). Therefore, only one variable is needed in this complex formulation and this is one of the main 
advantage of using the present complex formulation.  
 
 
MIXED BOUNDARY INTEGRAL EQUATIONS 
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The stresses and displacements shown above satisfy automatically the equilibrium equations and the 
displacement-strain relations. In addition, they must also satisfy the boundary conditions, which will lead to 
the boundary integral equations for the unknown boundary complex function H(t).  For infinite plane elastic 
bodies containing cracks and holes shown in Figure 1, Wang and Chau [1] obtained the following BIEs for 
mixed BVPs  
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and f(t0) and v(t0) are given BY Wang and Chau [1]. In deriving these BIEs, we have used the Plemelj 
formulas (Muskhelishvili [13-14]; England [25]) and the following formulas of h z2 ( )  (Wang and Chau [1]): 
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COMPATIBILITY CONDITION 
 
In the case of multi-connected region, the unknown boundary function H(t) for infinite bodies must satisfy 
the following compatibility conditions (Chau and Wang [20]): 

òò +k
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kk SS

dttqdttH )(
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)(    for every hole Sk (k=1,2,...,m),                                   (15) 
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jj
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)(   for every embedded crack �j (j=1,2,...,n).                     (16) 

 
The mixed BIEs (10-11) must be solved in conjunction with the compatibility conditions (15-16), either 
analytically or numerically by using BEM similar to those discussed by Wang and Chau [21]. Once the 
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boundary unknown H(t) is obtained, the complex functions �(z), �(z), �(z) and �(z) can be determined. 
Subsequently, the stress and displacement components can be calculated. 
 
 
NUMERICAL IMPLEMENTATION 
 
The boundaries of any elastic body containing cracks and holes, either traction or displacement boundary, 
are discretized into a number of linear elements. Each element Le is then mapped onto the interval �1 � � � 
1.  Linear shape functions are adopted for both complex variable t and the complex boundary function H(t) 
on the non-singular crack elements. For crack tips, a square-root singularity is assumed (Wang and Chau 
[1]). In the case that the complex boundary function H(t) on the hole’s boundary, an additional constant is 
introduced for each hole such that the compatibility can be satisfied.  
  
Once the solutions for the nodal unknowns are obtained by numerical calculations, the stress intensity 
factors can be determined from the following equations (Wang and Chau [21]): 
 

    )(2lim)()( tiHataiKaK jatjIIjI ×-p-=-
®

, (17) 

     )(2lim)()( tiHbtbiKbK jbtjIIjI ×-p=-
®

;      (j=1,2,...,n)                               (18) 

 
where aj  and bj  are two tips of the crack �j . 
 

 
Figure 2: A crack of length c emanating from the interface of a circular rigid inclusion and an elastic matrix 

at the point measuring � from the x-axis, and inclining at � under tension �. The mode I stress intensity 
factor is given for the case of �=0.25, �=� and c=0.1a (after Wang and Chau [21]) 

 
 

NUMERICAL RESULTS AND CONCLUSION 
 
Consider the case that a crack is emanating from a rigid inclusion (Fig. 2), the mode I crack tip stress 
intensity factor has been calculated by Wang and Chau [1]. Figure 2 plots the normalized mode I stress 
intensity factors for �=� and c=0.1a.   Wang and Chau [1] also show that the present results are 
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comparable to Gharpuray et al. [3] when the inclusion is relatively rigid.  Thus, the validity of the present 
BEM is demonstrated.  
 
In this paper, the new BEM formulation by Wang and Chau [1] is presented.  Although only the results for 
radial crack is presented here, the present BEM has also been applied to consider the interaction between 
a rigid circular inclusion and a crack, either an edge crack emanating from the interface or an internal crack 
in the elastic matrix (Wang and Chau [1]).  For the case of rigid inclusion, Wang and Chau [1] has shown 
that our solutions are comparable to those by Erdogan et al. [4], Erdogan and Gupta [2], Isida and 
Noguchi [12], and Gharpuray et al. [3]. 
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A J ESTIMATION SCHEME AND ITS
APPLICATION TO LOW CYCLE FATIGUE

CRACK GROWTH
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ABSTRACT

A J estimation scheme is developed that combines the Electric Power Research Institute (EPRI)
scheme with the Reference Stress (RS) approach.  The hybrid EPRI-RS scheme is validated against
elastic-plastic finite element results for small cracks at notches.  Rules are given for converting J to
an effective cyclic change in J, ∆Jeff, for application to fatigue crack growth (FCG) under low cycle
fatigue (LCF) conditions where cyclic plasticity may occur.  The ∆Jeff formulation includes the
effects of crack closure.  It is shown how the scheme can be modified to treat strain-controlled
loading situations.  The hybrid scheme is validated against laboratory specimen LCF tests and the
results of full-scale fatigue tests on mechanically damaged pipes containing notches to simulate
gouges.

KEYWORDS

J estimation scheme, reference stress, cracks at notches, constant cyclic strain, low cycle fatigue
crack growth, crack closure

INTRODUCTION

Over the last decade, part of the fracture mechanics work at Southwest Research Institute (SwRI)
has focused on developing practical J and ∆J estimation schemes for use in the assessment of
elastic-plastic fatigue crack growth (EPFCG) under low cycle fatigue (LCF) conditions involving
cyclic plasticity.  The driving force for this research has come from a number of different sources,
but mainly because it is now widely recognized that FCG approaches based on linear elastic
fracture mechanics (LEFM) are often non-conservative when applied to LCF situations.  This has
led to SwRI’s involvement in providing practical solutions to a number of challenging industrial
problems.  For example, structural integrity issues in advanced space propulsion systems that
experience a wide range of severe operating conditions [1], the enhancement of the LEFM based



FCG computer code, NASGRO [2], developed by Forman et al., [3] for NASA, and remaining life
assessments of mechanically damaged gas transmission pipelines [4].  In addition to these, the
developed methodology is finding direct applications in other industrial areas involving LCF of
structures, such as the assessment of the effects of pipe reeling and straightening during the
installation of offshore pipelines, and start-up and shutdown of industrial gas turbine engines.

Under small-scale yielding (SSY) conditions the ∆J methodology reduces to LEFM approaches
based on ∆K, the cyclic change in the stress intensity factor, K.  The extension of the elastic-plastic
fracture mechanics parameter, J, to EPFCG based on ∆J was pioneered by Dowling [5,6].  The
methodology presented herein employs a closure-corrected modification to ∆J designated as ∆Jeff,
developed from the work of Newman [7].  The present paper briefly reviews recent efforts by
SwRI in developing and validating ∆Jeff estimation schemes for LCF applications involving cyclic
loading of cracks at notches and cracks subjected to constant cyclic strains.

HYBRID EPRI-RS J ESTIMATION SCHEME

The proposed J scheme combines the EPRI approach [8] with the RS approach [9] and is herein
referred to as the hybrid EPRI-RS method.  J is resolved into elastic and plastic components, Je

and Jp, respectively,
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Here E´ = E, Young’s modulus, for plane stress and E/(1-νe
2) for plane strain, where νe is

Poisson’s ratio.  P is the applied load, Po is the plastic limit load and V is a dimensionless
engineering parameter and µ = 1 for plane stress, ( ) ( )νν 2

e
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the plastic Poisson’s ratio.  The strain P
refε  is the plastic component of the reference strain

corresponding to the reference stress, σref, on the stress-strain curve.  The effective crack depth,
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In this equation, β equals 2 for plane stress and 6 for plane strain.

The limit load Po can be obtained from the EPRI handbooks of J solutions [10] or the review of
solutions performed by Miller [11].  An optimization procedure proposed in [12] used 189 finite
element analysis (FEA) solutions for Jp covering an extensive assortment of structures, crack shapes
and sizes, and applied load types to determine values for Po and V that gave the best fit between
Eqn. 1 and the FEA results.  This scheme enables Eqn. 1 to be generalized to arbitrary stress-strain
behaviors.  The mean value of V was 1.169, which is close to the value of 1 generally assumed in



the RS approach.  The effectiveness of the optimization scheme in reproducing FEA generated Jp

values for a range of crack shapes and sizes is demonstrated by the results shown in [13].

SMALL CRACKS AT NOTCHES

The hybrid EPRI-RS scheme captures in Je(ae) first-order crack-tip plasticity effects that govern
the transition from LEFM to fully-plastic behavior while providing a widely applicable scheme
through the RS expression for Jp.  This capability is shown in the following example calculations
of J for small cracks at notches.  The double edge notched tension (DENT) problems analyzed are
described in detail in [14].  Plane stress FEA were performed for notches of constant depth d=0.3b
(where b is half the width of the plate) with various root radii, ρ.  A wide range of J solutions were
generated for various a/ρ and d/ρ values and for strain hardening exponents, n, of 5, 10, and 15.
The FEA computations and the hybrid EPRI-RS solutions for J are displayed in Figure 1
for a/ρ ratios of 0.1195 and 0.115 and d/ρ ratios of 2.39 and 11.625 corresponding to elastic stress
concentration factors (notch stress/remote stress) of 4.2 and 8.4, respectively.  In the figure J/Je(a)
is plotted against the normalized load, P/Po.  It is clear that the hybrid approach captures the
influence of the high stresses near the notch root, but that the RS approach fails to do this.  This
point has been made previously by Smith [15].

STRAIN CONTROLLED LOADING

Under some circumstances, cracks may be subjected to constant strain LCF where the elastic strain
is small compared to the plastic strain and the maximum load in the cycle decreases as a crack
grows so that the term Ψ=ref

p
refE σε /  remains constant during growth, and Ψ=  (a)JVJ ep µ .

Examples are constant-strain LCF tests and the reeling and straightening of pipes as they are reeled
on and off a large diameter spool as part of the pre-installation and at sea installation processes,
respectively.  The difference between J evaluated under constant load and strain conditions is
illustrated in Figure 2.
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Figure 2: Schematic comparison of strain
and load controlled J values.



RULES FOR DETERMINING ∆∆JEFF FROM J SOLUTIONS

The closure-corrected EPFCG parameter, ∆Jeff , can be derived from J by employing a set of
relatively simple rules, as shown below.

(1) Convert the monotonic σ-ε curve to the hysteresis ∆σ-∆ε  curve.  For example, the

Ramberg-Osgood equation becomes 
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(2) Convert the LEFM based FCG equation to a ∆Jeff based equation which, in the case of the

Paris equation, will take the form ( )J  C  =  
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m∆ .  (The Paris constants C and m can be

estimated from LEFM FCG data [2]).
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The closure parameter, U, is defined as
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where Kopen is evaluated at the point the crack opens, and Kmin and Kmax are evaluated at the
minimum and maximum loads in the cycle, respectively.  A detailed expression for U
derived from the work of Newman [7] is given in [14].
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corresponding reference plastic strain range determined from the hysteresis stress-strain
curve.

VALIDATION:  LOAD CONTROL INCONEL 718 MATERIAL

The ∆Jeff solutions were applied to calculating FCG rates and lifetimes in tests conducted by SwRI
for NASA on surface cracks (SC), corner cracks (CC), and central through cracks (TC) in IN718
plates under SSY, intermediate- and large-scale yielding conditions [2].  A comparison between
experimentally measured fatigue cycles to failure and predicted cycles is given in Figure 3.  The
term αc appears in Newman’s expression for U and takes a value of 1 under plane stress and 3
under plane strain conditions.  The results in Figure 3 demonstrate that, in this case, the choice of
value for αc has little effect on the predicted cycles to failure.  In general, all of the predictions are
excellent, over a very wide range of cyclic lives.  FCG rate data based on ∆Jeff are shown in
Figure 4 and demonstrate a very strong correlation of FCG rates over more than four orders of
magnitude with ∆Jeff.
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Figure 3: Comparison of predicted and
measured cycles to failure.

Figure 4: Correlation of measured FCG
rates with calculated ∆Jeff values.

VALIDATION:  CONSTANT STRAIN LCF AND PRESSURIZED NOTCHED PIPES:  X52
PIPE MATERIAL

As part of an investigation by SwRI for the Gas Research Institute (GRI) into the effects of
mechanical damage on the remaining life of gas transmission pipelines, LCF tests were performed
on X52 steel (see [4] for details).  The tests were performed on round bars of
diameter 2.54 mm (0.1 inches) under constant strain range conditions.  Crack initiation was
detected from the reduction in applied maximum load.  The cycles to propagate initiated thumbnail
cracks of depth 108 µm (4.25 mil) to failure were measured and an EPFCG equation was
determined using the constant strain formulation for ∆Jeff.  The results, shown in Figure 5 as a plot
of predicted against measured cycles to failure, provide a self-consistency check on the
derived EPFCG equation and ∆Jeff.  The derived growth rate equation was then used to predict the
remaining fatigue lives of dented pressurized pipes containing machined notches.  The combined
effects of the notch and the dent produced LCF conditions at the notch tip during pressure cycling.
The predicted crack initiation and propagation cycles to cause a leak (defined as failure) are plotted
against the measured cycles in Figure 6.  As can be seen, under severe LCF conditions only a few
pressure cycles are needed to initiate cracking at the notches, and the majority of the lives of the
damaged pipes are spent in propagating the initiated cracks to failure.  The results in Figure 6
demonstrate good agreement between the calculated and measured cycles to failure, verifying the
proposed EPFCG methodology and ∆Jeff-schemes for both the strain-controlled round bar tests and
the analysis of the pressurized notched pipes.
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Figure 6: Comparison of predicted and
measured cycles to failure of
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ABSTRACT 
A new effective approach to estimate a tensile strength of materials with inhomogeneities was proposed. 
As the example, the calculation of ultimate strength for cast irons with graphite inclusions or inclusions of 
phosphide eutectic was carried out. The comparison with the known experimental data was done and 
good coincidence was shown. 
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INTRODUCTION 
The most of constructional materials are heterogeneous. They comprise cracks, cavities or impurities as 
the stress concentrators. Therefore, theoretical ultimate strength determination of materials in view of the 
presence of structural defects is an important scientific and technical problem. 
 
 
PROBLEM DEFINITION 
The elastic isotropic quasibrittle material with small volume content of structural defects is considered.  
We model such material by the infinite elastic body with the isolated cylindrical inclusion. It is assumed 
that G is the shear modulus, µ  - Poisson coefficient for basic material (named as matrix), G  is the shear 
modulus for inclusion and 

1

1µ  - its Poisson coefficient (the case of plane strain is supposed). Let's choose 
the system of rectangular Cartesian coordinates so that axis  coincides with a cylindrical axis of 
inclusion, and coordinate axes compound the right ternary. The inclusion cross section is described by the 
equation , where 

Oy

)x(hz ±= a≤x , cz ≤ , 1>>= caλ , a and c are the semiaxes of cylinder. It is 
assumed, that during deformation the inclusion is rigidly linked to a base material. At infinity, the body is 
loaded by uniformly tensile forces p along z-axis. The problem is to determine the value *pp = , for 
which the local fracture of a matrix or inclusion or separation process is begun. 
 
 
MATHEMATICAL MODEL OF ELASTIC INCLUSION DEFORMATION 
Using the model relationships [1], we obtain the following correspondences between stresses and 
displacements on the surfaces of the thin elastic inclusion under given loading:  
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where the symbols  and (  describe the jumps and sums of a function on passing through the 

surfaces of inclusion, i.e. , 
*][ *)

]A *
−+−+ +=−= AA)A(,AA[ * )x(hzAA ±=

± = ,  u  are  the 

components of a displacements vector  in inclusion; σ - are the constituents of a vector of stresses 
inside a defect. Eqn. 1 can describe all kinds of elastic inclusion deformations. If  G  or 

11
zx u,

0

11
zzxz ,σ

1 = ∞→1G  the 
dependences for a cavity or an absolutely rigid inclusion respectively can be obtained from Eqn. 1. The 
system of dependences forms the mathematical model of elastic inclusion deformation. 
 
 
STRESSED STATE DETERMINATION IN A BODY WITH INCLUSION 
At first we present [2] the elastic problem for a body with thin inclusion as a composition of two 
problems: the problem a) for the homogeneous body under the given applied external loading inducing 
the vector of stresses ( )o

zz
o
xz

o
z , σσσ

r , and the problem b) for the body with the cavity 

subjected to unknown stresses { ∞<<∞−±= y),x(hz } 1
z

o
zz

~ σ+σ−=σ
rrr

 on inclusion surfaces. We 

represent the displacement vector as the sum )u,u(u)u~,u~(u~)u, zxzu(u o
z

o
x

o
x

rrr
+= . Using the 

supposition about thinness of inclusion we can replace [1] a task b) by the singular problem c) for the 
body with the mathematical cut { <<∞− y }∞ )≤ ,ax     with the stresses ~,~(~

zzxzz σσ    σ
r

 applied to it 
surfaces.  

The solution of problem a) is known: 
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Using Fourier integral transformation the solution of the problem c) can be obtained [3] in kind of such 
dependences concerning the stress and displacement jumps on the inclusions surfaces.  
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Here and further symbol prime means the derivate on x. 
Substituting Eqn. 3 to Eqn. 1 we obtain the system of singular integro-differential equations for unknown 
vectors *z ]~[σ

r
 and *]u~[

r
 in such form 
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where  - are known [4] coefficients depended by the elastic modules of inclusion; 
 - are  known functions defined by the solution of task a). When we’ll solve Eqn. 4 we calculate 

the stress intensity factor 

231211 B,B,B  ...,  

21 M,M   

IK  for the problem c) using the expression [1] 
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For a finding the stress distribution in basic material near the inclusion we use the formula [5] 
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Here  is the radius of curvature in top of defect; ρ xx

~σ  are the end stresses inside inclusion defined [5] by 

the stresses jump *xz ]~[σ  
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The normal stresses inside inclusion we obtain by means of Eqns. 2 and 3.  
 
 
A LOCAL FRACTURE CRITERION 
Using the first theory of strength we receive that in body a limit equilibrium state will be occur if even 
one of values the stress in a body near inclusion or inside defect else the stress on a intermediate contact 
surface attain their ultimate strength, i.e. 
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where  are maxima of stresses in a matrix, inside inclusion and on contact, 

respectively;  σ are values of corresponding ultimate strength. 
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SOLUTIONS OF APPLIED PROBLEMS 
Using the results of pre-previous paragraph we’ll obtain such formulae for stress concentration and 

stresses inside defect in the case of isolated elliptical 




λ−= 22 xa)x(h  tunnel inclusion in infinite 

body. 
Analysis of Eqn. 6 shows that in the case G G<1  maximum of stresses zzσ  is attained at 

points ax ±= . Then 
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In the case G  maximum of stresses G≥1 zzσ  is attained at point 

)K(]a( K)~[x~ Ixx 231 σπρρ−=  I4ρ+  (see Eqn. 6) and it is equal to 
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By means of Eqns. 8, 9, 10 and 13 the value of  can be calculated for given materials. *p

In the case of quasibrittle material with a great volume content of inclusions we shall use 
the model of infinite body with double periodical system of elliptic cylindrical inclusions, see Figure 1. 
Thus, at first we solve a problem for a periodic system of coplanar inclusions in a body. In this case the 

kern of Eqn. 4 )xt()x,t(L −= 1   was replaced by the kern 
11

11 d
)xt(ctg

d
)d,x,t(L −ππ
=     and the 

problem solution was obtained by a little parameter decomposition method. 
 

 
 

Figure 1: The schema of material with the great volume content of inclusions 
 
Then we solve an elastic problem for a body with periodical system of parallel elliptical cylindrical 
inclusions. In this case the kern )xt()x,t(L −= 1   of Eqn. 4 will be replaced by the kern 
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by the similar way. Thus using the method of boundary interpolation [6] we find the solution of the 
problem for a body with double periodical system of associated inclusions. If we shall assume that a 
quasibrittle matrix damages first of all (as experiments show) we get the values of the tensile strength for 
such material with the associated inclusions by means of Eqn. 8: 
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The comparison the theoretical values of tensile strength obtained by Eqn. 14 with famous 

[7] experimental data for cast-irons with graphite inclusions was carried out. Experimental results were 
obtained for different cast-iron alloys with 4% mass content of carbon and diverse forms of graphite 
inclusions – from circular to laminar mode (see symbols ∇, , ο at Figure 2). It is easy to convince 
somebody that there is a close correspondence between calculated and experimental results.  
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Figure 2: The comparison of theoretical tensile strength determination  

and experimental data for grey cast-iron with graphite inclusions  
 
We also elaborated the estimation of tensile strength values for cast-irons with various mass content of 
phosphorus. At increasing a content of phosphorus the phosphide eutectic inclusions are formed. 
Experiments for grey cast-irons with phosphide eutectic were carried out at Technical University of 
Zaporizhzhya (Ukraine) under the leadership of prof. Volchok I.P. We made a comparison between the 
theoretical results and experimental data by means of such values of parameters: 

10116510470 11
1 ÷=λ==µ==µ=σ     MPa,80G  0.25,  GPa,         MPa, G,.B . A close correspondence 

between calculated and experimental results was obtained once again. 
 
 
CONCLUSIONS 

1. A mathematical model of elastic inclusion deformation of arbitrary relative rigidity was proposed. 
2. A stressed state determination of a body with thin elastic inclusion was carried out. 
3. A fracture criterion for quasibrittle materials with inhomogeneities was stated. 



4. Using the methods of boundary interpolation and a little parameter decomposition the stress 
concentration in a material with double periodical system of associated elliptic inclusions was 
calculated. 

5. The formula for the tensile strength determination of quasibrittle materials with great volume 
content of inclusions was proposed. 

6. The comparison the theoretical values of tensile strength for cast-irons with graphite inclusions or 
the inclusions of phosphide eutectic with the known experimental data were carried out. A close 
correspondence between them was attained. 
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ABSTRACT

 

Deformation patterns in solids are often characterized by self-similarity at the meso-level. In this paper, the
framework for the mechanics of heterogeneous solids, deformable over fractal subsets, is briefly outlined.
Mechanical quantities with non-integer physical dimensions are considered, i.e., the fractal stress [

 

σ

 

*] and
the fractal strain [

 

ε

 

*]. By means of the

 

 local fractional calculus

 

, the static and kinematic equations are
obtained. The extension of the Gauss-Green Theorem to fractional operators permits to demonstrate the
Principle of Virtual Work for fractal media. From the definition of the fractal elastic potential 

 

φ

 

*, the fractal
linear elastic relation is derived. Beyond the elastic limit, peculiar mechanisms of energy dissipation come
into play, providing the softening behaviour characterized by the fractal fracture energy 

 

G

 

F

 

*. The entire
process of deformation in heterogeneous bodies can thus be described by the fractal theory. In terms of the
fractal quantities it is possible to define a 

 

scale-independent cohesive law

 

 which represents a true material
property. It is also possible to calculate the size-dependence of the nominal quantities and, in particular, the
scaling of the critical displacement 

 

w

 

c

 

, which explains the increasing tail of the cohesive law with specimen
size, and that of the critical strain 

 

ε

 

c

 

, which explains the brittleness increase with specimen size. 
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Mesomechanics, fractals, fractional calculus, cohesive crack model, size-effects.

 

INTRODUCTION: FRACTAL STRESS AND FRACTAL STRAIN

 

The singular stress flux through fractal media can be modelled by means of a 

 

lacunar

 

 fractal set 

 

A

 

* of dimen-
sion 

 

∆

 

σ

 

, with 
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σ

 

 

 

≤

 

 2. An original definition of the fractal stress 

 

σ

 

* acting upon lacunar domains was put for-
ward by Carpinteri [1] by applying the renormalization group procedure to the nominal stress tensor [

 

σ]

 

. The
fractal stress 

 

σ

 

*, whose dimensions are [F][L]

 

–(2–

 

d

 

σ

 

)

 

, is a scale-invariant quantity. For simplicity, a uniaxial
tensile field is considered in Figure 1. Note that, for the definition of 

 

σ

 

*, exactly as in the case of the classical
Cauchy stress, the limit:

, (1)

is supposed to exist and, eventually, to attain finite values at any singular point of the support 

 

A

 

*. This is math-
ematically possible for lacunar sets like that in Figure 1 (and also for rarefied point sets like Cantor sets) which,
although not compact, are dense in the surrounding of any singular point.
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∆A∗ 0→

lim



 

Figure 1

 

. Renormalization of the stress over a Sierpinski carpet (a) and scaling of the nominal stress (b).

The kinematical counterpart of the fractal stress is the 

 

fractal strain

 

 

 

ε

 

*. The starting assumption is that dis-
placement discontinuities can be localized on an infinite number of cross-sections, spreading throughout the
body [2]. Experimental investigations confirm the fractal character of deformation, for instance in metals (

 

slip
lines

 

 with cantorian structure [3]), and in highly stressed rock masses (

 

plastic shear bands

 

).

Considering the simplest uniaxial model, a slender bar subjected to tension, it can be argued that the horizontal
projection of the cross-sections where deformation localizes is a lacunar fractal set, with dimension between
zero and one. If the Cantor set (

 

∆

 

ε

 

 

 

≅

 

 0.631) is assumed as an archetype of the damage distribution, we may
speak of the 

 

fractal Cantor bar

 

 (Figure 2a). The dilation strain tends to concentrate into singular stretched re-
gions, while the rest of the body is practically undeformed. The displacement function can be represented by
a 

 

devil’s staircase

 

 graph, that is, by a singular fractal function which is constant everywhere except at the
points corresponding to a lacunar fractal set of zero Lebesgue measure (Figure 2b).

 

Figure 2

 

. Renormalization of the strain over a Cantor bar (a) and singular displacement function (b).

Let 

 

∆

 

ε

 

 = 1 – 

 

d

 

ε

 

 be the fractal dimension of the lacunar projection of the deformed sections. Since 

 

∆

 

ε

 

 

 

≤

 

 1, the
fractional decrement 

 

d

 

ε

 

 is always a number between 0.0 (corresponding to strain smeared along the bar) and
1.0 (corresponding to the maximum localization of strain, i.e., to localized fracture surfaces). By applying the
renormalization group procedure (see Figure 2a), the micro-scale description of displacement requires the
product of the fractal strain 

 

ε

 

* times the fractal measure 

 

b

 

0
(1–

 

d

 

ε

 

)

 

 of the support. The fractal strain 

 

ε

 

* is the
scale-independent parameter describing the kinematics of the fractal bar. Its physical dimensionality [L]

 

d

 

ε

 

 is
intermediate between that of a pure strain [L]

 

0 

 

and that of a displacement [L], and synthesizes the conceptual
transition between classical continuum mechanics (

 

d

 

ε

 

 = 0) and fracture mechanics (

 

d

 

ε

 

 = 1). Correspondingly,
the kinematical controlling parameter changes, from the nominal strain 

 

ε,

 

 to the crack opening displacement

 

w

 

. By varying the value of 

 

d

 

ε 
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tured. The two limit situations are shown in Figure 3, the devil’s staircase being an intermediate situation with
dε ≅  0.369. While the first case represents the classical homogeneous elastic strain field, the second diagram
shows a single displacement discontinuity, e.g., the formation of a sharp fracture.

Figure 3. Homogeneous strain (a) and extremely localized deformation (b) over the bar (critical point). 

During a generic loading process, the mechanical work W* can be stored in the body as elastic strain energy
(conservative process) or dissipated on the infinite lacunar cross-sections where strain is localized (dissipa-
tive process). In any case, the fractal domain Ω*, with dimension 3–dω, where the mechanical work is pro-
duced, must be equal to the cartesian product of the lacunar cross-section with dimension 2–dσ, times its
cantorian projection with dimension 1–dε. Since the dimension of the product of two fractal sets is equal to
the sum of their dimensions, one obtains: , which yields the fundamental
relation among the exponents as:

. (2)

STATIC AND KINEMATIC EQUATIONS FOR FRACTAL MEDIA

Classical fractional calculus is based on nonlocal operators. Recently, Kolwankar and Gangal [4] have intro-
duced a new operator called local fractional integral. Let [xi, xi+1], i=0, ..., N–1, x0=a, xN=b, be a partition of
the interval [a, b], and xi* some suitable point of the interval [xi, xi+1]. Consider then a function f(x) defined
on a lacunar fractal set belonging to [a, b]. The fractal integral of order α of the function f(x) over the interval
[a, b] is defined as:

, (3)

where  is the unit function defined upon [xi, xi+1]. The fractal integral is a mathematical tool suitable
for the computation of fractal measures. In fact, it yields finite values of the measure if and only if the order
of integration is equal to the dimension of the fractal support of function f(x). Otherwise, its value is zero or
infinite, thus showing a behaviour analogous to the Hausdorff measure of a fractal set. Kolwankar and Gangal
[4] introduced also the local fractional derivative (LFD) of order α, whose definition is (0 < α < 1):

. (4)

Differently from the classical fractional derivative, the LFD is a function only of the f(x) values in the neigh-
borhood of the point y where it is calculated. The classical fractional derivative of a fractal function exists as
long as its order is less than the Hölder exponent characterizing the singularity. Instead, in the singular points,
the LFD (Eqn. (4)) is generally zero or infinite. It assumes a finite value only if the order α of derivation is
exactly equal to the Hölder exponent of the graph. For instance, in the case of the well-known devil’s stair-
case graph (Figure 2b) the LFD of order α=log2/log3 (i.e. equal to the dimension of the underlying middle-
third Cantor set) is zero everywhere except in the singularity points where it is finite.
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By means of the LFD, the fractal differential equations of kinematics and statics can be obtained [5]. The dis-
placement field maintains the dimension of length. The noninteger dimensions of the fractal strain are: [L]dε.
Therefore, it can be obtained by fractional differentiation of the displacement vector {η}, according to the
definition of LFD outlined above. The fractional differential operator [∂α] can be introduced, where the order
of differentiation is α=1–dε. Thereby, the kinematic equations for the fractal medium can be written, in the
vector notation, as:

. (5)

Classical strain is obtained when α=1 (dε=0). Instead, when α=0, strain is no longer homogeneously diffused
and reduces to localized displacement discontinuities. The intermediate situations are described by generic
values of α.

The static equations link the fractal stress vector {σ*} to the vector of body forces {F*}, which assumes non-
integer dimensions according to the fractal dimension of the deformable subset Ω*, [F][L]–(3–dω). On the
other hand, the dimensions of the fractal stress are [F][L]–(2–dσ). Therefore, the equilibrium equations can be
written, in the vector notation, as:

, (6)

where the static fractional differential operator [∂α]T
 is the transposed of the kinematic fractional differential

operator [∂α]. It is worth to observe that the fractional order of differentiation of the static operator in the
fractal medium is α=1–dε, the same as that of the kinematic operator (Eqn. (5)). This remarkable result is due
to the fundamental relation among the exponents (Eqn. (2)), and represents the Duality Principle for Fractal
Media. Finally, equivalence at the boundary of the body requires that the stress vector coincides with the
applied fractal boundary forces {p*} (with physical dimensions [F][L]–(2–dσ)):

. (7)

In the case of fractal bodies, [N]T
 can be defined, at any dense point of the boundary, as the cosine matrix of

the outward normal to the boundary of the initiator of the fractal body.

PRINCIPLE OF VIRTUAL WORK AND LINEAR ELASTIC LAW FOR FRACTAL MEDIA

Consider two arbitrary functions f(x, y, z) and g(x, y, z), defined in a fractal domain Ω*, with the same critical
order α. The general formula of local fractional integration by parts has been obtained by the authors [5] as:

, (8)

where Γ* is the boundary of the domain Ω*. This result extends the Gauss-Green Theorem to 3D fractal
domains. Based on Eqn. (8), the Principle of Virtual Work for fractal media was demonstrated [5]. It reads:

. (9)

Both sides of Eqn. (9) possess the dimensions of work ([F][L]), since the operators are fractional integrals
defined upon fractal domains. The external work may be done by fractal body forces {F*} and/or by fractal
tractions {p*} acting upon the boundary Γ* of the body. The internal work of deformation is defined as:

, with dimensions [F][L]–(2–dω). If the (initial) loading process is conservative (no dis-
sipation occurs in the material), and stress is a univocal function of strain, a fractal elastic potential φ* (func-
tion of the fractal strain {ε*}) can be considered. The components of the fractal stress vector {σ*} can
therefore be obtained by derivation:
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. (10)

Note that these are canonical first-order partial derivatives in the space of the fractal strains {ε*}. Performing
the Taylor expansion around the undeformed state, and neglecting higher order derivatives, the following bi-
linear form can be easily obtained:

, (11)

where [H*] is the Hessian matrix of the fractal elastic potential. Dimensional arguments show that the anom-
alous dimensions of [H*] are: . Thus, [H*] depends on both the dimensions of stress and
strain and, depending on the difference (dσ–dε), can be subjected to positive or negative size-effects. Each
term in [H*] is obtained as the second-order partial derivative of the elastic potential by the corresponding
fractal strain:

. (12)

From Eqns. (10) and (11), the linear elastic constitutive law for fractal media is provided as:

. (13)

SCALE INDEPENDENT COHESIVE CRACK LAW

After the initial elastic stage, when dε is close to 0, a nonlinear stage occurs, where damage and microcracking
begin to spread and dε grows. In concrete-like materials, strain localizes quite soon in a band, and the softening
stage comes into play. The cohesive law describes the decrement of the stress as a function of crack opening
displacement w. The original model is based on the assumption that both the critical crack opening displace-
ment wc and the ultimate strength σu are independent of the structural size. Unfortunately, experiments show
that this is not the case. Moreover, it is well-known that the area below the cohesive curve, i.e., the fracture
energy GF, is subjected to relevant positive size-effects [6].

Figure 4. Fractal elastic law (a), and fractal cohesive law (b). 

To overcome this limitation, the model associates to the fractal linear elastic law valid for the undamaged ma-
terial (Figure 4a), a softening relationship between fractal stress and fractal strain, assuming that σu* and εc*
are the true scale-independent limit parameters. It is interesting to note that the fractal fracture energy GF

*,
defined in [1, 6], can be obtained, by a fractional integral, as the area below the fractal softening diagram (Fig-
ure 4b):

. (14)
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During the softening regime, i.e. when most of the dissipation occurs, σ* decreases from the maximum value
σu* to 0, while ε* grows up to εc*. In the meantime, the non-damaged parts of the bar undergo elastic unload-
ing. We call the σ*-ε* diagram the fractal cohesive law, which is shown in Figure 4b. Contrarily to the clas-
sical cohesive law, which is sensitive to the structural size, this curve is scale-independent. Experimental tests
by van Mier & van Vliet [7] have shown that, with increasing the specimen size, the peak of the curve decreas-
es whereas the tail rises, i.e., tensile strength decreases while critical displacement increases. More in detail,
wc varies more rapidly than σu does. Therefore, an increase of the area beneath the cohesive law, i.e. of the
fracture energy, is observed. Thus, the experimental trends of σu, GF and wc confirm the assumptions of the
fractal model.

Figure 5. Size-effect tests [7]: stress-strain diagrams (a), cohesive curves (b) and fractal cohesive law (c).

The fractal model has been eventually compared with the uniaxial tensile tests described in [8]. The attention
was focused on the size-effect on the ultimate tensile stress and on the fracture energy and their values inter-
preted by means of fractal assumptions. The exponents of the scaling laws were deduced by fitting the exper-
imental results. In particular, they found the values dσ = 0.14 and dG = 0.38. The nominal σ - ε and σ - w
diagrams are reported in Figure 5a and 5b. Here, w is the displacement localized in the damage band, obtained
by subtracting from the total one the displacement due to elastic and inelastic pre-peak deformation. In addi-
tion, the value dε = 0.48 is provided by Eqn. (2), so that the fractal cohesive laws can be represented as in
Figure 5c. As expected, all the curves related to the single sizes tend to merge in a unique, scale-independent
cohesive law.
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ABSTRACT 
 
An alternative method of accelerating decreasing ∆K FCGR tests has been proposed in this paper in order to 
address experimental difficulties that are often faced when conducting such tests using the conventional 
technique. The equation for the envelope that is to be followed for reducing the ∆K level as the crack grows 
has been derived from considerations of decreasing the monotonic plastic zone size at a constant rate. 
Through experimental assessment of the alternative method and examination of crack closure effects, it has 
been shown that it does not lead to the accumulation of crack growth retardation effects. The new method 
has been shown to be particularly suitable for high strength materials. The employment of the method for 
obtaining threshold regime corrosion fatigue crack growth data has been demonstrated. 
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INTRODUCTION 

Decreasing ∆K fatigue crack growth rate (FCGR) tests are indispensable for obtaining fatigue crack growth 
resistance of materials at low levels of crack driving force. Conventionally such tests are conducted by a 
load-shedding procedure laid down in the ASTM standard E647 [1]. In this procedure, suggested by Saxena 
et al. [2], loads are progressively reduced as the crack length a increases such that the ∆K envelope of the 
test is forced to follow the relation 

 ∆K = ∆Ko e C(a-ao) (1) 

In the above equation, ∆Ko and ao are the stress intensity factor (SIF) range and crack length respectively 
with which the test is started, and C is a negative constant (standardised at –0.08 mm-1). Eqn. 1 was obtained 
based on the requirement that the fractional change in the monotonic plastic zone size associated with the 
fatigue crack remains constant with increase in a so as to preclude the accumulation of overload retardation 
effects. Figure 1 gives a schematic of the form of the ∆K vs a curve described by Eqn. 1. 

From the nature of the conventional ∆K envelope shown in Figure 1, it can be envisaged that as lower ∆K 
values are achieved, cracks have to be grown through larger and larger increments in order to produce a 
given reduction in ∆K. Due to this, and because crack growth rates decrease as the ∆K is lowered, longer 
time intervals are required to produce progressive reductions in ∆K. For growing down to low values of ∆K 



using the conventional technique therefore, fatigue cracks have to be grown through considerable length. In 
order to accommodate such cracks, specimens have to be sufficiently large. Also the number of cycles 
required to be imposed to grow a long crack at diminishing growth rates can often be very large, and it is 
often advantageous to conduct tests at high frequencies to cut down on the time requirement for tests. 

To the experimentalist, using large specimens, carrying out tests through long periods, or conducting tests at 
high frequencies are often not viable options. This is especially true when product or component size 
restricts the dimensions of specimens, or when FCGR tests are to be conducted in corrosive media at low 
frequencies to study corrosion-fatigue behaviour. In order to cope with such experimental problems 
associated with conventional decreasing ∆K FCGR testing, a new relation for the decreasing ∆K envelope 
that considerably accelerates tests is presented in this paper. The derivation of this relation, and verification 
of the absence of unwanted retardation effects, notwithstanding the faster decrement rate of ∆K, is provided 
below. An application of the new method to obtain threshold regime corrosion fatigue crack growth data is 
also given. 
 
 
DERIVATION OF ALTERNATE ∆K ENVELOPE 

From studies on overload effects on fatigue crack growth (for example [3]) it is known that reduction of 
fatigue cycle amplitude can lead to retardation of crack growth rates. During decreasing ∆K FCGR testing, 
similar situations may arise due to the progressive reduction of load amplitudes, and cyclic loads must be 
reduced at a gentle rate in order to minimize retardation effects. As retardation effects are proportional to the 
relative decrease in the size of the monotonic plastic zone attending the crack tip, minimal retardation effects 
would be induced if the fractional change in the plastic zone size were very small. This requirement can be 
written as 

 
-∆r
r  = x ,  x ⊥ 1 (2) 

where r is the plastic zone size and ∆r denotes the change in the plastic zone size accompanying reduction of 
loads, its sign indicating a decremental change. The plastic zone size can be taken as per Irwin’s definition 
[4] as 

 r = 
1

2π  




Kmax

σy
 

2

 (3) 

in which Kmax is the maximum SIF of the fatigue cycle and σy is the yield stress of the material under test. 

Retardation after the imposition of overloads is known to be operative through a distance that is proportional 
to the extent of the overload plastic zone [3,5]. Crack growth rates recover to their original levels only after 
the fatigue crack has been grown out through this distance. For the case of decreasing ∆K FCGR testing, a 
comparable situation may arise if crack growth retardation effects are brought about by reduction of cyclic 
amplitudes. In order to avert the accumulation of retardation effects significantly affecting crack growth 
rates, it is necessary that cracks be grown out through multiples of prior plastic zone dimensions before 
subsequent reductions of cyclic amplitudes. This condition can be stated as 

 ∆a = y r,  y π 1 (4) 

in which ∆a is the crack growth increment between reductions of load. 

Eqns. 2 and 4 can be combined for the case of continuous reduction of cyclic amplitudes to write 

 
dr
da = - 

x
y  (5) 

Substitution of Eqn. 3 into Eqn. 5 gives 

 Kmax 
dKmax

da  = - 
x
y πσy

2  (6) 



which on integration with initial limits of ao and Kmaxo (the Kmax of the fatigue cycle at start of test) produces 

 Kmax = K2
maxo - Q (a-ao) (7) 

with  

 Q = 2πσy
2 x

y  (8) 

For the case of tests with constant load ratio R, Eqn. 7 can be re-written as 

 ∆K = ∆Ko
2 - Q (1-R)2 (a-ao) (9) 

Eqn. 9, alongwith Eqn. 8, thus represents an alternate ∆K envelope that may be employed in conducting 
decreasing ∆K FCGR tests. 

The conventional technique utilizes a ∆K envelope that is invariant for all types of materials and mean level 
of fatigue cycles. This is surprising considering that crack tip plasticity, which is thought to be responsible 
for retardation effects that may be induced, is majorly governed by the flow behaviour of the material and 
the mean load and amplitude of the fatigue cycle. In the proposed method for accelerating decreasing ∆K 
FCGR tests, the exact shape of the envelope is determined by the yield stress σy of the material under test 
(see Eqn. 8), and the R-ratio of the fatigue cycle (see Eqn. 9). A schematic of the ∆K envelope in Eqn. 9 is 
superimposed in Figure 1. It is not difficult to visualize that for appropriate choice of controlling factors, 
lower values of ∆K can be attained within much smaller extensions of crack length, as compared to the 
conventional technique. Having said that, it must be pointed out that despite the nature of the proposed 
envelope, it may not provide any advantage over the conventional technique in case of material with low σy 
or for tests at very high R-ratios. 
 

conventional exponential 
procedure:  ∆K = ∆Koexp[a-ao] 

proposed parabolic 
method Eqn. 9 

ao a 

∆K 

∆Ko

Figure 1: Schematic of reduction of ∆K with a as per conventional procedure and the proposed method 

Other than the σy and R, x and y in Eqn. 8 will also determine the rapidity of the rate of decrease of ∆K. As 
an informed guess, x and y can be taken as 0.1 and 10 respectively, so that x/y is 0.01. Lumping a user 
preference parameter t through which the user may exercise control over the rate of ∆K decrement, Eqn. 8 
can be explicitly re-written as 

 Q = 0.0628 σy
2 t (10) 

in which for t=1, x/y assumes a value of 0.01. In order to decide on a value of t that is optimum (i.e. one that 
allows the fastest rate of reduction of ∆K without inducing any retardation effects) for a given material, the 
effect of t must be experimentally verified. Such an exercise is detailed below for two varieties of Cu-
strengthened HSLA steel that is used for naval structural applications. 
 
 
 



EXPERIMENTAL VERIFICATION OF ACCELERATED TESTING PROCEDURE 

Two varieties of Cu-strengthened HSLA steels, designated here as HSLA-80 and HSLA-100, were 
employed for carrying out validation FCGR tests. The HSLA-80 steel had a yield strength of 650 MPa, and 
the HSLA-100 steel had a yield strength of 840 MPa. The steels were available in the quenched and 
tempered condition. Standard SENB specimens in L-T orientation, of width 20mm and thickness 10mm 
were used for FCGR tests that were conducted on a 100kN closed loop servo-hydraulic testing machine. The 
machine was equipped with a digital controller, interfaced to a computer. Tests were controlled using a 
software in which the desired ∆K reduction scheme could be implemented. Crack lengths were monitored by 
the software using the compliance technique, which was based on location independent compliance crack 
length relations [6]. The software performed on-line crack closure measurements following the 
recommendations of ASTM task group E 24.04.04 [7]. 

Tests were carried out in air with R = 0.1 and at 10 Hz frequency. For conventional decreasing ∆K tests, 
Eqn. 1 was used to control the ∆K envelope, using C = -0.08 mm-1. Tests based on the proposed method 
employed Eqn. 9, with Q calculated from Eqn. 10 using t = 1, 2 and 3, and the appropriate value of σy. The 
∆K envelopes, normalised with respect to a ∆Ko of 25 MPa√m, arising from these values of t are shown in 
Figure 2 for both varieties of HSLA steels. The ∆K envelope for the conventional technique is also shown in 
the figure. It may be noted from Figure 2 that for HSLA-80, t=1 does not lead to any advantage in 
comparison to the conventional technique, as discussed earlier. 
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Figure 2: Normalised ∆K envelope obtained for various values of t in HSLA-80 and HSLA-100 steels 

Figures 3(a) and (b) show Paris plots of the FCGR data obtained using the proposed method with t = 1, 2 and 
3 for HSLA-80 and HSLA-100 steels respectively. The data obtained by employing the conventional 
technique are also included in the plots. As a first impression, it appears from the plots that the data obtained 
by the proposed method is compatible with the FCGR determined by the conventional technique. Data from 
the various tests lie within a small scatter band, which is thought to be acceptable. In order to comment 
conclusively on the acceptability of the data, it is necessary however to inspect the closure characteristics of 
the data generated. Figures 4(a) and (b) show plots of Kcl/Kmax against the applied ∆K for the various tests 
conducted, for HSLA-80 and HSLA-100 steels respectively. Kcl is the crack closure SIF, corresponding to 
the load at 2% deviation from the open crack (i.e. linear) load-COD slope, that is determined on-line by the 
testing software. It can be seen from Figure 4(b) that for the HSLA-100 steel, Kcl/Kmax for all tests follow the 
same path with reduction of ∆K. Hence for the higher strength HSLA-100 steel, variation of the rate of 
plastic zone size reduction, controlled by changing t, does not seem to affect crack closure behaviour. For 
the lower strength HSLA-80 steel, however, it is evident from Figure 4(a) that at the fastest rate of plastic 
zone size reduction (t=3), crack closure levels are higher, indicating that retardation effects have been 
manifested. It may be therefore be prudent to restrict the value of t to ≤ 2 for this steel. 
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Figure 3: FCGR data of (a) HSLA-80 and (b) HSLA-100 steels obtained by using the proposed method with 
various values of t, and the conventional technique 
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Figure 4: Crack closure behaviour in (a) HSLA-80 and (b) HSLA-100 steels during decreasing ∆K FCGR 
tests using proposed and conventional methods 

From the validation studies described above it appears that the proposed scheme of ∆K reduction can be 
employed for conducting decreasing ∆K FCGR tests. It is also clear that the proposed method will lead to 
acceleration of tests only in the case of higher strength materials. An example of use of this new scheme for 
the generation of threshold level FCGR data is described below. 
 
 
GENERATION OF THRESHOLD REGIME CORROSION FATIGUE CRACK GROWTH DATA 

Corrosion fatigue crack growth rate (CFCGR) tests are typically conducted at low frequencies in aqueous 
environments. The time requirement for a test can often be prohibitively long if a test is stretched into the 
threshold regime. The proposed accelerating procedure is especially suitable for this situation. 

CFCGR tests were carried out at a frequency of 1 Hz on Cu-strengthened HSLA-100 steel specimens using 
both the conventional technique and the proposed accelerating methodology with t = 2. The tests were 



conducted with the same experimental tools as described earlier. Specimens were loaded within a bath 
containing 3.5% NaCl solution which was part of the load train of the testing machine. 
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Figure 5: Corrosion fatigue crack growth behaviour of the HSLA-100 steel obtained by decreasing ∆K 
FCGR tests conducted by conventional and proposed methods 

The results of the CFCGR tests are presented in Figure 5. It can be seen that for the common regime of ∆K 
in tests conducted by the conventional technique and the proposed method, the crack growth rates are 
comparable. Additionally it is evident that with the proposed method it is possible to achieve lower levels of 
∆K covering a large part of the threshold regime as well for essentially the same extent of crack growth. It 
can be estimated that in order to grow down to ∆K of ~6.5 MPa√m using the conventional testing procedure 
at 1 Hz test frequency, the test would have to continue for ~120 hours (not considering that it may not be 
possible to accommodate the crack length in the specimen). In comparison, the test conducted according to 
the proposed method required 21 hours. It is thus demonstrated that the proposed method of decreasing ∆K 
FCGR testing provides tremendous experimental advantage. 
 
 
CONCLUSIONS 

An alternative method of decreasing ∆K FCGR testing has been proposed in this paper which substantially 
shortens the time required to carry out such tests by the conventional procedure. The proposed method has 
been implemented on two varieties of HSLA steel, and it is shown that for judicious selection of the 
governing parameters (i.e. t), the integrity of FCGR data obtained can be assured. The method is particularly 
suitable for use with materials of high strength and in situations where limitations of specimen size are 
imposed or when the time required for experimentation can be expected to be long. 
 
 
REFERENCES 
 
1. E 647-93 (1994) Standard test method for measurement of fatigue crack growth rates. In: Annual book 

of ASTM standards, Vol. 3.01. American Society for Testing and Materials, Philadelphia, pp.569-596. 
2. Saxena, A., Hudak S.J., Donald J.K., Schmidt D.W. (1978) J. Testing and Eval. 6, 167. 
3. Kumar Raghuvir and Singh S.B. (1992) Int. J. Press. Vessel & Piping 51, 25. 
4. Irwin G.R. (1968) Eng. Fract. Mech. 1, 241. 
5. Gan D., Weertman J. (1983) Eng. Fract. Mech. 18, 155. 
6. Tarafder S., Tarafder M. and Ranganath V.R. (1997) Int. J. Fatigue 19, 635. 
7. Proposed Appendix X2: Recommended practice for determination of fatigue crack opening load from 

compliance (1990), ASTM Task Group E 24.04.04. Communication to members of Committee. 



ORAL/POSTER REFERENCE: ICF100717PR 
 
 
 
 
 
 

A Method for Variable Amplitude Lifetime Calculation in the  
High Cycle Regime  

 
 

H. Zenner and S. Pöting 
 

Institute for Plant Engineering and Fatigue Analysis 
Technical University of Clausthal 

Germany 
 
 
 

Abstract 
 
Lifetime predictions for components in the high cycle regime are still inadequate. A main reason for the 
inadequacy is the insufficient knowledge about the failure mechanisms and the lack of a simulation model.  
 
Two different failure mechanisms have been reported in independent papers at the Euromech Conference 
from 1998 in Paris. The observed failures have been located on the surface and underneath the surface of 
specimens in a single test series. A simulation model describing these effects is not jet known. Other 
observations are suggesting a stepwise decreasing S-N-curve for constant amplitudes. None of the well-
known modifications of the Miner-Rule are taking these effects into account. 
 
An analysis of a wide database of variable amplitude tests on components leads to the conclusion that none 
of the Miner-Rule Modifications is capable to describe all test results. Another method to calculate the 
lifetime of components under variable amplitude loadings was introduced. This method is used to describe 
S-N-curves of components for variable amplitudes using a parameter to adjust the curve fit. 
 
Therefore an investigation based on published data of variable amplitude fatigue tests has been made. A 
phenomenological description for variable amplitude test S-N-Curves has been evaluated on its accuracy to 
describe the test results. 
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high cycle fatigue, lifetime prediction, lifetime calculation, variable amplitude test, spectrum loading 
 
 
Introduction 
 
Multiple components are used in structures and machines such as vehicles, offshore structures, as well as 
railway components and engines for more than 8 to 10 years. During their utilisation these components are 
exposed to 109 and more load cycles. In the high cycle regime failures of components have occurred even 
though the peak loads of the component’s spectrum loading are just fairly above the fatigue limit. Even 
though components designed by the fatigue limit exposed to a few single overloads can fail in this regime. 
This leads to the question: Is there a fatigue limit and how can a lifetime prediction for variable amplitude 
loaded components be calculated more accurate in the high cycle regime? 
 



For the lifetime designs there are two possible ways of strength verification: calculations and experiments. 
The experimental strength verification in the very high cycle regime is only in a few possible cases due to 
the long experiment time and high costs of testing. Due to these reasons there is only a limited number of 
test results available for the high cycle regime and experiments must carefully be monitored to gain the most 
possible information. 
 
The lifetime calculation verification is based on various lifetime calculation models and modifications. 
Nevertheless, the calculated lifetimes are varying up to a factor of 200 in lifetime for spectrum loads with 
maximum stresses just above the fatigue limit. Therefore for spectrum loading is a high uncertainty in the 
predicted lifetime of a component.   
 
 
Lifetime Calculation for Variable Amplitude  
 
Constant Amplitude Component Stress Analysis 
Lifetime prediction of components is based on stress analysis. These analyses are either base on nominal 
stress analysis, local stress analysis. In more complicated cases of complex components the finite element 
method (FEM) is used to determine the local stress distributions and to find the most claimed section of the 
component. A component, which shows no stress concentration, is considered a well-designed component 
because all sections of the component are equally stressed. The spots of stress maximums are called critical 
spots. These spots are considered the weakest spots of the design where the component is expected to fail.  
 

   
Figure 1:  Elastic-Plastic Stress Analysis Compared to Strain Gauge Measurements 

 
The FEM-analysis of such stress distribution can be verified using strain gauges to analyse local strains and 
calculate elastic stresses. These stresses can be compared with the analytical calculated local stresses on 
these spots. The accuracy of a FEM-model can be evaluated by a comparison of the calculated stresses by 
FEM analysis to the observed experimental stresses for elastic deformations. 
 

 
 

Figure 2: Digital Video Test Observations of Multiple Surface Cracks 



 
Based on the applied load the local stress or the nominal stress can be calculated. Compared with maximum 
applicable stress a lifetime prediction can be made for constant amplitude test. For constant amplitude test 
the lifetime calculations are quite satisfactory. They are based on S-N-curves of constant amplitude test with 
the same material properties as specimen properties such as load ratio, surface structure, material texture, 
e.g.. In case these S-N-curves do not exist the influences can be described by factors [2]. 
 
Variable Load Analysis 
Machine parts today are subjected to variable amplitude loads during their lifetime. Long time load spectrum 
analysis of these components can be used to determine the frequency distrib ution of amplitude loads as well 
as a history of load amplitudes applied to the component during its life cycle.  
 
In cases when a load history or a load spectrum of a component is not available generalised load spectrum 
can be used for experimental analysis. Standardised load spectra are commonly used for variable amplitude 
tests if it is not a specific load history for a component, which is tested [9]. A load history is the normalised 
load spectrum following a normal distribution. Another load history is a normalised straight- line load 
spectrum distribution. For aircrafts or rolling-mill components special standardised load spectrum histories 
like TWIST or WASA have been established. 
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Figure 3: Loading Amplitude Time Plot and Frequency Spectra 

 
It has been noticed that spectrum loads inducing stresses just below or above the fatigue limit can lead to 
component failures even though mostly subjected stresses are below the fatigue limit. Therefore the question 
is how do these loads attribute to the failure of such components and how can it be calculated?  
 
Variable Amplitude lifetime Prediction 
The linear damage accumulation is commonly used to calculate a cumulative damage sum using Miner’s 
Rule and its modifications. For the original Miner’s Rule is assumed that each load cycle has an average 
according to the description the slope of the S-N-curve for variable amplitudes [5, 6, 7, 11]. The linear 
damage accumulation assumes that each load at a certain level attributes a damage to the component, eqn.  
( 1 ). Further more it is assumed that all cycles are contributing to the components damage equally and  
therefore the damage sum can be calculated by the sum of the damages of all cycles and failure occurs when 
the damage sum equals one [6]. 
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Figure 4: Lifetime Predictions Using Miner Modifications 

 
Current data analysis of variable amplitude tests has shown that components tend to fail at a mean value 
damage sum equal 0,3 for steel and 0,5 for aluminium [3, 4, 8, 11]. Therefore the relative Miner’s Rule is 
introduced. Based on variable amplitude tests of components a different damage sum can be used to 
calculate the failure of a component. The analysis of the Miner’ Rule and its modifications has proven that 
the modification by Liu/Zenner has the most accuracy. The different Miner’s Rule modifications lead to 
longer or shorter calculated lifetimes [7]. 
 
Lifetime Predictions for Variable Amplitude Loads in the High Cycle Regime 
In the high cycle regime the calculated lifetimes of variable amplitude tests differ magnificently for the 
different Miner’s Rule modifications. The calculated lifetimes can differ depending on the spectrum, the 
slope k of the S-N-curve and the components up to a factor of 200 in lifetime. The modification leading to 
the shortest calculated lifetime is the Miner Modification by Liu/Zenner. The modification leading to the 
longest calculated lifetime is the Miner original modification. Compared to the experimentally investigated 
lifetimes the Miner elementary modification tends to lead to a safe and conservative lifetime calculation, the 
Miner original modification tends to lead to an unsafe and progressive lifetime calculation. For the 
experimental test results it was observed that the experimental lifetimes are in the range of the calculated 
lifetimes of the Miner elementary and original modification.  
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Figure 5: Difference in calculated lifetimes depending on Miner Modifications 

 
Lifetime Prediction using a Form Parameter c 
A method to describe a S-N-curve for variable amplitudes was published by [1]. The function describes any 
S-N-curve for variable amplitude tests in dependency of a single form parameter, eqn. ( 2 ). This function 
uses the point of the fatigue limit of the S-N-curve for constant amplitude loads as a reference point. The 
base point for the calculation is the limiting number of load cycles to the fatigue limit and the fatigue limit of 
the S-N-curve  for constant amplitudes. The number of load cycles which can be applied to a component 
under variable amplitude loads of a spectrum with a maximum load Ŝ  can be calculated by the use of the  
fatigue limit base point for constant amplitudes. The function for the finite life fatigue strength of  constant 



amplitude S-N-curves is used with a modified slope k*. The modification of the slope k* depends on the 
interval of the maximum spectrum  load and the constant amplitude fatigue limit described by the form 
parameter c. 
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       SD: constant amplitude fatigue limit 
k: slope of constant amplitude S-N-curve 
Ŝ : spectrum maximum applied stress 
c: form parameter 

 

 
Setting the parameter to its extreme values the function describes the calculated lifetime curve of variable 
amplitude tests calculated by using the elementary or original Miner’s Rule. The influence of the spectrum 
length and the spectrum load distribution can be described by this function. The experimentally observed 
effect of a lifetime reduction in case of a load spectrum with a greater number of higher loads can be 
described as well as the effect spectrum length.  
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Figure 6: Capabilities of the Form Parameter c to Describe 

Variable Amplitude Lifetimes 

 
From the analysis of the published data [8] of variable amplitude tests tendencies for the parameter c can be 
concluded. The results of the quantitative analysis are shown in table 1. 
 

TABLE 1  
INFLUENCE ON THE FORM PARAMETER C 

 

influence factors  parameter 
indication 

form 
parameter c 

high ↑ notch factor: Kt low ↓ 
1 ↓ 

irregularity: I   [11] 
0 ↑ 

-1 ↑ 
stress ratio: R 

0 ↓ 
steap ↓ 

slope of S-N-curve: k 
even ↑ 

 



This analysis leads to the following proposal of a function calculating the form parameter c in dependency of 
the above influence factors, eqn. ( 3 ). 
 

       ( )k  R,  I,  ,K  f    c t=  ( 3 ) 
 
Conclusions 
This newly introduced function for variable amplitude lifetime prediction provides an easy method for a 
more accurate lifetime prediction. Based on constant amplitude tests and load analysis lifetime predictions 
can be made. More precise lifetime predictions can be made even for the high cycle regime.  
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ABSTRACT

Laminated polymeric composites are utilized in a variety of structural applications wherein
impact loads are a common design consideration.  In such circumstances damage is usually observed in
the form of a variety of fracture modes including matrix cracking, delamination, and fiber fracture.
Multiple cracks with significant energy dissipation are often observed experimentally before complete
loss of structural integrity is attained.  Therefore, since it is often possible to keep the part in service after
the impact event, it is useful to develop models for predicting the post impact performance of the part.

The interaction of crack propagation makes it essential to model the evolution of these damage
events during impact loading.  In order to capture the physics of all of the fracture events both accurately
and efficiently, it is possible to develop a multi-scale continuum mechanics framework in which
successively larger scales are utilized to model each of the fracture modes.  This approach is taken in the
current paper to account for microscale damage ahead of delaminations, mesoscale matrix cracking, local
scale delaminations, and global scale part response.  The resulting micro-meso-local-global methodology
utilizes ductile fracture mechanics on each scale to effect crack growth of the three types described
above, with the smaller two scales developed analytically, and the larger two developed computationally
by means of the finite element method.  Linking between the four different scales is obtained by utilizing
damage dependent homogenization theorems that account for energy dissipation due to fracture on the
smaller scales.  

KEYWORDS

laminated composites, damage evolution, fracture, multi-scale modeling



INTRODUCTION

Much effort has been devoted in recent years towards obtaining improved understanding of
damage evolution in composites subjected to impact, as evidenced by numerous publications in the open
literature.

Laminated composites impacted at low velocity by blunt objects are susceptible to the
development of matrix cracks, fiber cracks, and interply delaminations[1]. While much of this damage
may not be readily visible at the surface, it is capable of substantially reducing the residual strength and
stiffness of the laminate.  The resultant damage induced stress redistribution can lead to the failure of
the component.  Therefore, it is essential to be able to predict the damage evolution that occurs during
the impact event so that the impact resistance, residual strength, and serviceable life of the laminate can
be predicted.

While few papers have appeared which attempt to address the three dimensional problem of
impact, noteworthy are those of Wu and Springer [2,3] and of Chang and coworkers [4,5]. In these
works a three dimensional transient dynamic finite element analysis is presented for the study of impact.
However, delamination is not modeled.  To the knowledge of the author none of the delamination
damage models found in the published literature accounts for the development of the process zone ahead
of the delamination front and the resulting nonlinearity in the interfacial mechanical response. 

Recently, the author has developed together with coworkers a micromechanics model for
predicting the evolution of matrix cracking [6-8], and this model has previously been shown to be
accurate when compared to experiment for polymeric composite plates subjected to quasi-static
monotonic loading [9-12].  The problem of predicting the evolution of delaminations is much more
complicated than that of matrix cracking.  We have compared model predictions favorably to experiment
for a variety of two dimensional examples [13,14]. While the problem of a single delamination in an
elastic medium has successfully been solved [15], the prediction of multiple propagation of planar
delaminations has only recently been considered.  However, utilizing a cohesive zone model [6-24], the
author and coworkers have been able to predict the evolution of up to seven simultaneous delaminations
in a two dimensional setting [25], and this has been compared favorably to experimental results.
Furthermore, the author and coworkers have also been able to predict the progression of multiple modes
of damage in a two dimensional setting, as shown in Fig. 1.  In addition, the algorithm has been utilized
to predict multiple damage modes in a three dimensional plate with a circular cutout [26].  These
predictions are among the most complex attempts known to date for predicting damage progression in
composites subjected to impact.

SOLUTION METHODOLOGY

 The model is three dimensional and computational in nature, utilizing the finite element method,
and this model is implemented to the code SADISTIC [27].   Crack growth is simulated via the cohesive
zone model currently under development by the author and coworkers [20-25].  The cohesive zone
model for predicting damage evolution in laminated composite plates is cast within a three dimensional
continuum finite element algorithm capable of simulating the evolution of matrix, fiber, and delamination
cracking in composite structures subjected to ballistic impact.  Cracking on vastly differing length scales
is accounted for by employing global-local techniques, with appropriate damage dependent
homogenization techniques introduced to bridge the disparate scales. 
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Fig. 1. Evolution of damage in right half plane of [0,90,0,90]  beam subjected to s

transverse loading

In order to describe this technique, consider a scenario in which damage exists simultaneously
in a solid on two (or more) significantly different length scales.  Of course, one way to analyze such a
problem is to consider the possibility of cracks extending everywhere and at all length scales
simultaneously in the continuum.  However, this is untenable by both analytic and computational means
for all but a few simple scenarios at the current state of the art.  Alternatively, suppose we define the

length scale of the microcracks to be , and the length scale of the macrocracks to be .  Then, under

the circumstance that , it can be shown that continuum scale analyses can be carried out on the
smaller and larger scales separately (so long as other geometric length scales are also widely separated)
and linked together by a homogenization principle without significant loss of accuracy.  This may be
accomplished by completing the following tasks in succession: 1) perform a continuum scale analysis of
the microscale problem; 2) homogenize the results of the microscale analysis, thus producing a damage
dependent macroscale constitutive theory; and 3) solve the macroscale continuum problem (including
crack propagation) using the damage dependent constitutive theory produced in 2).  This procedure will
obviate the presence of microscale induced stress concentrations on the macroscale, so that some loss
of accuracy is inevitable.  However, this loss of accuracy may not be significant when the length scales
are significantly different.  Furthermore, the savings in computational and/or analytical difficulties gained
by employing homogenization techniques will in many cases make a heretofore untractable problem
solvable.  Note also that if the homogenization process is performed correctly, then the total energy
dissipation predicted by the macroscopically homogenized constitutive equations will be identical to that
predicted on the microscale, except that the homogenization process will result naturally in a dissipative
damage parameter on the macroscale.  Similar situations exist in other fields of applied physics, such as
the process of linking continuum mechanics to molecular dynamics.  Although temperature and entropy
do not exist as state variables at the molecular scale, the process of homogenizing the effect of many
molecular motions results naturally in the introduction of these variables at the continuum scale.   

It is possible to employ this procedure on multiple scales at one time, where the number of scales,
n, is essentially determined by the physics of the problem.  Thus, we can say



The solutions to the problems on each of these length scales is then linked to the solutions on the
adjacent length scales by utilizing homogenization techniques such as those recently developed by the
author and coworkers for damaged media [28-30].  These solutions can then be used to model damage
evolution on several differing length scales simultaneously.

CONCLUSION

While the technique described herein is too complicated to present in detail in such a short space,
the technique has been shown to lead to accurate solutions that are computationally efficient for several
problems that involve damage evolution on widely differing length scales.  The interested  reader will
find these results documented in references [20-30]. 
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ABSTRACT

Analysisof inverseproblemshasalreadybeenperformedin variousfields. In many cases,assumptionsfor
thesolution is needed.It seemsthattheproblemswhichneedany assumptionscauseacontradictionin the
analysis.

On theotherhand,we have developedthediscreteintegral method(DIM)utilizing thedeltafunction. We
havenoticedthattheDIM is oneof theexcellentschemesto solve theinverseproblemsinceit cansolve it
withoutany assumptions. In thispaper, weattemptto applytheDIM to one-dimensional inverseproblems.
Namely, we developeda schemefor identifying the external load distribution on a homogeneousbeam
withoutany assumption for thesolution.

Throughseveralexamples,it is provedthatthepresentschemegivesaccurateandnaturalsolutions.

KEYWORDS

Boundaryelementmethod,Discreteintegral method,Inverseproblems,Bendingproblemsof beam

INTRODUCTION

In the analysisof InverseProblem[1,2],many points of issuehave beenleft yet even if problemswith
ill-conditions areexcluded. Oneof themis concerningpresumption.This meansthat, it is necessaryto
give assumption information suchastheshape,thenumber, its sizeor position andsoon, of theobjectto
be treated,assupplementaryinformationfor identification. It is difficult to solve it asan inverseproblem
if several assumptions concerningpriori informationarenot defined,for the subjectto be estimatedis a
unknown existence. In addition, the unnaturalequationsmustbe usedwhen the numberof parameters
is different from that of simultaneous equationswhich works asa decidingcondition. Thesecausethe
difficulty to establishageneralschemein theanalysisof inverseproblems.For thesereasons,it is important
to establishaschemefor inverseproblemswithoutany assumptionsof thesolution.

In this study, thefirst time,thediscreteintegral methodutilizing thedeltafunctionis developedandwe try
to apply this methodasoneof schemesto the analysisof inverseproblemby boundaryelementmethod
(BEM). It is shown thattheidentificationis performednaturallywithoutany assumptionsof thesolution by



usingthepresentscheme.In this report,thepresentschemeis appliedto onedimensionalinverseproblem,
namely, theidentificationof externalloaddistribution in bendingproblemsof ahomogeneousbeam.

1. INSTITUTION OF ONE DIMENSIONAL INVERSE PROBLEM

1.1 Integral equationof bendingproblemof beambyBEM
It is convenientfor theproblemto identify externalloaddistribution in bendingproblemsof a beamto use
theformulation of BEM. For ahomogeneousbeamunderanexternalloadof ������� asshown in Figure1, the
equationof thedeflection	 canbewrittenas[3]

	
�����������	������������ �!���"�#�$�%	��'&)(*�� + (* �������'	��,���.-/��102� (1)

Where 3 is thelengthof thebeam,� is theobservationpoint, � is theslope,� is thebendingmomentand� is theshareforce,andparameterspointedwith asterisk* arekernelfunctions. The inverseproblemin
thisreportis to identify theexternalloaddistributionappliedonbeam(i.e., �4�5��� in theintegral termof right
sideof Eqn.1) from the information of thedeflection 	
���� which is monitoredat observation point � as
well astheinformationof boundaryconditionsat bothendsof thebeam.
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Figure1: A homogeneousbeamwith externalload �4�5���
1.2 Discreteintegral methodutilizing thedeltafunction
Herewe will explain thediscreteintegralmethodutilizing thedeltafunction,which formsthebasisof this
study. Thefollowing integration is considered.+<;=�> �����'?!�5���'0�� (2)

Here, ?!����� is a known function, > ����� is a functionwhich is treatedasthetargetof interest(for example,
in this case,it is the function of externalload distribution), andit canbe known or unknown value. The
function > �5��� is usuallyapproximatedusingthequadraticelement.Insteadof this,weapproximateit using
Dirac’s deltafunction: @BA

> �5����� CD EGF �#H
EJI �5�K�L� E � (3)

where

@ A
is the M�� th Nabla differential operator, H

E
is the strengthof the delta function, namely, the

strengthof thevirtual concentratedsource,� E is its appliedpositionand N is thenumberof H
E
.

Further, a function O � definedasthefollowing equationis introduced:@QP O � �R? � ����� (4)



It is supposed that the function O � is obtainedby analyticaloperation.By substituting Eqn.4into Eqn.2,
andby

S
integratingit by part, the Eqn.2canfinally be written asthe following equations.Namely, in the

caseof MT�VU , +<;=$> �5���'?!�����10��W� +<;=�> �5���
@ � O � 0��W�X� >

@ O � � @ > O � & (*�� CD EGF � O � �5�
E � H
E

(5)

andin thecaseof MT�RY , it becomes+<;=�> �����'?!�5���'0��Z� +<;=�> �����
@B[ O � 0��

�X� >
@]\ O � � @ >

@ � O � � @ � >
@ O � � @]\ > O � & (* � CD EGF � O � ���

E � H
E

(6)

We found that the given integrationis expressedby the quantitiesat the both endsof the beamandthe
strengthof thedeltafunction H

E
, sothedomainintegraloperationis neverneeded.

Thisschemeis regardedasanew discreteintegralmethod,andwill beintroducedinto theequationof beam
which is expressedby Eqn.1.

1.3 Constructionof simultaneousequationsfor inverseproblem
Following equationsareobtainedwhenthe Eqn.6is substituted into the secondterm on the right sideof
Eqn.1with > �����^�_������� and ?!�����^�V	 � �5�.-/�� :	
�`�a���X�G�b	��%�c�$�d���e���R�d�c�$�%	f�1&g(*

���h� @]\ O � � @ � @ � O � � @ � � @ O � � @Q\ ��O � & (*i� CD EGF � O � ���
E � H
E

(7)

In Eqn.7,theequationof BEM which givesthedeflectionis expressedusingthestrengthof deltafunctionH
E

(unknown quantity). In addition to H
E
, therearestill the boundaryvaluesof physical quantities(the 4

parametersof 	j-k�l-/�_-k� exist ateachendof thebeam,sothetotalamountis 8, and4 of themaregivenby
boundaryconditions).Besides,theloaddistribution � andits differentialquantityat bothendsof thebeam
remainasunknown in theequations.To sumup,thetotalamountof theunknown valuesis N$�Wm . To match
with thenumberof theunknowns, N equationsareobtainedby monitoring theinformationof deflectionat
the N pointswherethedeltafunctionis applied.Further, 4 fundamentalequations[4] to solve thebending
problemof beamasa directproblemareused.For therest4 equations,theself-interpolatedequationof �

�4�`�a�^�X�n� @po � � @ � o �'&g(*�� CD EGF �#H
E o ���� E -/��q-��MZ�VU�� (8)

and its differential form are available. Therefore,the simultaneousequations,eachhasa naturalform,
canbeconstructedwith thenecessarynumber. Whenthesimultaneousequationsaresolved, H

E
andeach

unknown quantityatbothendscanbecalculated,then,wecancalculatetheexternalloaddistribution atany
pointof thebeamusingEqn.8directlybecausethereis nounknown valueontheright sideof theequation.

2. EXAMPLES

In this section,analysisexamplesfor modelcalculationareinstituted,andtheabove identificationmethod
of external load distribution will be verified. The examplesarecalculatedandshowed by the following
rulesunlessaspecialdescriptionis made:

1. Theunits: thedimensionlessquantitiesareconsideredto fit any systemof units.Thelengthof beam3 is 10.



2. Theboundarycondition(B.C.): asimplysupportedbeamis treated.

3. The numberof points N wherethe delta function is appliedis 49 and they are arrangedat even
intervalsexceptthebothends.

4. Theorder M of Nabla-operator:theequationof MT��U is used.

5. In all graphs,thehorizontalaxisis in thelengthdirectionof beam( � axis),theverticalaxisis thevalue
of load. And, “Exact” meansexact distribution, “Present”meanspresentdistribution of identified
results.Therigidity r�s is 100in all examples.

Otherboundaryconditionandthecasefor aNabla-operatorof order Mt�_Y will bediscussedat thelast.

2.1 Identifying a concentratedload
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Figure2: Identificationof a concentratedload

First, theproblemof aconcentratedloadis treated.Thevalueof theconcentratedloadis 1 andit is applied
at the point of ��� � . The result is shown in Figure 2. From this figure, it is seenthat a sharppeak
appearsat the point of ����� andlarge overshoots exist nearthe peak. From this scene,we canensure
thata concentratedloadexiststhere.However, thepeakvaluediffersvery muchfrom theexactvalueof 1.
This occursbecausetheobtainedvalueof � is expressedasa distributedload. Therefore,it is necessaryto
take attentionthat �4�`�a� mustbeintegratedto identify themagnitudeof theconcentratedload. (This means
that it is essentially impossible to distinguisha concentratedload from a distributedonein a very narrow
rangeby only onceidentificationusingthis analysisscheme.But in mostcases,theintegrationwill not be
neededbecausepracticallymostloadshave a definitedistributedrangeandthereforecanberegardedasa
distributedone.However, it will notbementionedfurther.) Fromtheabove,thevalueof concentratedload
(which maybe the resultantforce of distributedload in a very narrow range)is decidedby the following
equationin thisanalysisscheme: �

� +$;= �4�5���'0�� (9)

Thisequationcanbeintegratedeasilyby Eqn.8,andtheconcreteexpression canbeobtained.

Table1: Calculatedloadmagnitude(Exactis 1)
Integrationrange Integratedvalue��� mB���t�_� � U 1.1423����� ���t�_� � Y 0.9511��� Y]���t�_� ��� 1.0205����� ������� ����� 0.9999



Themagnitude of theconcentratedloadwhich wascalculatedby Eqn.9for resultof Figure2 is shown in
Table1. Thoughtheerror is a litt le large in therangedisturbedby overshoots,yet it is goodenoughasa
estimatedvalue. And, if we integrateit throughout the whole range,the valueshouldbecome1 because
of theequilibrium condition of the force,asshown in theTable1, so theextremelyaccuratevaluecanbe
obtained.

2.2 Identifying distributedloadand its re-identifying

(a) Primary identification
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(b) Secondary identification
�-10

0

10

20

30

40

0 1 2 3 4 5 6 7 8 9 10

x

q
(
x
)


Present

Exact

-10

0

10

20

30

40

0 1 2 3 4 5 6 7 8 9 10

x

q
(
x
)


Present

Exact

Figure3: Refinedidentificationof a localizedquadraticdistributedload

Theleft graphof Figure3 is theidentifiedresultin thecasethatastep-shapeddistributedloadwith strength
of 30 exists in the rangeof YL�
��� �

. Similar to the previousexample,thoughratherlarge overshoots
occurnear �j��Y and �j� �

wherethevaluechangesabruptly, it is a very goodidentificationasa whole.
It seemsthat to avoid this overshootis impossible,yet theerrorcanberestrainedto a smallenoughrange
to meetwith the neededaccuracy in practicaluse. For example,we canre-arrangethe sourcepoint over
a narrower region wherewe suppose the load probablyexist from the first calculation,or usethe larger
numberof sourcepoint. Theright graphof Figure3 is theresultwhenwe use99pointsourceovera range
of �Q���t�_� . Comparedto theleft one,theoutlookof thestepis identifiedmoreclearlyandtheovershoots
nearthestepbecomessmaller, too.

Figure4 is theresultfor two distributedloads,namely, astep-shapedlinearlydistributedloadexpressedby�4�5���������W�f�,� is appliedin the rangeof ��������� , anda step-shapedconstantdistributedload with
themagnitudeof 2 is appliedin

� �
�<�
� . This shows thateachdistribution canbe identifiedwith the
accuracy asgoodasthatin thecasewheneachdistribution is appliedindividually.

As shown in theabove, it is proved that the loadcanbe identifiedaccuratelyby themethodof this study
withoutany assumptionssuchasthoseof thekind of load,thenumberof loadandappliedposition.
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Figure4: Identificationof two distributedloads



2.3 Influenceof ordern of Nabla-operator andotherboundaryconditions
All of theabove resultsareobtainedusingequationof M¨�XU . If it is donewith theequationof Mj��Y , the
accuracy will bebetter. However, thereis not somuchdifferenceasa wholebecausetheovershootneara
stepcannotbeeliminate andtheaccuracy in thecaseof Mt�RU is sufficientenough.

In all mentionedexamples,thesimplesupportboundaryconditionis used.Figure5 is a problemwhich a
beamhasa roller at �Z� �

andbefixedat �W��3 , theloaddistribution is shown in thefigure.Thebehavior
of the resultsis almostassameasin the (a) of Figure3. So we cansaythat the differencein boundary
conditionhasno influenceto thenew method.
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Figure5: Analysismodelwith anotherboundarycondition

CONCLUSIONS

In this paper, the discreteintegral methodutilizing the deltafunction wasapplied,anda new schemeto
analyzethe inverseproblemusingthis methodwasdemonstrated.In this report, identificationproblem
of externalloaddistribution on homogeneousbeamwastreatedasanexampleof onedimensional inverse
problem. By this analysisscheme,external load distribution can be identified accuratelyand naturally
withoutany assumptionssuchasthoseof thekindof load,thenumberof load,andappliedposition. Further,
the schemeis applicableto variousboundaryconditions. However, when the load to be identified is a
concentratedoneor hasa steepchange,theovershootappears,andtheerrorsapt to becomelarger round
theedgingpoint. It is possible to considera practicalschemesuchasa re-identificationusingtheresultof
thefirst identificationto improvetheaccuracy. Thisanalysisschemecanbeexpandedeasilyto acontinuous
beam.

The casesthat ideal condition of identification canbe instituted aretreatedin this paper. However, even
for thoseproblemswith morecomplicatedconditions, or of ill-conditions appearedin practicalcase,we
considerthateffectiveschemescanbedevelopedbasedon theconsiderationof thisanalysisscheme.
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ABSTRACT 
 
Wood is a highly optimised natural composite material suitable for a number of different applications. 
Its orthotropic and inhomogeneous structure and non-linear behaviour during fracture leads to various 
differences in a fracture mechanical description compared to other materials. This study presents a new 
experimental technique for recording the complete load-displacement diagram for mode II loading 
conditions under stable crack-propagation. It allows the determination of various fracture mechanical 
parameters including stiffness, strength and specific fracture energy as well as an assessment of the 
fracture behaviour until complete separation of the specimen. The experiment is suitable for any crack 
propagation system in wood and requires only few raw material for specimen preparation which is 
advantageous for statistical significance and can be performed on any conventional testing machine. 
The experimental data of a first test series performed on spruce wood (Picea abies [L.] Karst.) in the 
RL (radial-longitudinal) direction is presented and compared with results in literature. The “size effect” 
is taken into consideration. Based on the experimental fracture mechanical data and fractographic 
observations in a light microscope and an Environmental Scanning Electron Microscope (ESEM) some 
basic principals of mode II fracture in wood are discussed and compared to other loading cases.  
 
 
KEYWORDS  
 
spruce wood, mode II loading, orthotropy, specific fracture energy, stable crack propagation, damage 
zone;  
 
 
INTRODUCTION 
 
Wood is a highly optimised and complex material being a multi-level fibre composite mainly 
consisting of tubular cells of 3-4 mm length and about 30 µm diameter oriented in the longitudinal 
direction of the stem. Seasonal differences in vegetation are causing repetitive gradual changes of the 
fibre-properties which are forming growth rings in the stem. The growth rings are causing a structure of 



cylindrical orthotropy with three principal directions termed L (longitudinal, along the axis of the 
stem), R (radial) and T (tangential). In terms of a mechanical and fracture mechanical description 
anisotropy, hierarchic and cellular structure cause substantial differences compared to metals or 
artificial composite materials and require the modification of established concepts for describing 
fracture and crack propagation especially those using LEFM principles [1, 2, 3]. Recording the load 
and displacement data for a fracture mechanical experiment under conditions of stable crack 
propagation was found to be a very powerful method to investigate the fracture behaviour of wood. 
Material parameters like elasticity, fracture toughness or global strength as well as the energy 
consumed during the fracture process can be derived from the load displacement curves. Especially the 
determination of energy portions assigned to the different phases of crack propagation provides useful 
information about the fracture process itself.  
 
To obtain load and displacement data it is necessary to apply experimental techniques which guarantee 
stable crack propagation until the complete separation of the specimen. For the mode I loading case a 
experimental technique was developed and applied to obtain fracture mechanical data for several wood 
species [4]. There is less information about in plane shear fracture of wood and only a few studies 
dealing with stable crack propagation under mode II loading conditions are available in literature [5, 
6, 7] 
 
The aim of this study is to present a new experimental procedure to record load and displacement data 
of fracture mechanical experiments on spruce wood (Picea abies [L.] karst.) under mode II loading 
conditions until ultimate fracture. The results of a first test series are described and some principal 
differences between mode I and mode II fracture are discussed.  
 
 
EXPERIMENTAL TECHNIQUE 
 
Specimen 
A new technique has been developed using a notched bending beam (NBB) specimen as shown in 
Figure 1a. A beam fixed on one side and supported on the other is loaded by a single load close to a 
necked down cross section close to the support generating a vertical shear stress. After applying a 
sufficiently high vertical force a crack will start propagating throughout the cross section (ligament) 
until the pieces are separated. The fixed part is generating an elastic bending moment acting against the 
applied load which is preventing a too fast transfer of the energy elastically stored in the specimen and 
therefore supporting slow and stable crack propagation.  
 
The experiments were performed on a conventional material testing machine which was equipped with 
the devices for fixing the beam at constant cross head displacement rates. Force and displacement are 
measured with a load cell and linear displacement sensor and recorded on a PC for later evaluation. 

a.)

F

b.)

100 mm
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Figure 1: (a) Principle of the notched beam specimen; (b) geometry of the notched beam specimen 
consisting of a bending part and a notched specimen part 



 
The NBB specimen is made of two parts of clear spruce wood and has a total length of 230 mm and a 
cross section of 60 × 40 mm. The actual specimen part is 100 mm long and shows a RL crack 
propagation system where the first letter (R) indicates the direction of the crack plane normal and the 
second one (L) indicates the direction of crack propagation. The 130 mm long bending part is glued to 
the specimen part as shown in figure 1b. The rectangular ligament was cut with a band saw shortly 
before performing the experiment.  
All pieces were obtained from a conventional board with an average density of 440 kg/m³ and stored 
until testing in an environment of 22°C and 60% relative humidity.  
Tests with four different rectangular ligament areas between 400 and 720 mm² were performed.. 
Additional test series were carried out with a trapezoid ligament of 1.300 mm² to investigate the 
influence of ligament shape on the characteristic parameters. To obtain significant results when 
experimenting with wood an adequate number of experiments is required. Therefore the comparably 
low amount of raw material needed for these test series is advantageous. The number of replications for 
these tests was chosen to be eight for each of the five tested ligament geometries.  
 
 
RESULTS 
 
Load-displacement diagrams 
Figure 2 shows an example for a typical load-displacement diagram. The upper curve represents the 
measured data for a sample of 720 mm². It includes also the load which is carried partly by the bending 
beam and doesn’t influence the fracture process itself but need to be considered before analysis. To 
obtain the net load-displacement curve the elastic load-displacement behaviour of the beam was 
measured separately after the experiment and subtracted from the original data. The negative values for 
load and displacement are indicating compressive loads during the experiment. 
At the beginning of the experiment the notched beam bending specimen shows a linear elastic 
behaviour followed by a short phase of non-elastic behaviour indicated by some deviation from the 
straight line before reaching the maximum load. After passing the maximum load some further energy 
consumption appears which is accompanied by a steep decrease of load and finally the complete 
fracture of the specimen as soon as the load reaches a plateau value. This plateau is caused by friction 
between the fractured surfaces which is still transmitting load between the two already separated 
specimen parts.  
 

0,0 -0,1 -0,2 -0,3 -0,4 -0,5 -0,6
0

-500

-1000

-1500

-2000

-2500

-3000

 

 

RL-Orientation

LPD [mm]

Fo
rc

e 
[N

]

 
 

Figure 2: Typical load/displacement diagram showing original (upper curve) and net data (lower 
curve) 

 



Fracture mechanical parameters 
Analysing the load displacement curves several mechanical and fracture mechanical parameters can be 
derived. Among these the specific fracture energy is the most important one. It represents the total 
energy consumption during the fracture process related to the created fracture area and is determined 
according to Eqn. 1 
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Where Alig is the ligament area and F(LPD) indicates the load versus load-point displacement. 
Although this characteristic parameter is related to the ligament area there are significant differences 
for the tested series showing an increase with growing fracture areas and a decrease for the biggest but 
trapezoid-shaped ligament (Figure 3).  
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Figure 3: Specific fracture energy (Gf

II) versus Ligament area (Alig). 
 
 
DISCUSSION 
 
Comments on testing method, Relevance of results 
The results of this study demonstrate that the NBB specimen is appropriate to determine the 
characteristic parameters for mode II fracture mechanical experiments. The experiment is advantageous 
especially in comparison with other systems proposed in literature [4,5] because of its low consumption 
of raw material and its applicability for all six crack propagation systems in wood using the same 
geometry.  
 
The decrease of load after passing the maximum load is sufficiently slow to collect enough data in this 
phase and to call crack propagation sufficiently stable and the specific fracture energy together with 
other fracture mechanical parameters can be calculated. Figure 3a shows the mean value of the specific 
fracture energy for all test series performed in this study compared to some results for spruce wood 
reported in the literature. (The results reported from Aicher et al. [7] vary depending on the evaluation 
method chosen for the experiment.) 
 
The average specific fracture energy of 0,74 N/mm obtained in this study seems to be reasonable in 
comparison to other experiments especially regarding the comparably low ligament areas which have 
been considered for the mean value of the test series. In spite of the partly substantially bigger ligament 
areas of some of the experiments, the Gf

II–values of 0,94 N/mm and 0,81 N/mm for the biggest tested 
ligaments in this study are clearly in the range of the reported values which supports the assumption 
that the specific fracture energy is size independent for ligaments greater than 1.000 mm. However, a 
detailed investigation of this phenomenon has still to be done.  
 



Compared to the other loading cases spruce wood fractured under mode II loads shows an about three 
times bigger specific fracture energy than under mode I loads whereas it is about 60% of Gf under 
mode III loading conditions (Figure 3b). The higher specific fracture energy indicates a less efficient 
fracture process for mode II cases compared to mode I fracture which can be seen also from the ESEM 
photographs of a mode II fracture surfaces. extruded fibres and parts of the longitudinal tracheids cover 
the surface and indicate substantial intracellular structural damage whereas mode I fracture surfaces 
were found to be smooth and less hairy [5]. The possible differences are discussed in the next 
paragraph.  
 
Mode II fracture behaviour of wood 
The fracture process of wood under mode II conditions is different to mode I loading conditions. In the 
later case the applied load generates a zone around the crack tip where the local material strength is 
exceeded and damage occurs. In this damage zone several micro cracks are formed and weaken the 
material until some of those micro-cracks join and form a macroscopic crack which is propagating. The 
damage zone has a finite extend and therefore a distinct crack tip within this volume cannot be 
determined exactly in wood which makes the application of conventional fracture mechanic concept 
very difficult. The formation of micro-cracks is an energy dissipating process and the amount of 
generated micro-cracks as well as the dissipated energy is proportional to the extension of the damage 
zone. Increasing loads cause macro-crack propagation and therefore a permanent shift of the damage 
zone into zones of lower stresses and intact material forming a band of weakened and damaged 
material beside the macroscopic crack path.  
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Figure 4: (a) Comparison of overall mean specific fracture energies (Gf

II) obtained by NBB specimens 
with values for spruce wood reported from literature [numbers]. (b) Mode II specific fracture energy 

(Gf
II) related to mode I and mode III loading conditions 

 
In the mode II loading case the shear stresses along the complete ligament plane and not only in a small 
zone in front of the crack tip occur. The local material strength is exceeded in a much bigger volume 
ahead of the crack tip and micro-cracks are forming simultaneously in a much bigger damage zone 
now. It is also possible that additional macro-cracks are formed at different positions by those micro-
cracks and growing independently of the actual macro-crack like shown in Figure 4b. Stanzl-Tschegg 
et al. [10] performed FEM analyses on mode II specimens for orthotropic materials and found the 
distribution of Mises equivalent stresses concentrated along the ligament which supports the 
assumption that the damage zone is elongated around the ligament plane.  
 
The assumption of sudden and simultaneous wide spread damage in wood under mode II loads explains 
the steep load decrease after passing the maximum load in the load–displacement diagram. Once 
several micro-cracks exist the resistance for crack propagation is lowered drastically and the specimen 
can be separated easily contrary to the mode I loading case where a remarkable amount of energy is 
consumed during this last phase of crack propagation. Beginning with the deviation from the linear 



elastic behaviour a complex fracture process is initiated where the various occurring effects do not 
appear necessarily in a sequential manner but happen simultaneously and de-localised.  
 

a.)  b.)  
 
Figure 4: (a) ESEM image of mode II fracture surface of spruce wood; (b) Light microscopical image 
of mode II fracture surface. The arrows mark contrary crack propagation directions in different fracture 

planes. 
 
CONCLUSIONS 
 
A new testing method to study the fracture behaviour of wood under shear loads was developed and 
applied for a first test series on spruce wood in RL orientation.  
Characteristic fracture mechanical parameters can be determined from the load-displacement diagrams 
recorded under sufficiently stable crack propagation. The specific fracture energy (Gf

II) can be 
calculated and shows results of 0,74 N/mm which is in reasonable accordance with values reported in 
the literature.  
The mode II fracture process consumes more energy than the mode I case. The damage zone under 
mode II conditions is much bigger and extended along the ligament especially in an orthotropic 
material like wood. The mode II fracture process needs to be considered more as a cumulative event 
than a sequential procedure. A high stress along the entire ligament generates micro-cracks 
simultaneously and favours the formation of more than one macro-crack possibly with different 
propagation directions.  
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ABSTRACT 
 
A new material model based on the assumption that the material consists of  hard blocks and soft layers is 
proposed. In such materials, extensive plastic deformation develops within the soft layers whereas the 
blocks are rigid (elastic). The plastic deformation may lead to failure within layers. The dominated mode 
of deformation is shear. Assuming that the only non-zero deviatoric stress is a shear stress it is possible to 
obtain an analytical (semi-analytical) solution within the layer for quite an arbitrary constitutive law of 
the layer material. Using this solution the behavior of block/layer continuum may be described. To 
demonstrate the main features of the model the axisymmetric problem of the fiber pull-out is solved semi-
analytically under simplified assumptions. In particular, the hard blocks and soft layers are circular 
cylinders of different thickness. The end effects are neglected. Based on these assumptions, the solution 
for arbitrary number of layers and blocks is given by induction. The material of the layers is assumed to 
be elastic/plastic, hardening. The evolution of damage is described by the Lemaitre law. The fracture 
condition is defined by a critical value of the damage variable. It is shown that the plastic zone develops 
in a jump-like manner and fracture initiates in the layer adjacent to the fiber. The displacement of the 
fiber at the initiation of fracture is determined. The effects of geometric and material parameters on the 
size of the plastic zone and fracture initiation are discussed. 
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pull-out test, elastic/plastic solids, composites, damage mechanics 
 
 
INTRODUCTION 
 
Studies of surfaces (including fracture surfaces) of samples of elastic/plastic materials demonstrated that 
at the micro- and meso scales zones of plastic deformations are alternated with zones of elastic 
deformation. In particular, it was shown in [1] that the process of deformation near interfaces consists of 
the formation of rigid blocks and thin zones where intensive straining occurs. This feature of the 
deformation process needs to be taken into account at evaluation of the limit deformation characteristics 
as well as fracture and damage parameters of structural elements. Note that such a deformation scheme is 
inherent to filled composites with compliant matrix and rigid inclusions at a high degree of filling. 
The present paper is devoted to modeling of the aforementioned effect on the basis of a model proposed 
in [2] and its application to the analysis of fiber pull-out test. 



 
 
MATERIAL MODEL 
 
A general model for a continuum consisting of rigid blocks and elastic/plastic layers between the blocks 
has been proposed in [2]. Here the model is specialized to the case of anti-plane axisymmetric 
deformation using the assumption that all blocks are hollow cylinders with the same axis of symmetry. 
Then, all elastic/plastic layers are also hollow cylinders. Strains are small and are localized within the 
layers whereas the blocks can only move as rigid bodies along the axis of symmetry. A representative 
element of the continuum consists of an elastic/plastic layer and a rigid block adjacent to this layer as 
shown in Figure 1. Since another rigid block is adjacent to the layer at ar = , it is possible to assume, 

without loss of generality, that   at 0uu −= ( )00 >u ar =  and 0=u  at r b=  where u is the axial velocity 
in the elastic/plastic layer. We will search for a solution with the only non-zero component of the stress 
tensor rzτ  in a cylindrical coordinate system whose z – axis coincides with the axis of symmetry of the 
blocks and layers. Then, for isotropic materials the only non-zero component of the strain tensor will be 

rzε . Using the definition for the equivalent strain and for the shear strain one can find 

 

rigid 

block 

elastic/plastic 

layer 

Figure 1: A representative element of the continuum 
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The only non-trivial equilibrium equation is 0=+∂∂ rr rzrz ττ  and its general solution is given by 
 

rkrz ρτ 0=               (2) 
 
where  is the initial shear yield stress and ρ is an arbitrary function of . 0k 0u
  
If the entire layer is elastic then a≤ρ  and combining Eqn. 1, Eqn. 2 and Hooke's law leads to 
 

rG
k

eq
ρε 0

3
1

=       (3) 

 
If the entire layer is plastic then krz =τ  at each point of the layer. Here k is the current shear yield stress 
which is supposed to depend on the equivalent plastic strain  and a damage parameter D. A possible 
representation of this dependence is [3] 
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where ( )p

eqf ε  is an arbitrary function of  satisfying the following conditions, p
eqε 0>p

eqddf ε  at any  
and . Since the hydrostatic stress vanishes, the damage evolution equation may be written in the 
form [3] 
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where the superposed dot stands for derivatives with respect to time and α is a material constant. For 
many materials  at  [3]. Using this condition, Eqn. 5 can be immediately integrated to give 0=D 0=p

eqε
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Substituting Eqn. 6 into Eqn. 4 gives 
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Since krz =τ , combining Eqn. 2 and Eqn. 7 results in 
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This equation determines  as a function of p

eqε sr ≡ρ  in implicit form 
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Assuming that , we arrive, with the use of Eqn. 3 and Eqn. 9, at p
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If the elastic/plastic boundary is within the layer then its position is given by the equation 1=s , as 
follows from Eqn. 2. Therefore, the total equivalent strain is 
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where  at  and m  at . Thus Eqn. 2, Eqn. 3, Eqn. 10, and Eqn. 11 determine the 
dependence of 

0=m 1≤s
rz

1= 1>s
τ  on eqε  in the representative element in parametric form.  

 
 
FIBER PULL OUT TEST 
 
Neglecting end effects, fiber pull out test can be considered as an anti-plane problem. The fiber of radius 

 is assumed to be rigid. Its velocity is  (ufr fw fw−=  at frr = ). The material around the fiber is 
modeled by the continuum described in the previous section. It is assumed that  at r = R0=u max. The 
region  consists of N representative elements. The geometry of the element i is defined by 

 and b  (Figure 1). Also, we will use the nomenclature 
maxRrrf ≤≤

iR=ira = iwu −=  at . Hence irr = frr =1 , 



maxRRN =  and . The equivalent strain in each representative element is given by Eqn. 11. Since fww =1

( ) su ∂∂s ρ2ru −=∂∂ , substituting Eqn. 11 into Eqn. 1 gives 
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where  is the velocity in the layer of the element i. Due to the continuity of velocity, Eqn. 12 leads to 
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Using Eqn. 13 it is possible to show by induction that  
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where we have taken into account that  at 0=u NRr = . The solution to Eqn. 14 determines the variation 
of ρ with wf. Let  be the radius of the elastic/plastic boundary. It follows from Eqn. 2 that *r ρ=*r  if ρ is 
within one of the intervals ii Rr ≤≤ ρ . However, if 1+≤≤ iriR ρ  then iRr =* . Therefore, the plastic zone 
develops in a jump-like manner. The damage parameter attains its maximum value at . Using Eqn. 
6 and Eqn. 11 at 

frr =

frs ρ=  it is possible to find D at r fr=  as a function of ρ in the following form 
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Eqn. 14 and Eqn. 15 give the variation of D at frr =  with  in parametric form. In particular, assuming 

that  the displacement of the fiber at which fracture starts, 
fw

c
( )f
ff ww = , can be found.  

 
 
NUMERICAL RESULTS AND CONCLUSION 
 
The solution to Eqn. 14 has been found assuming that 1=fr  (without loss of generality), max 1.46R = , 

( )( )δ+h11 , ( )( )δ+−++= hihRi 11 , ( ) p
eq

p
eqf εε 072.1= , 3.=α , and 3103 −⋅0 .3=Gk . The 

mechanical properties are typical for a structural steel [4]. Figure 2 illustrates the development of the 
plastic zone with the displacement of the fiber. It is important to mention that the solution breaks down at 

. The same result has been obtained in [5, 6]. It is possible to show that this feature is 
independent of the hardening law and other material and geometric parameters involved in the calculation 
performed. Differentiating Eqn. 8 with respect to time at frr =  gives 
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For the plastic zone to develop at the initial instant, , it is necessary that 0=p

eqε 0>ρ&  and . Using 
Eqn. 16 this necessary condition can be written in the form 

0>p
eqε&
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If this inequality is not satisfied then no solution exists (the elastic solution does not exist because the  

1,0

1,1

1,2

1,3

1,4

0,00 0,05 0,10 0,15 0,20 0,25 0,30

 

1 – no rigid blocks,        wmax=0.27 
2 – δ=0.03,     h=0.04,    wmax=0.17 
3 – δ=0.0305, h=0.024 , wmax=0.13 
4 – δ=0.0275, h=0.01,    wmax=0.08 

1 4 3 2 

wf 

ρ 

Figure 2: Variation of the elastic/plastic radius, ρ , 
with the displacement of the fiber, wf

 
initial yield stress is attained, and the elastic/plastic solution does not exist because the plastic zone cannot 
develop). Assume that Eqn. 17 is satisfied. Then, 
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On the other hand, it is clear that  
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Therefore,  
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where αε 10 max << . It follows from Eqn. 7 that k reaches its maximum value, , at . 

Consider a possibility to obtain a solution if  at a point 
maxk maxεε =p

eq

maxεε =p
eq mrr =  of the interval r maxRrf << . The 

distribution of k is shown schematically in Figure 3 (solid line). The plastic solution in the interval 
 cannot exist because k is an increasing function of r (Figure 3) whereas mr≤f rr ≤ rzτ  is a decreasing 

function of r, as follows from Eqn. 2, but krz =τ  in the plastic zone. The elastic solution in the interval 
 (dot line in Figure 3) cannot exist because mr≤f rr ≤ rzτ  is a decreasing function of r and, therefore, 

krz >τ  at  that violates the yield criterion. Therefore, the solution breaks down if attains the 

value of 
mrr <

max

p
eqε

ε  at . Of course, it is possible that fracture occurs at .  However, since the 
critical value of damage, , is an independent parameter, it is important to account for the possibility 
that the solution breaks down in numerical calculations. In particular, in the case of the material under 
consideration 

frr =

max

maxεε <p
eq

cD

2 13.0max ==w w  at  and 024.0=h 0305.0=δ . The corresponding dependence D of ρ 
at  found from Eqn. 14 and Eqn. 15 is shown in Figure 4 (solid line), and  at frr = 33.0=D maxww = . 
Since  [4] for this material, fracture occurs at 22.0=cD maxwwf < . However, for a material with a lower 



strain-hardening modulus, say a = 0.5, 18.0=D  at 016.01max == wwf  (dot line in Figure 4, 006.0=h , 
004.0=δ ). In this case the fracture condition is nowhere satisfied at maxwfw =  and the solution cannot 

be extended for . maxwwf >
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Figure 3: Schematic diagram illustrating non-existence of solution 
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ABSTRACT 
 
The paper considers the problem of strength of a body containing an artificial flaw of a definite size and 
shape. The following questions are formulated: What is the range of allowable dimensions of a flaw of a 
given shape, which will not lead to the reduction in the strength of a body? How much will be the strength 
reduction in case when the flaw dimensions exceed the allowable ones? The known nonlocal fracture criteria 
such as the average stress criterion, the point stress criterion and the fictitious crack criterion can not be used 
for solving the linked problem of critical loading and critical size of a flaw stated above. To solve this 
problem the approach is suggested according to which the strength of a material in the stress concentration 
zone (local strength) is assumed to be dependent on its size. The corresponding fracture criterion is 
proposed. It is applied to estimating the tensile strength of composite laminates weakened by a single 
circular hole; the tensile strength of high strength steel bars with a circumferential notch and the tensile 
strength of polymethylmethacrylate plates with an angled elliptic hole. The expressions for the local-strength 
function and the failure stress are obtained and good agreement is found between the results of calculations 
and known experimental data. 
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INTRODUCTION 
 
The traditional approach to strength calculations is to compare the internal stresses, which occur in a loaded 
body with their limiting values. The strength condition has the form 0σσ <e , and failure occurs when 
 

0σσ =e ,                                                                           (1) 
 
where )( ije f σσ =  and const0 =σ . The equivalent stress eσ  characterizes the internal stress state of the 
body and is a function of the stress-tensor components ijσ  in the general case. The ultimate stress 0σ  
characterizes the average mechanical properties of the body’s field and it is assumed to be a material 
constant. So 0σ  is determined under conditions of the uniform stress state (for example, in uniaxial tension 
of unnotched specimen). In the traditional approach, strength of a solid in a given point is characterized by 
the value of equivalent stress in the same point without consideration of the stress state in neighboring 
points. This is the essence of so-called local strength conditions and corresponding local fracture criteria. 
They give a good description of experimental data when macro-stress variations are small enough on 



dimensions of the order of the material structure scale. In other words, the range of application of the 
traditional approach is restricted to the cases where the dimension of the stress-uniformity zone is quite large 
to consider that const0 =σ . 

te KL /)

The nonlocal strength conditions and fracture criteria have recently been developed intensively [1−5]. The 
general approaches have been elaborated and the particular problems of strength of a body containing a 
stress concentrator have been considered. The general feature of nonlocal fracture criteria consists in the 
introduction of the characteristic length into the function of equivalent stress. That allows to describe the size 
effect on the strength of a body with a stress concentrator. The ultimate stress is assumed to be a material 
constant in nonlocal criteria as well as in traditional ones. 
As a whole, the nonlocal criteria describe well the fracture initiation in the stress concentration zones. 
However, in some cases, their use gives rise to contradictory results. In particular, any small flaw located in 
a body gives rise to strength reduction according to the nonlocal fracture criteria. It is contrary to the modern 
knowledge about the real solid containing the pre-existing flaws inherent to it. Because of the inherent flaws 
existence, the small artificial flaws of the size comparable with the size of the inherent ones don’t affect on 
the strength of a body until they rich a definite (critical) size [6−8]. 
 
 
PROBLEM STATEMENT 
 
Consider a linearly elastic body of a brittle material containing an artificial flaw of a definite size and shape 
subjected to uniform loading. The following questions are formulated: What is the range of allowable 
dimensions of a flaw of a given shape, which will not lead to the reduction in the strength of a body? How 
much will be the strength reduction in case when the flaw dimensions exceed the allowable ones? 
 
 
FRACTURE CRITERION 
 
To solve this problem the approach is suggested [9], the essence of which is to assign the mechanical 
properties to a certain stressed region of finite dimensions rather than to the material as such, in contrast to 
the traditional and known nonlocal approaches. This means, in particular, that the strength of a material in 
the stress concentration zone (local strength) depends on its size. 
The size of the highly stressed region is denoted by ; if it is quite large compared to the dimensions of the 
microstructural components of the material, including the inherent flaws, i.e., the conditions of averaging of 
the mechanical properties are satisfied, the value of the local strength differs little from 

eL

0σ . On the contrary, 
if  is comparable with the dimensions of the microstructural components, their influence on the local 
strength becomes noticeable. This influence is the stronger, the smaller the size  relative to the 
characteristic length of the material . Thus, the local strength of the material should depend not only on 
the size of the highly stressed region  but also on the ratio . The fracture criterion can be stated as 
follows: The failure of a macroelement at the notch root is governed by the size of a highly stressed region to 
characteristic length of a material ratio. With allowance for this, we write the fracture criterion 

eL

eL

0L

eL eLL /0

 
)/,( 00 ee LLf σσ = .                                                                    (2) 

 
Consider a tensile loaded body containing a smooth symmetrical stress concentrator as a basic problem for 
determining the local-strength function )/,( 00 eLLf σ . Stress concentrator becomes a crack when ∞→tK  
(  is the stress concentration factor). Asymptotic analysis of the critical (failure) stress tK

c Lf /,( 00σσ =  behavior results in follows requirements: 
 

0σσ =c ,     for 1=tK ;                                                               (3) 
 

0const >→cσ ,     for ∞→tK .                                                        (4) 



 
The requirement (3) ensures the transition of the nonlocal to the traditional criterion in the case of the 
uniform stress state. The requirement (4) ensures the relation between the nonlocal criterion and linear 
elastic fracture mechanics (LEFM). A constant in expression (4) depends on the cracking resistance of a 
material and the crack size and shape. We present the critical size of the flaw  in the form cl
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where  is the critical size of the crack and β is a numerical parameter. The physically consistent values of 
β lie in the domain 

0l
0≥β . 

Since the local stress distribution in considered problem depends on the curvature radius of the concentrator 
to a large extent than on other geometrical parameters; therefore, in the first approximation, one can use the 
curvature radius of the concentrator ρ at a dangerous point to estimate . For estimation of , the critical 
size of the flaw l  is used. We present the function 

eL 0L

c )/,( 00 eLLf σ  in the form 
 

)/()/,( 000 ρσσ ce lfLLf = .                                                              (6) 
 
Bearing in mind that the stress concentration factor is an increasing function of ρ/l  (l is the size of the 
concentrator) 
 

)/( ρlfK tt = ,                                                                        (7) 
 
it is easy to see that it suffices to use the function  as tf )/( ρclf  to satisfy the requirements (3) and (4): 
 

)/()/( ρρ ctc lflf = .                                                                  (8) 
 
The function given by Eqn. (8) is unique because 0σσ =c  for l cl= , for any ρ. Thus, with allowance for 
Eqns. (6) and (8), the nonlocal fracture criterion takes the form 
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Therefore, the critical stress is determined by the expression 
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be regarded as an effective stress concentration factor. 
 
 
EXAMPLES OF FRACTURE CRITERION APPLICATION 
 
A plate with an elliptic hole under tension 
The stress concentration factor can be presented in the form [10] 
 

ρα /1 lKt += ,                                                                    (10) 
 
where α is a numerical coefficient which depends on the elastic constants of a material and the dimensions 
of a plate. For an infinite isotropic plate α = 2 [10] and for an infinite orthotropic plate 

)2/(/ 1121 GEEE +−= να  [11], where 121 ,, νEE  and G are the elastic constants. The local-strength 

function ( )ρασσ /1)/,( 000 ce lLLf += . The critical stress has the form 
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where  is the critical stress intensity factor. To obtain the lower limit for cK cσ  or  that would define the 
margin of safety, the parameter β should be taken equal to zero. If  is unknown then  is found 
experimentally. With allowance for Eqn. (10) we can write Eqn. (11) in the form 
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Eqns. (10)−(14) are also applicable to concentrators of non-elliptic shape, for which one can introduce the 
notion of equivalent elliptic hole or equivalent elliptic notch [10]. The latter concerns both flat and 
cylindrical specimens with a circumferential notch, including a V-shaped notch with a small opening angle. 
 
An isotropic plate with angled elliptic hole under tension 
Consider an isotropic plate with an elliptic hole, which is oriented at an angle ω to the direction of loading. 

The local-strength function for the basic problem in symmetric tension 
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The critical stress is determined by the expression 
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where σ is the tensile stress applied to the plate. We assume that failure determined by normal tensile 
stresses, i.e., 0>= θσσ e  ( θσ  is the tangential stress on the hole boundary). The problem of cσ  
determination is to find the minimum 
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Here the well-known expression for the stress θσ  on the boundary of an elliptic hole [12] and the expression 

for the curvature radius of the hole boundary 
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the major and minor semiaxes of the ellipse; θ is the varied parameter, were used. 
 
 



COMPARISON BETWEEN PREDICTED AND EXPERIMENTAL DATA 
 
Eqns. (14) and (17) for the critical stress, which were obtained on the basis of the nonlocal fracture criterion 
(Eqn. (9)), were used to estimate the strength of a plates with a circular or elliptic hole and bars with a 
circumferential notch subjected to uniaxial tension. The results of calculations are shown in Figs. 1−3. 
 
A plate with a circular hole 
Hyakutake, Hagio and Nisitani [8] tested quasi-isotropic FRP plates containing a circular hole of a different 
diameter. The critical stress variation with respect to the hole diameter given in Eqn. (14) is plotted in Fig. 1 
(the solid curve) and compared with experimental data (points). The critical size (diameter) = 0.7 mm was 
evaluated from best-fitting data. The dashed line was obtained with the use of the traditional criterion. 

cl
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Figure 1: Critical stress variation with hole diameter. 
 
A plate with angled elliptic hole 
Wu, Yao and Yip [13] tested PMMA plates 380 mm long, 152 mm wide and 3.2 mm thick. The semiaxes of 
the elliptic hole were a = 12.7 mm and b = 2.5 mm. The failure stress for varying ω was experimentally 
determined. Fig. 2 shows experimental data (points) and the critical stresses calculated by Eqn. (17) for β = 0 
(the solid curve). The dotted curve is calculated according to the traditional criterion. 
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Figure 2: Critical stress variation with angle ω. 



 
A bar with a circumferential notch 
Nisitani and Noguchi [14] tested cylindrical bars made of high strength steel. The specimens had a 
circumferential V-shaped notch with opening angle ψ = 60° and radius of curving ρ at the notch root. 
Specimens with notch depth a = 0.2 mm were tested by varying ρ within 0.056−2.1 mm. Fig. 3 shows the 
values of cσ  calculated by Eqn. (14), as a function of the stress concentration factor for β = 0 and β = 1 
(curves 1 and 2). Curve 1 limits from below the domain of cσ , and curve 2 approximates the experimental 
data represented by the points. As , the calculated curves approach asymptotically the value found 
in accordance with LEFM (dashed straight line). The dotted curve is calculated according to the traditional 
criterion. 
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Figure 3: Critical stress variation with stress concentration factor. 
 
The results of calculations are in good agreement with the experimental data on brittle fracture under 
conditions of stress concentration. 
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ABSTRACT 

 
A transient finite element analysis has been carried out to provide insight into the dynamic crack 
growth behavior in viscoplastic materials under plane strain and small-scale yielding conditions. 
The fracture process is characterized by an embedded cohesive zone model in which the 
macroscopic fracture work is a function of crack opening rate and temperature rise on the crack 
flanks. The material is an isotropic hardening and thermal softening elastic-plastic von Mises solid. 
The computational model is developed to identify the individual roles of crack-tip constraint, 
loading rates and cohesive law properties. There is a sharp rise in the fracture resistance curves after 
a small amount of crack growth. The competition of strain-rate hardening and thermal softening in 
the fracture process zone can significantly change the fracture resistance curves. The effects of 
loading rates and crack-tip constraints have been examined. It is shown that the trend of increasing 
toughness due to the negative T-stress is greatly reduced when crack growth is fully deve loped. In 
addition, crack-tip constraint does not affect the limiting crack speed. 
 
KEYWORDS 
 
Dynamic fracture; Rate effect; Thermal effect; Constraint; Embedded cohesive zone model 
 
 
INTRODUCTION 

 
One class of models that serves as a bridge between the macroscopic and microscopic methods is 
that of the embedded cohesive zone model (ECZM). The fracture process is represented in terms of 
a traction-separation relation applied on the plane of fracture, while the bulk materials are 
considered by conventional continuum mechanics. Although this model cannot directly account for 
the interaction of the crack tip and the voids nearest to it, the implication of all these factors can be 
qualitatively put into a phenomenological cohesive law through some primary parameters [1]. It is 
more flexible than the cell model and easier for implementation of finite element methods. In 
addition, ECZM provides an illustrating and tractable way to include constitutive non-linearity into 
the continuum models. 
 
Fracture behavior depends strongly on loading rate, material response and finite geometry change. 
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Emphasis is placed on dynamic crack growth such that inertia effect becomes significant. The class 
of materials considered here is hardened by increasing effective plastic strain rate and weakened by 
temperature rise. It is inferred that fast crack growth will have lower toughness since the elevated 
traction acts on the plane of separation due to strain-rate hardening. However, the inconsistent trend 
found in recent experiments by Du et al [2] and theoretical analyses [3,4] showed that rate-
dependent materials must have a rate-dependent fracture process. 

 
The effect of crack-tip constraint on fracture toughness has attracted a great deal of interest during 
the past decade. For stationary cracks in some specimen geometries, there is loss of J-dominance of 
crack-tip fields due to the non-uniqueness of hydrostatic stress [5,6]. The same problem has been 
extended to quasi-static crack growth in ductile materials by Xia and Shih [7] using a cell model 
and by Tvergaard and Hutchinson [1] using a cohesive zone model. However, crack-tip constraint 
effects on the dynamic fracture process have not been fully exploited. 
 
The objective of the present paper is to consider the influences of crack-tip constraint, material 
inertia and thermal softening on the crack growth resistance. To this end, finite element simulations 
of mode I plane strain crack growth under small-scale yielding conditions are carried out for a range 
of material parameters. A rate- and thermal-dependent traction-separation relation is used to model 
the fracture process. The material considered is an isotropic hardening and linear thermal softening 
viscoplastic solid. 
 
CONSTITUTIVE EQUATIONS OF THE SOLID AND THE FRACTURE PROCESS 

 
We adopt a thermal-viscoplastic constitutive relation with linear thermal softening and power- law 
strain-rate hardening. The deformation rate tensor is decomposed into elastic, viscoplastic and 
thermal parts: 

Tvpe DDDD ++=          (1) 
For an isotropic hardening, viscoplastic solid, the plastic part of the deformation-rate tensor and the 
thermal dilatation take the forms: 

SD )
2
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(
e

vp

σ
ε=
&

  ITT &∆= αD        (2) 

where &ε  denotes the equivalent plastic strain rate, IS ⋅⋅ττ−−ττ== 3/1  the deviator of Kirchoff stress ττ , 

and 2/:3 SS==σσ e  the equivalent stress, α  the thermal expansion coefficient, T∆  the 
temperature rise and I  the second order identity tensor. The constitutive relation can be written as: 

][: Tvp DDDL −−=
∇
ττ         (3) 

where ττ
∇

 is the Jaumann rate of Kirchoff stress tensor, L  is elastic modulus tensor with Young’s 
modulus E and Possion’s ratio ν . The effective plastic strain rate becomes: 
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where ∫ ε=ε
t

dt
0

&  denotes the equivalent plastic strain, 0ε&  is reference strain rate, m rate sensitivity 

parameter, 0σ  yield stress, E/00 σ=ε  reference strain, N strain hardening exponent, 0T  reference 
temperature, usually equal to the environmental temperature, abd β thermal softening coefficient. 
 
The form of the static traction-separation law given by Tvergaard and Hutchinson [1] is adopted 
here. The parameters characterizing the traction-separation curves include the work of fracture per 



 3

unit area, the peak stress for separation $σ  and three characteristic lengths, cδδδ ,, 21 . The shape 

parameters 1δ  and 2δ  are chosen so that cδ=δ 15.01  and cδ=δ 5.02 . It is shown that these factors 

are of secondary importance in failure assessment [1]. The fracture work, ∫
δ δδδσ=Γ c dT
00 ),,( & = 

2/)(ˆ 21 δ−δ+δσ c , is not a constant because of the effects of material inertia and thermal softening. 
Further, it is assumed that the rate and the thermal effects on the fracture work were incorporated 
into the model in terms of the changes in the peak traction $σ . The cohesive strength is written as: 

)](1[)1(ˆˆ 02

0

0
1 TTrr −−

δ
δ+σ=σ
&

&
       (5) 

where r1  and r2  are material constants which describe the rate effect and thermal softening, 0δ& (=1 

m/s) is reference separation rate and $σ0  is steady-state traction for the quasi-static cohesive zone 

model, and CT 0
0 20= . 

 
COMPUTATIONAL MODEL 
 
Finite element simulations described here are based on updated coordinate Lagrangian formulation. 
All physical quantities are functions of a set of moving coordinates x i  at time t. Consider an 
equilibrium crack in a body with current volume V, surface Sext  subjected to a velocity constraint 
and internal cohesive surface area Scoh . The weak form of the governing equations for mechanical 
fields yields the incremental form for the principle of virtual work on the current configuration [8]: 
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ij

ik
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∫ ∫∫∫ δ−δ=δ−δτ &&&      (6) 

where ijτ  are the Kirchoff stress tensor components equal to those of the  Cauchy stress tensor σ ij  
in the current configuration, D u uij i j j i= +( & & ) /, , 2  are deformation rate tensor components and &ui    

are displacement rate vector components. The kinetic energy K u ti i= 05 2 2. /ρ∂ ∂  in which ρ is the 
mass density in the current configuration, T i  and S i  are the traction components on the external 
surface Sext  and internal cohesive surface Scoh . It should be noted that the Kirchoff stress is 
identical to the Cauchy stress if we take the current state as the reference configuration. 
 
Also, the local balance of energy gives the following governing equation for the conduction of heat 
in a continuous medium: 

ρ
∂
∂

κ χc
T
t

T wp ii
p= +,          (7) 

where c p  is heat capacity, κ  is thermal conductivity and the parameter χ  specifies the fraction of 

plastic work ( p
ij

ijp Dw σ= ) that is converted to heat and is taken to have a value 0.90.  
  
The crack growth analyses are carried out under small-scale yielding conditions. Due to symmetry 
about the crack plane only half of the solid needs to be analyzed. A semi-circular region with initial 
radius 0R  = 20 mm is used in the numerical computation. It is chosen so that ∆= 20000R  where ∆  

is the size of the smallest elements of the mesh at the crack-tip. ∆=δ 1.0c  is selected to determine 
the minimum dimension of these elements if they are not specified. The mesh consists of 1584 4×  
triangle elements and a uniform mesh region with an initial length ∆= 480L  is used to model crack 

growth. A length twice 0L  can be taken as the uniform mesh zone since the mesh size is increased 
at a ratio near unity from the minimum size.  
 



 4

On the outer semi-circular boundary, the displacements, 1u&  and 2u& , are given by the external stress 
fields, according to small strain linear elastic fracture mechanics solutions. Thus, we have 
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in which 2
2

2
10 xxR += , )/(tan 121 xx−=θ  for the points on the remote boundary in the current 

configuration, and IK&  measures the incremental rate of the mode I stress intensity factor. 
 
To minimize the wave effect, the initial velocities throughout the region are given by [9]: 
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in which 2
2

2
1 xxr += . 

 
At t=0, the non-singular stress term, T-stress, is applied uniformly. In this work, the T-stress T is 
applied together with the corresponding transverse stress Tν=σ33  under plane strain conditions. 
Its magnitude is taken to be such that the material remains elastic. 
 
The Newark- β method with β = 0  and γ = 05.  is used to integrate the discrete equation of motion. 
A lumped mass matrix is chosen since it is preferred for the explicit integration procedure. A fixed 
time step 5 1110−× s is employed, which is sufficient to ensure that the numerical solutions remain 
stable. In the calculations, all material parameters are kept fixed to be representative of AISI 4340 
steel studied experimentally by Hartley et al. [10]. The properties are specified by: E =200 GPa, 
ν =0.3, σ0 =1250 MPa, N =0.08, m =0.01, &ε0 =0.001/s, ρ =7833 kg/ m3 , C05 /103.1 −×=α , 

c J kg Cρ = 456 0/ , k w m C= 54 2 0/  and 0016.0=β . 
 

RESULTS 
 

Effects of rate dependence and thermal sensitivity in traction-separation laws 
Our first attention is focused on the effects of strain rate sensitivity and thermal softening factors in 
the cohesive zone model. Computations are carried out for specified material properties, 0σ̂ =2.5 0σ  

and smMPaK I /107=&  for different values of 1r  and 2r . Figures 1 and 2 show the R-curves for 

the two cases: (i) 1r =0.01 and 2r =0.001 and (ii) 1r =0.002 and 2r =0.001. The R-curves rise steadily 
after only a small amount of crack growth. It is seen that strain rate sensitivity plays a beneficial 
role in toughness enhancement, because higher magnitudes of toughness can be obtained at 1r =0.01 
than at 1r =0.002. Physically, rate effect can act effectively through an increase in energy dissipation 
in the plastic zone since the fracture stress is enhanced by rate sensitivity in the fracture zone.  
 
In Fig. 3, the variation of IdK  is plotted against 0/ Ra∆  for 2r =0.003 and 1r =0.002, so that the 

thermal effect becomes dominant over rate dependence. It is observed that at high 2r , crack growth 
resistance is much reduced. However, when 0/ Ra∆ >0.005, the slopes of the R-curves increase to 

the same order as those at small 2r . This is because, as the crack advances, the thermal softening is 
weakened severely and strain-rate hardening prevails.  
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Fig. 1. Crack growth resistance curves for 

1r =0.01, 2r =0.001 at three different T-stress 
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Fig. 2. Crack growth resistance curves for 

1r =0.002, 2r =0.001 and 0σ̂ =2.5 0σ , at three 
different levels of T-stress and 

smMPaK I /107=& . 

∆a/R0

0.00 0.01 0.02 0.03

K
Id

(M
P

am
1/

2 )

2

3

T/σ0=0 .25

T /σο=0.0

T/σ 0=-0.25

 
Fig. 3. Crack growth resistance curves for 

1r =0.002, 2r =0.003 at three different T-stress 
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Fig. 4. Crack growth resistance curves for 

1r =0.002, 2r =0.001 and 0σ̂ =2.5 0σ , at three 
different levels of T-stress and 

smMPaK I /106=& .
 

Effects of loading rates 
For comparison, two impact velocities IK&  = 610  and smMPa /107  are used with material 

constants 1r =0.002, 2r =0.001 and 0σ̂ =2.5 0σ . The R-curves at the higher impact speed are shown 
in Fig. 2, while those R-curves at the lower speed are shown in Fig. 4. There is a reduction in the 
fracture toughness with the lower impact speed. This is because high strain-rate increases the stress 
ahead of the crack-tip. Similarly, the fracture stress is enhanced by the rate-dependent cohesive law.  
Further, plastic deformation is restricted at low loading rates. The crack speed at different loading 
rates are examined in Figs. 2 and 4. It is found that the crack speed is larger at low impact speeds 
than at high impact speeds. The steady-state crack speed at 25.0/ 0 −=σT  is 518m/s at the higher 
impact speed and 648m/s at the lower impact speed. 
 
Effects of crack-tip constraints  
Although the loss of crack-tip constraint plays an important role in the toughness enhancement of 
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cleavage fracture, the constraints cannot significantly affect the toughness at crack initiation for 
ductile fracture at low loading rates, as shown in Fig.4. The sensitivity of crack initiation toughness 
to T-stress can be found at high loading rates, as shown in Figs. 1 to 3. For example, the initiation 
toughness is 4.78 MPa m  for 0/ σT =0.25 and 5.03 MPa m  for 0/ σT =-0.25 in Fig. 1. In 
addition, negative T-stress can decrease crack speed during the early stage of crack growth.  
 
Negative T-stress can increase fracture toughness significantly. There is a large difference in the R-
curves between T=-0.025 and 0.25. At high loading rates, the difference in toughness mainly results 
from T-stress at the early stage and the trend is offset with crack advance. Upon full development of 
the crack speed, the slopes of the R-curves tend to be insensitive to the T-stress. (See Figs. 2 for 
example). This means that the steady-state crack speed is insensitive to the constraints. However, 
this is not the case at low impact rates. It is likely that the T-stress is still comparable to the fracture 
stress at lower loading rates. 
 

 
CONCLUSIONS 

 

(1) Crack initiation is suppressed as the rate-sensitivity factor 1r  in the cohesive law increases. The 
toughness is higher for larger 1r , irrespective of the impact speeds.  

(2) Thermal softening caused by intense plastic deformation promotes ductile failure. This effect is 
more significant at the early stage of crack growth. After some crack extension, thermal effect at 
high 2r  is restricted and the R-curves increase at the same rate.  

(3) Increasing the loading rate enhances the fracture toughness because the rate effect increases the 
flow strength and the fracture energy, as well as the kinetic energy. It is seen from Figs 2 and 4 
that for low strain-hardening elastic-plastic materials, material inertia and rate sensitivity can 
increase the toughness by a factor of two. 

(4) Fracture behavior is also strongly controlled by the constraint effect. However, it depends on the 
loading rate. Constraint does not change the crack initiation toughness at low loading rates, but 
it does at high loading rates. Importantly, change in the crack-tip constraint has no significant 
effect on the steady-state crack speed at high impact speeds.  

 
ACKNOWLEDGEMENTS 
 
We wish to thank the Australian Research Council (ARC) for the continuing support of this project. 
XZ was in receipt of an Overseas Postgraduate Research Award tenable at the University of Sydney 
and an ARC Research Scholarship funded from the project grant awarded to Y-W M. 
 
REFERENCES 

 
1. Tvergaard, V. and Hutchinson, J. W. (1992) J. Mech. Phys. Solids 40, 1377-1397. 
2. Du, J., Thouless, M.D. and Yee, A. F. (2000) Int. J. Fract. 92, 271-285. 
3. Langer, J. S. and Lobkovsky, A. E. (1998). J. Mech. Phys. Solids 46, 1521-1556. 
4. Landis, C.M., Pardoen, T. and Hutchinson, J.W. (2000) Mech. Mater. 32, 663-678. 
5. Hancock, J. W. Reuter, W. G. and Parks, D. M. (1993) In Constraint Effects in Fracture, 

ASTM STP 1171, American Society for Testing and Materials, Philadelphia, 21-40. 
6. O’Dowd, P. and Shih, C. F. (1991) J. Mech. Phys. Solids 40, 989-1015. 
7. Xia, L., Shih, C. F. (1995) J. Mech. Phys. Solids 43, 233-259. 
8. McMeeking , R. M. and Rice, J. R. (1975) Int. J. Solid Structures, 11, 606-616. 
9. Gao, X., Shih, C. F., Tvergaard, A. and Needleman, A. (1996) J. Mech. Phys. Solids 44, 1255-

1282 
10. Hartley, K. A., Duffy, J. and Hawley, R. H. (1987) J. Mech. Phys. Solids 35, 283-301. 



ORAL REFERENCE: ICF100149OR 
 
 
 
 
 
 

A POSSIBLE EXPLANATION  OF SIZE EFFECT 
IN FATIGUE STRENGTH  OF METALS 

 
 

Andrea CARPINTERI, Andrea LANDINI, Andrea SPAGNOLI 
 

Department of Civil Engineering, University of Parma, Parco Area delle Scienze 181/A, 
43100 Parma, Italy 

 
 
 

ABSTRACT 
 
As is well-known, the experimental fatigue strength of metallic materials tends to decrease with increasing 
specimen size. Several theories on size effect, such as the Weibull statistical theory, have been proposed to 
explain this phenomenon. In the present paper, an attempt to analyse size effect in fatigue is made by 
considering the fractal nature of the reacting cross section of structures, that is, the renormalized fatigue 
strength is assumed to be equal to a force amplitude divided by a surface with a fractal dimension lower 
than 2. Such a dimensional decrement depends on a self-similar weakening of the material ligament, owing 
to the presence of cracks, defects, voids and so on (microscopic level). However, this decrement tends to 
gradually disappear by increasing the structure size (macroscopic level), this phenomenon being defined as 
multifractality. Relevant experimental results are examined in order to assess the reliability of the 
theoretical analysis presented. 
 
 
KEYWORDS 
 
Size effect; fatigue fracture phenomenon; metals; fractal geometry. 
 
 
INTRODUCTION 
 
According to well-known experimental findings, the fatigue strength of a given material is not a constant 
mechanical parameter, but it decreases by increasing the specimen size.  Such a decrease can be dramatic 
for very large structures, by provoking sudden catastrophic failures with possible heavy losses of lives and 
resources involved. Size effect phenomenon was analysed by Griffith [1] for the glass filaments by 
assuming the presence of microcracks whose size is proportional to the diameter of the filament cross 
section, whereas Peterson [2] examined the size effect in the case of brittle fracture produced through 
fatigue loading.  Then Weibull [3] proposed the statistical concept of the weakest link in a chain: by 
increasing the structure volume, the probability of failure increases owing to the higher probability of 
finding a critical microcrack provoking macroscopic fracture. More recently, the size of the most 
dangerous defect has been shown to be proportional to the structure size [4].  From such conclusions, it can 
be derived that the microscopic scale (material microstructure, grain size, microcracks, voids, inclusions, 
etc.) is significantly connected with the macroscopic scale (structure size), that is, the "disorder" of the 
material (heterogeneity and/or micromechanical damage) has to be considered when examining critical 
macroscopic phenomena (like for example fatigue fracture failure of structures). 
 1



 
In the present paper, the fractal nature of the material microstructure [5,6] and the renormalization group 
theory [7-9] can be considered to analyse the interactions between the two above levels (micro and macro), 
as has been proposed in Ref.[10].  In other words, the reacting cross section of a given structure shows a 
self-similar weakening due to the material heterogeneity, cracks, defects, etc., and therefore the fractal 
dimension of such a surface can be assumed to be lower than 2 [11,12]. Consequently, the damaged 
ligament of a heterogeneous solid may be modelled through a “lacunar” fractal set, analogous to the 
mathematical middle-third Cantor set, which presents Hausdorff dimension lower than that of the domain 
where it is contained. Then, new mechanical properties can be defined with physical dimensions depending 
on the fractal dimension of the damaged heterogeneous ligament (renormalization procedure), and such 
properties are scale-invariant constants. According to this approach, the renormalized fatigue strength 
could be represented by a force amplitude acting on a surface with a fractal dimension lower than 2, as is 
discussed in the following. 
 
On the other hand, Mandelbrot [13] pointed out a non-uniform (multifractal) scaling of the natural fractals 
(different from the uniform one of the mathematical fractals), i.e. in the physical reality  a transition occurs 
from a fractal (heterogeneous) regime for small structures to a Euclidean (homogeneous) one for structures 
large enough with respect to a characteristic microstructural size. In other words, the effect of the 
microstructural heterogeneity and/or damage (disorder) of a given material on the macroscopic mechanical 
behaviour gradually vanishes by increasing the structure size [14]. 
 
A monofractal scaling law for fatigue limit of metals is herein proposed, and some experimental results 
[15] are analysed to show how to apply the theoretical approach adopted. 
 
 
FRACTAL NATURE OF FATIGUE FAILURE OF STRUCTURES 
 
According to the concepts previously discussed, the reacting cross section of a disordered material is 
herein assumed to present a fractal dimension d−= 2α , with 0 1<≤ d , where the decrement  depends 
on a self-similar microstructural weakening (heterogeneity and/or damage) [10-12], the value of d  being 
higher when such a weakening is more significant.  Let us consider two geometrically similar cylinders (  
and 

d

A
B ), made up of the same material, subjected to cyclic axial loading (Fig.1). On the basis of the 

theoretical approach proposed for static loading [10], the renormalized fatigue strength  (the subscript 
 standing for amplitude) may be assumed as a material constant with physical dimensions given by 

*
aσ

a
[ ] [ ] dL −2F ,  and the following expression can be written : 
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Figure 1:  Geometrically similar cylinders under cyclic axial loading 
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where  and  are the axial force amplitudes (acting on the two cylinders, respectively), which 
provoke fatigue fracture failure. 
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Therefore, recalling eqns (1) and (2), equation (3) becomes : 
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and in a logarithmic form : 
  ( )ABAaBa DDd lnlnln ,, −= σσ        (4b) 

 
By assuming 1=AD  and , where  is a generic value of the bar diameter, the last two 
expressions can be written in a more general form : 

DD B = D

           (5a) ( ) d
aa D −= 1,σσ

  Ddaa lnlnln 1, −= σσ         (5b) 

where the latter equation represents a straight line with slope equal to d−  in the diagram shown in Fig.2, 

1,aσ  being the fatigue strength for a cylinder with 1== ADD . 
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In the case of afa σσ = , where afσ  is the fatigue limit, equations (5) become : 

           (6a) ( ) d
afaf D −= 1,σσ

  Ddafaf lnlnln 1, −= σσ         (6b) 

with 1,afσ  equal to the fatigue limit for 1== ADD . Note that, through a reasoning similar to that 
described above, equations analogous to those for push-pull loading (eqns (1) to (6)) can be obtained in the 
case of rotary bending. 
 
 
ANALYSIS OF SOME EXPERIMENTAL RESULTS 
 
Now some experimental results are examined to show how to apply the above equations. As is well-
known, several aspects (material properties, manufacturing process, specimen shape, testing conditions) 
play a role in determining the amount of fatigue limit decrease by increasing the structural size, but the 
analysis of the specific influence of each aspect is beyond the scope of the present paper.  
 
Hatanaka et al. [15] performed fatigue tests on smooth specimens made up of two different materials : a 
cast steel (JIS SCMn 2A) originally including many defects (comparatively disordered material), and a 
forged steel (JIS SF 50) with a quite homogeneous microstructure (comparatively ordered material).  The 
mechanical properties of these two types of steel are shown in Table 1. 
 
 

TABLE 1 - Mechanical properties of two steels tested by Hatanaka et al. [15] 
 

 
Material Yield stress 

(MPa) 

Ultimate tensile 

strength  (MPa) 

Elongation 

(%) 

SCMn 2A 325 576 18.2 

SF 50 283 484 39.1 

 
Cylindrical smooth specimens with diameter  equal to 8, 20, 30 and 40 mm, respectively, were 
employed.  The S-N curves for the two steels tested under rotating bending are shown in Ref.[15]. Note 
that, for both materials, the fatigue strength decreases by increasing the specimen size.  In particular, the 
amount of decrease in the value of fatigue limit 

D

afσ  by increasing  from 8 to 40 mm is equal to about 
24% for SCMn 2A steel and about 13% for SF 50 steel. 

D

 
If experimental results of afσ  against  reported in Ref.[15] are plotted in a bilogarithmic diagram 
(Fig.3), two straight lines can be determined through the least squares method : the straight line slope, 

D
d−  

(see eqn(6b)), for the cast steel is equal to – 0.162, whereas that for the forged steel (dashed line) is equal 
to – 0.085.  Consequently, the reacting cross section presents a fractal dimension d−= 2α  equal to 1.838 
and 1.915, respectively: in other words, the ligament for an ordered material is more similar to a two-
dimensional Euclidean surface than that for a disorder material.  Such a conclusion is consistent with the 
concepts discussed in the previous section.  Furthermore 1,ln afσ  , defined in eqn(6b), is equal to 5.76647 

for SCMn 2A steel and 5.63681 for SF 50 steel, that is, 1,afσ  is equal to 319.4 MPa  and  280.6 MPa, 
respectively. 
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Figure 3:  Monofractal scaling law for fatigue limit afσ  of two steels tested by Hatanaka et al. [15] 
 
 
Note that the experimental points in Fig.3 are not perfectly aligned (the correlation coefficient is equal to 
0.906 for the cast steel and 0.937 for the forged steel), which could mean that the monofractal scaling of 

afσ  is valid only in a narrow size range where the fractal dimension α  is about constant.  In other words, 

a non-uniform (multifractal) scaling of afσ  may be assumed, with a gradual decrease of  as the scale  
increases. As a matter of fact, the material microstructure is independent of the macroscopic scale of the 
specimens tested; consequently, the influence of the microstructural disorder (heterogeneity and/or 
damage) on fatigue behaviour may progressively diminish by increasing the specimen size, and may 
become practically negligible for cylinder sizes large enough with respect to a characteristic 
microstructural size. 

d D

 
 

CONCLUSIONS 
 
Experimental tensile strength and fatigue strength decrease by increasing the specimen size, and this 
decrease is more pronounced for comparatively heterogeneous and/or damaged materials, i.e. the so-called 
“disordered” materials. 
 
The problem of size effect in fatigue has been herein analysed through fractal geometry concepts, by 
assuming a self-similar weakening of the reacting cross section of structures, due to the material disorder 
(microscopic level).  A monofractal scaling law for fatigue limit afσ  has been proposed. The fatigue 
strength decrease may gradually tend to disappear by increasing the structure size  (macroscopic level) 
with respect to a characteristic microstructural size. 

D

 
Experimental fatigue data related to two different steels have been examined to discuss the theoretical 
approach adopted. Such an approach seems to be a possible alternative method to analyse the size effect 
problem in fatigue fracture failure of structures. 
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ABSTRACT 
 
In order to estimate the ductile crack growth in metallic materials, a potential node release technique is 
proposed in finite element simulation by introducing a potential node release law in traditional node release 
technique.  J-integral far from crack tip is taken as a fracture parameter and the criterion of node releasing 
is a crack driving force relating with ultimate fracture strain and stress triaxiality near crack tip.  The ductile 
crack growth and affecting factors are investigated numerically for three-point bend specimen.   
 
KEY WORDS:  Damage Mechanics, Fracture Modeling, FEM 
     
INTRODUCTION 
 
It is a very important and complicated topic to estimate numerically the ductile crack growth in nonlinear 
fracture mechanics.  There exist two kinds of methods to simulating the ductile crack propagation, i.e., 
generation phase and application phase [1].  The so-called generation phase is to study numerically the 
fracture mechanics parameters such as COD, CTOA, COA and J-integral based on the experiment 
relationship between load-point displacement and crack growth length. The application phase is to study the 
load-point displacement and crack growth according to the fracture criteria at crack tip.  Most researches 
are concentrated in the generation phase. One of the most difficulties in numerical simulation is how to 
determine the fracture criterion for ductile fracture in large scale yielding as the crack propagation. 
 
It is predicted from metallurgical researches that the nucleation and growth of voids play an important role 
for the fracture process of ductile metallic materials, which cannot be described by conventional continuum 
mechanics.  In structural materials, voids nucleate mainly at second phase particles and inclusions.  
Usually, micro-voids can be divided into two families, larger voids and smaller voids.  The larger voids 
nucleate from inclusions at relatively low strains and smaller voids nucleate from carbides or precipitates at 
considerably larger strains.  Consequently, void growth takes place due to the plastic deformation of 
surrounding matrix material and final failure occurs when the larger voids coalesce with each other or link 
up with a nearby crack tip via a void sheet consisting of voids nucleated from smaller particles [2-3].  
 
Combining the micro-void damage mechanics and macro-fracture mechanics, a model to estimate the ductile 
crack growth in ductile materials is proposed in this paper.  Potential node release technique is developed in 
finite element simulation by introducing a potential node releasing law in traditional node release technique.  
The ductile crack growth and affecting factors are investigated numerically for three-point bend specimen.   



COHENSIVE ZONE AND PNRT 
 
The ductile fracture of mild steels can be described as a progressive process with the nucleation, growth and 
coalescence of voids or micro-cracks.  At the vicinity of a pre-existing macro-crack, a large damage 
evolution occurs due to the high stress and strain concentrations.  It has shown from experiments that the 
damaged zone is confined very near to the macro-crack tip.  The fracture toughness, the crack resistance 
and tearing modulus of ductile materials may be considerably affected by the presence of such localized 
damages near the crack tip.  The so-called cohesive zone model is proposed to incorporate more details of 
the separation process than the modeling with conventional continuum mechanics as.  The region ahead of 
a growing crack tip is a narrow strip joining the two elastic-plastic bodies which interact with each other 
with a kind of separation law.  In general, one-dimensional separation relation is assumed acting on the 
ligament for cases under mode I loading conditions. 
 
The traditional node release technique is to modify the boundary condition by releasing simultaneously the 
node force.  In this paper, a new kind of node release technique is proposed by introducing potential node 
release law letting the node force release gradually.  The potential node release law can be arbitrary in some 
degree as well as it reflects some characteristics of failure.  As shown in Fig.1, the distance of the node as 
releasing is denoted by δ.  The mechanical characteristics of the node releasing are defined through a power 
exponent function F as shown in the following. 

                })(3exp{
1

max
m

c

FF
δ
δ

−=                                (1) 

where, Fmax is the maximum force when the node is released, δ cthe critical displacement when the new crack 
increment forms, and m the material constant. 
 
In the model of cohesive zone, it is assumed that the maximum traction is given and related with the fracture 
stress.  In fact, traction in the cohesive zone is changing with applied load.  So it is important to keep that 
the traction in the cohesive zone is the same as predicted using the continuum mechanics.  There are two 
parameters in Equ.1.  It can be seen from Equ.1 that the larger the constant m is, the more difficult the 
separation of node and the higher the fracture tearing toughness will be.  The constant m can be used to 
describing the fracture property in some degree. 
 
NUMERICAL PROCEDURE 
 
The three-point bend specimen was used in finite element simulation.  The half specimen is meshed 
according to its symmetry.  The meshes consisted of 1110 four-node isoparametric elements with 3435 
nodes.  In the large strain gradient zone the mesh was refined.  The minimum mesh size near crack tip is 
about 1/400 of ligament length.  The numerical evaluation of the J-integral was conducted incrementally 
throng Gauss-point integration of the elements on the path with standard weight function according to the 
reference [4].  The J-integral was calculated as the mean value for five different paths. 
 
The procedure in the numerical simulations is simply as follows.  Initially, the crack driving force 
expressed by parameter U increases with the increase of applied load[5].  The cohesive zone creates and 
the corresponding node begin to release when the calculated crack driving force U near the crack tip 
reaches to its critical value Uc, which is the function of ultimate fracture strain εu and stress triaxiality 
near crack tip.  In general, the traction at the nodes inside the cohesive zone has to follow the potential 
node release law as shown Equ.1.  If the external applied load increases further, the cohesive zone 
grows.  The new crack increment forms when node displacement gets to its critical value or the node 



force reaches near zero.  According to the crack increment and corresponding J-integral values, the 
development of J-integral as crack growth can be obtained. 
 
RESULTS AND DISCUSSION 
 
In this model of simulating ductile crack growth, there are five parameters to affect the J-resistance 
curve, i.e., yielding stress, strain hardening exponent, ultimate fracture strain, critical crack tip 
displacement and node release exponent.  The yielding stress, strain hardening exponent and ultimate 
strain can be determined from tensile stress strain curve.  And the critical crack tip displacement can be 
determined from void growth theory or from fracture toughness experiment.  In order to check the 
potential node release technique in simulating the crack growth, it is important to understand the 
influences of the parameters in Equ.1. 
 
The influence of critical crack tip displacement on J-resistance curve is illustrated in Fig.2.  The 
yielding stress and strain hardening exponent of the ductile material used in calculation are 499MPa and 
8.0 respectively.  And the node force release exponent is kept the same value as 1.0.  The ultimate 
fracture strain for node releasing is 0.2.  It is well shown in figure 2 that the critical crack tip 
displacement affects not only the initial J-integral but also the J-resistance curve.  It seems that the 
effect of the critical crack tip displacement on J-resistance curve is not linear.  The larger the critical 
crack tip displacement is, the larger the initial J-integral and the slope of J-resistance line.  As the 
assumption in the model, the critical crack tip displacement keeps the same as the crack growth.  It is 
clear from the figure that the tendency of J-resistance curve becomes steeper as the critical crack tip 
displacement increasing.  For the given critical crack tip displacement, the tendency of J-resistance 
curve becomes smaller as the crack growth.  The critical crack tip displacement is a main factor 
influencing the initial J-integral. 
 
The material constants are kept the same in the calculations in order to investigate the effect of node 
release exponent on the J-resistance curve.  The yielding stress is taken as 490MPa.  The 
strain-hardening exponent is 8.0.  The ultimate fracture strain keeps 0.2.  The critical crack tip 
displacement is 0.05mm.  It is displayed in Fig.2 that the node release exponent m affects strongly on 
the J-resistance curve.  The initial J-integral gets greater and the slope of J-resistance curve becomes 
steeper as the node release exponent decreasing.  It can be obtained that the larger node release 
exponent expresses the lower crack growth resistance.  In the potential node release technique, there 
are two parameters which can expresses the changes of the initial J-integral and J-resistance.  These 
two parameters have some relations with the material properties, which can be determined from fracture 
toughness testing and tensile testing.  From the micro-mechanics of ductile fracture, the critical crack 
tip displacement and node releasing exponent in the model should have some relation with void 
properties.  Those need more detailed investigations. 
 
The crack driving force U is taken as a crack growth criterion in this study.  The critical values Uc is 
determined by the ultimate fracture strain and stress triaxiality near crack tip as mentioned above.  The 
stress triaxiality is dependent on the state of crack body.  The ultimate fracture strain can be determined 
from the maximum point in the tensile stress-strain line.  The constants in potential node release law 
are kept the same in the calculations in order to investigate the effect of ultimate fracture strain on the 
J-resistance curve.  The yielding stress is taken as 490MPa.  The strain-hardening exponent is 8.0.  
The node release exponent is 0.5.  The critical crack tip displacement is 0.05mm.  It is displayed in 
figure 4 that the ultimate fracture strain affects significantly on the J-resistance curve.  The initial 
J-integral gets greater and the slope of J-resistance curve becomes steeper as the ultimate fracture strain 



increasing. 
 
CONCLUSION 
 
Based on the combination of micro-void mechanics and macro-fracture mechanics, a model to estimate the 
ductile crack growth in ductile materials is proposed.  A potential node release technique is developed in 
finite element simulation by introducing a potential node releasing law in traditional node release technique.  
The ductile crack growth of three-point bend specimen is investigated numerically making use of 
self-developed finite element method.  Conclusion shows that all the parameters in the model affect not 
only the initial J-integral but also J-resistance curve, that the node release exponent m, ultimate fracture 
strain and the strain hardening exponent are the main factors which influence the J-resistance slope, that the 
critical crack tip displacement, and yielding stress are the main factors affecting the initial J-integral. 
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Fig.1  The simulating model for potential node release technique 
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Fig.2  Effect of the critical crack tip displacement on J-resistance curve 
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Fig.3  Effect of the node release exponent m on J-resistance curve 
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Fig.4  The effects of ultimate fracture strain on J-resistance curve. 
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ABSTRACT 
 
In this paper, a simple method for topology optimization of linearly elastic continuum structures is presented.  
For prescribed loading and boundary conditions, and subject to a specified amount of structural materia l, the 
optimum structural topology is determined from the condition of maximum integral stiffness, which is 
equivalent to minimum elastic compliance.  The SIMP (Simple Isotropic Material with Penalization) is 
improved in order to save the computation time.  Instead of using isotropic material with SIMP method, the 
material is assumed to be pseudo orthotropic continuum by setting the principal axis of the material to 
principal stress directions and introducing a new penalty function to the young’s modulus at the minor 
principal stress direction.  Numerical examples illustrate that the present method is more efficient than the 
SIMP method. 
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INTRODUCTION 
 
The research in the area of topology optimization is extremely active recent years.  Several topology 
optimization methods have been proposed, and used for the design of practical problem.  However, there still 
exist a number of problems such as checkerboard, mesh-dependence, and local minima being investigated 
currently. 
 
The topology optimization of continuum structures corresponds to finding the connectedness, shape and 

(uf



number of holes such that the objective function is extremized.  Using a density function ρdefined on 
design domain Ω  to describe the material distribution, it can only takes the value 0 (void) or. 1 (solid), i.e. 
 

Ωρ ∈∀= x,or)x( 10                              (1) 
 
It is well known that the 0-1 topology optimization problem lacks solutions in general.  The reason is that 
given one design the introduction of more holes will generally increase the efficiency measure.  A general 
approach to avoid this problem is that relax the 0-1 density constraint to a continuous variable as 
 

Ωρ ∈∀≤< x,)x( 10                               (2) 
 
to achieve an approximate solution, and then use other techniques to approach a black/white design.  
Bendsøe and Kikuchi [1] introduced a periodic microstructure to the material through the use of so-called 
homogenization approach to topology optimization that allows the volume density of material to cover the 
complete range of values from 0 to 1 by changing the size of microstructure.  To use this method, it is 
necessary to determine the effective material characteristic by homogenization, and results are obtained with 
large regions of perforated microstructure or composite materials ( 10 << ρ ).  Another approach that is 

called density function method [2] disregards the details of the microstructure and defines the elasticity tensor 
as a function of density of material directly.  The SIMP (Simple Isotropic Material with Penalization) 
approach [3] is kind of density function method, in which the stiffness tensor of the intermediate density 
material is penalized with an exponential function of density to somehow approach a 0-1 design.  Using the 
SIMP approach the stiffness tensor of an intermediate density material is   
 

p
ijklijkl C)(C ρρ 0=                                  (3) 

 
where 0

ijklC  is the stiffness tensor of material and p is the penalization factor which ensures that the 
continuous design variables are forced towards a black/white solution.  To control the value of p can control 
the speed of convergence and the rate of intermediate density material in the result design.  It is a popular 
method and has also been widely used because of its simplicity. 
 
In this study, the SIMP approach is improved in order to be more efficient in optimization process.  Using the 
concept of Michell truss, we assume material to be a pseudo orthotropic continuum and introduce new 
penalties to the Yang’s modulus.  An example is attached at the end to show the validity of this approach. 
 
 
FORMULATION OF OPTIMIZATION PROBLEM 
 
In this paper, we treat the problem of maximum stiffness of structures with the given amount of material.  
Design for maximum stiffness of statically loaded linearly elastic structures is equivalent to design for 
minimum compliance defined as the work done bye the set of given loads against the displacements at 
equilibrium.  Consider an initial domain Ω  with a boundary Γ  loaded with a static force P.  The 
optimization problem can be formulated as 
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where u is the displacement vector, v is the variation of u, 0M  is the given amount of material.  Using 
Lagrange multiplier method, this optimization problem can be rewritten to a stationary problem of a Lagrange 
functional as 
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Taking the variation of the Lagrange functional, the optimality criterion of this problem can derived as 
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Eqn.7 is an adjoint equation from which the adjoint variable v can be solved. 
 
 
INTRODUCING ORTHOTROPIC MATERIAL PROPERTIES  
 
 
As mentioned above, checkerboard problem is one of the problems occurring frequently in the topology 
optimization process.  As shown in Figure 1, the result design consists of alternating solid and void elements 
so that it is not useful for practical purpose.  To avoid the checkerboard pattern, the use of higher-order finite 
elements has been suggested [4].  However, this approach is the substantial increase in cpu-time because of 
not only the increasing of degrees but also the low convergence speed.  A large penalty parameter p is used 
in general to reduce the cpu-time, but it has the possibility to decrease the performance of the structure.  In 
this research, we try to find a new kind of penalty to the intermediate density material so that the optimization 
process is more efficient in finding the solution and converging to 0-1 material distributions  with less 
performance loss of the result design.  The hint is obtained from the so-called Michell truss [5] that is 
derived by Michell for a minimum weight truss of a plane structure.  As shown in  
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1: Checkerboard pattern 

Figure 2: Michell truss 



Figure 2, the Michell truss is an orthogonal net structure, in which each component extends in the direction of 
principal stress and crosses mutually with a right angle.  Although this solution is impractical because it 
derived without the constraint on geometric shape and number of holes, the concept is applied in this paper.  
Instead of using isotropic material, the material is assumed to be pseudo orthotropic continuum and the 
principal axis of the material is set to principal stress directions.  It is reasonable to consider that this 
approach will be efficient in generating the topology.  In order to create pseudo orthotropic material, we 
introduce different penalty functions to the young’s modulus at the major principal stress direction and that at 
the minor principal stress direction as 

pEE r0
1 =                                       (8) 

2

1
12 s

s
EE =                                      (9) 

Where 0E  is the true Young’s modulus, 1s  and 2s  are the major principal stress and the minor principal 
stress respectively ( 21 ss ³ ), 1E and 2E  are the Young’s modulus at the directions of 1s  and 2s  
respectively.  Eqn.7 is the same penalty with SIMP method and Eqn.8 is a new penalty.  The reason why 
give 2E  a harder penalty is that 2E  has less effect on the performance of the structure than 1E . 
 
 
NUMERICAL RESULTS 
 
 
In this section, a square plate example is performed in order to investigate the effect of the new penalties 
presented in this paper.  As shown in Figure 3, the plate is computed for maximizing the stiffness, in which 
the left side is fixed and the right side is applied with a load.  It is modeled by 8-node isoperimetric elements 
with the material properties Young’s modulus E=2.10x1011 N/m2 and Poisson’s ratio �� =0.3.  The volume 
constraint is set to 40% of the entire design domain.  The penalty parameter p is raised from 1.0 to 2.0 with 
the step of 0.1 during the optimization process.  Figure 4 shows an optimal result in the case of using 
isotropic material properties and Figure 5 shows an optimal result in the case of using orthotropic material 
properties.  Comparing these two results, the obvious difference can be found.  From Figure4, it is found 
that the clear topology didn’t appear after 150 iterations.  The clear topology appeared after 330 iterations.  
On the other hand, from results of Figure 5, it is found that the clear topology appeared after 150 iterations 
with p=1.4.  It is similar to the result after 330 iterations and it is clear enough to use as a last 
result.  Another fact can be confirmed that results of the two cases are almost the same; there is even no  
 
 
 
 
 
 
 
 
 
 
 
 Figure 3: Design problem and boundary conditions 
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difference of the values of two objective functions.  This fact means that there is almost no extra lo ss of the 
efficiency of last design to use with new penalty functions. 
 
 
CONCLUSION 
 
In this paper, a simple method for topology optimization of linearly elastic continuum structures is presented.  
Instead of using isotropic material with SIMP method, the material is assumed to be pseudo orthotropic 
continuum by setting the principal axis of the material to principal stress directions.  We introduce a new 
penalty function to the young’s modulus at the minor principal stress direction.  Numerical examples 
illustrate that the present method is more efficient than the SIMP method. 
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Figure 4: Results for the use of  
    isotropic material properties 
 

(b) After 150 iterations, p=1.4 

(a) After 30 iterations, p=1.0 

(c) After 330 iterations, p=2.0 

Figure 5: Results for the use of  
  orthotropic material properties 
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(b) After 150 iterations, p=1.4 

(c) After 330 iterations, p=2.0 
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ABSTRACT 
 
Recently, there has been considerable interest in studying creep crack growth in brittle materials. For 
example, the methodologies for assessing creep ductile materials, using fracture mechanics 
parameters like C* and Ct, have been extended to include creep brittle materials. This paper begins 
by examining these recent developments and outlines the difficulties in adopting these methods. An 
alternative approach is then proposed in this paper. This new approach is based on recent work on 
development of a strain based failure assessment diagram (SBFAD). Experimental results from a 
series of tests on a simulated heat affected zone of a low alloy steel are examined. It is shown that the 
results agree well with the analysis using a SBFAD. The application of the methodology for 
assessing the initiation and growth of a defect in a creep brittle material is demonstrated. 
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INTRODUCTION 
 
Previous research [1-3] on characterising creep crack growth (CCG) has focussed on characterising 
the rate of creep crack growth in terms of C*, the creep equivalent of the non-linear fracture 
parameter J. The bulk of this work has examined creep-ductile materials, in which CCG is 
accompanied by significant amounts of creep deformation. However, a more problematic class of 
high-temperature structural materials are creep-brittle materials where the extent of creep 
deformation is small compared to the total displacement. 
 
In order to allow creep-brittle materials to be assessed using C* the validity limits in the CCG testing 
standard [4] have been relaxed [5].  This includes decreasing the amount of creep deformation 
required and to widen the regime of creep crack extension. Alternatively the Ct parameter has been 
proposed to characterise CCG for small-scale creep conditions [6]. However, even with the reduction 
of the limitations there are still a number of observed shortcomings associated with using C* for 
characterising creep crack growth. For example, the initial stage of CCG, and the subsequent steady 
CCG rate [6] cannot be described uniquely by C*. In brittle alloys this can mean in many cases that 



only the latter part of the test (usually less than 50% and sometimes as little as 10% of the remaining 
life of the test [8]) can be characterised. Consequently it is only the accelerating portion that is 
uniquely described by C*.  This is demonstrated clearly by [7,9-10]. In this latter stage it has also 
been suggested that measured values of C* become equivalent to the CCG rate [11]. This is because, 
at large CCG rates, most of the displacement rate results from increases in the elastic compliance due 
to crack extension and not from creep deformation taking place within the specimen. With these 
concerns in mind this paper examines an alternative approach. 
 
The development of the strain-based failure assessment diagram (SBFAD) is explored, which could 
potentially simplify the treatment of situations involving variable stress and variable temperature. A 
ferritic steel representative of the simulated heat affected zone of a low alloy steel is examined at 
380oC using the new SBFAD. 
 
STRAIN BASED FAILURE ASSESSMENT DIAGRAM (SBFAD) 
 
A high temperature time dependent failure assessment diagram (TDFAD) based on the well 
established low temperature R6 approach [12], has been developed which allows predictions of creep 
initiation time and times for small amounts of CCG [13]. The TDFAD uses a high temperature 
‘creep toughness’ which replaces the fracture toughness used in the R6 procedure.  This ‘creep 
toughness’ parameter may be examined directly from experimental load-displacement information or 
indirectly from CCG rates as a function of C*.  A strain based failure assessment diagram (SBFAD) 
has recently been developed as an alternative to the stress based TDFAD for high temperature 
components [14]. Strain accumulation can be measured or calculated and could be used to provide a 
measure of the components continuing performance. This section very briefly describes the SBFAD. 
 
The Option 2 FAD in R6 [12] may be extended to described a TDFAD [13] given by 
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where Kr=Kapplied/Kmat, Lr=σref/ , εc

2.0σ r is the reference strain corresponding to the reference stress 
σref, and is the stress at 0.2% strain from the isochronous stress-strain curve. It is possible to 
recast eqn 1 to give K

c
2.0σ

r as a function of normalised strain εr, where 
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and εr is the ratio of the total to elastic strain at reference stress, ( )e
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For a structure, a relationship between the reference strains and the load line displacements is 
required. Preliminary studies using the EPRI handbook solutions [15] have shown that for the 
compact tension (CT) specimen for a/W=0.5 and 0.75, where a is the crack length and W is the 
specimen width the normalised strain may be related to the load line displacement by 
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where ∆Τ  is the total load line displacement and ∆e is the elastic load line displacement.  
 
 
Figure 1 shows a schematic SBFAD, with curves for Kr as a function of εr for Lr  



Figure 1, SBFAD Assessment of Creep Crack Growth
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varying from 0.6 to 1.4. For large strains the SBFAD is reasonably independent of Lr. Now consider 
a cracked component subjected to a constant load corresponding to Lr=0.6 and Kr=0.9. At the start of 
the life (and assuming zero inelastic strain during loading) εr=1.0. Creep strain accumulation without 
crack growth corresponds to a horizontal line in figure 1. Crack initiation is assumed to occur when 
the horizontal line touches the SBFAD for Lr=0.6. Subsequent crack growth leads to increasing Lr 
and decreasing Kmat, and a locus of points are generated for increasing εr. 
 
EXPERIMENTS AND RESULTS 
 
To examine in more detail the applicability of the strain based approach results from CCG tests 
conducted on a simulated low alloy steel HAZ material at 380oC are explored in this section. The 
details of the tests and their results are given in [16]. The test programme used compact tension 
specimens subjected to constant load with the total displacements monitored throughout each test. 
Tests lasted from about 40 hours up to 1000 hours.  In all tests there was very limited evidence of 
plasticity before the onset of creep.  
 
In the absence of plasticity it is important to determine the elastic and creep displacements which can 
be separated by displacement partitioning presented earlier by Saxena and Landes [17]. At a given 
crack length the total displacement, ∆t, is the sum of the elastic, ∆e, and the creep, ∆c, displacement, 
where 
 
    [ ] [ ] [ ]aaa cet ∆+∆=∆      (4) 
 
As the crack length, a, increases the elastic displacement is estimated using 
 

    [ ] [ ] [ ]
[ ]oe

e
oee aC

aC
aa .∆=∆     (5) 

 
where Ce is the elastic compliance function and ∆e[ao] is the measured initial elastic displacement at 
the initial crack length, ao. For the CT specimen the elastic compliance Ce(a/W) expressed as a 
function of the normalised crack length, a/W [18] is: 
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The elastic displacement can therefore be determined for a growing crack using equation (5). The 
creep displacement is determined from  
 

[ ] [ ] [ ]aaa eTc ∆−∆=∆      (7)  
 

Overall, the extent of cracking for all the tests was between 4 and 10 mm. This is very extensive 
compared to conventional ductile crack growth (tearing) tests. The calculated creep displacements 
using eqn 7 are shown in figure 2. For some tests (C, E and H) there is a consistent increase in creep 
displacement with increasing time. However, for other tests particularly for t/tf > 0.3, where tf is the 
failure time of the specimen, the estimated creep displacement decreased with increasing time. 

Figure 2, Total Displacement - elastic displacement for simulated HAZ material
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In creep-brittle materials, the amount of creep deformation represents a very small percentage of the 
total displacement. Therefore, in the absence of plasticity the change of displacement caused by a 
change in elastic compliance is comparable to the total displacement.  Consequently small errors in 
estimating the extent of cracking would lead to large errors in determining creep displacements. 
Tests D, F and G yielded negative apparent creep displacements.  In these tests it is not possible to 
characterise CCG using C*.  
 
An alternative approach is to examine CCG in terms of material resistance.  For ductile tearing 
involving rate independent processes the J-resistance curve has been adopted as a measure of a 
material’s resistance to ductile crack growth. This approach is explored here. In general the total 
energy dissipated, during each test, can be determined from the sum of elastic, plastic and creep 
displacements. In order to determine the total JT the elastic, plastic and creep terms were determined 
using the conventional J formulae, where, 
 
    JT=Je+Jp+Jc      (8) 
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where η is a geometric factor, ao is the initial crack length, and Up and Uc are the areas under the 
plastic and creep parts of the load line displacement curves obtained from the experiments. To 
determine JT from the creep crack growth tests it was necessary to obtain from the experiments not 
only the creep displacements but also the elastic and plastic displacements during initial load up. As 



noted earlier the total displacements in the simulated HAZ material were dominated by elastic and 
creep displacements. 
 
Material resistance curves derived using JT are shown in figure 3. Each test generates a separate R-
curve, with creep tests of short duration giving an R-curve which is generally higher than an R-curve 
for longer duration.   From these results a measure of the material resistance for a given crack 
extension can be obtained as a function of time.  This will be explored in later work. 
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Figure 3, Resistance Curves for Simulated HAZ material 

 
ASSESSMENT OF EXPERIMENTS USING THE SBFAD 
 
In this section the results of the CCG tests on the simulated low alloy steel HAZ are assessed using 
the strain based failure assessment diagram (SBFAD). In each case Kr was determined using 
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where JT has been obtained using the measured value for the elastic and creep displacements, using 
eqn 8.  The rate εr has been obtained from eqn 3.  
 
Figure 4 shows results from test E.  A curve for Kr as a function of εr obtained from the experiment 
is shown.  As the test progressed Kr decreased and εr increased.  The position on the curve 
corresponding to crack initiation is shown on the curve.  Also shown are two loci obtained from eqn 
2.  One locus is for Lr=0.52, corresponding to the initial applied load, assuming plane strain 
conditions and using the 0.2% yield strength from high temperature tensile test. The second locus is 
for variable Lr, where Lr was determined accounting for crack growth.  The differences between the 
two loci are largest towards the end of the test.  The experimental result closely follows the predicted 
strain based failure assessment curve given by eqn 2.  It is also evident that there was a period of 
creep strain accumulation prior to crack initiation.  Initiation occurred when the experimental curve 
crossed the assessment line.  This is also illustrated schematically in figure 1.  Subsequent crack 
growth occurred such that the experimental curve essentially followed the assessment line. 
 
 
 



Figure 4, SBFAD assessments for simulatd HAZ material
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CONCLUDING REMARKS 
 
An alternative approach to characterising CCG using C* has been proposed.  The SBFAD provides a 
method of assessing the deformation throughout an entire test.  The method uses the total accumulated 
material toughness and not the instantaneous creep rate to estimate the fracture parameter C*.  
Experimental results for a creep-brittle simulated HAZ material have been used to demonstrate the 
principles of this new method. 
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ABSTRACT

Fracture toughness obtained under the same experimental conditions has the following two characteristic
features: fracture toughness has the dependency of crack depth and shows a large scatter even though
the same geometrical shaped specimens were applied to the tests, which derives from the sensitivity
of micro structures of steel. Quantificational evaluation of these phenomena is performed by applying
strain rate-temperature parameter in the fracture process zone (Rγ), which is the function of strain rate
and temperature, as the evaluation parameter. Postulating that fracture toughness is a function of Rγ , it
makes clear that there is no crack depth effect, namely the plastic constraint effect, on fracture toughness
and that the scattering on fracture toughness decreases considerably. Moreover, the possibility which
the dimensionless parameter derived from Rγ may be the universal parameter to characterize fracture
toughness is indicated.

KEYWORDS

fracture toughness, scattering, crack depth effect, plastic constraint, strain rate, R prameter, three point
bend COD spceimen

INTRODUCTION

Fracture toughness is affected by the crack depth, especially, in case that plastic zone grows large
before the fracture generating. This phenomenon is known as the plastic constraint effect on fracture
toughness.Although the explanation that the geometrical difference of specimen shapes generates this
phenomenon is stated in many reports, it is difficult to quantify the phenomenon by applying this
concept.
Some fracture parameters, e.g. T stress [1] and Q parameter [2], enable to describe the plastic constraint
effect. Both parameters are, however, not practical ones to discuss the criteria of fracture because it is
also difficult to identify a critical value at fracture generating.
By using the local approach which Weibull stress is the parameter to characterize this concept, clevage
fracture strength could be estimated [3]. Moreover, Weibull stress was applied to explain many problems
concerning fracture toughness, e.g. scattering [4], crack depth effect [5] and strain rate effect [6].
However, physical meaning of the shape parameter in the definition of Weibull stress has not been clear



yet. Identfying the precise stress/strain fields are a significant in order to calculate all the parameters
mentioned above. Change of the strain rate in the vicinity of a crack tip caused by strain concentration
affects the stress/strain fields considerably, because the constitutive relation of materials is a function
of strain rate. Considering the strain rate effect on stress/strain fields is, therefore, necessary to identify
the precise fields even though static loading condition. In most of analyses based on the local approach,
strain rate effect on the stress/strain fields was ignored to calculate Weibull stress.
Authors [8] had shown that fracture toughness is the function of R parameter defined in Eqn. 1 [7] in
fracture process zone.

R = T ln(A/ε̇) (1)

where T : temperature [K], A: frequency factor (= 108 [s−1]), ε̇: strain rate [s−1]. R parameter in
fracture process zone denotes Rγ in the following sections. Rγ is a candidate to quantify the plastic
constraint effect on fracture toughness, because a degree of the plastic constraint is directly reflected
on the stress/strain fields in fracture process zone.
Large scattering exists in fracture toughness derived under the same experimental condition. This is one
of a typical tendency on fracture toughness. Authors postulated that scattering of fracture toughness
is caused by the difference of strain rate distribution in fracture process zone, because a certain scatter-
ing of pre-crack length in fracture toughness test specimens must remain even though the precracking
condition was the same. Scattering of the strain rate in fracture process zone is ignored to evaluate
fracture toughness in conventional methods in which fracture toughness is seemed as only function of
ambient temperature. Large scattering of fracture toughness could be explained by applying Rγ as the
characteristic parameter to control the brittle fracture.
Above the points of view, two types of three point bend COD spceimens which have different crack
depth were used to clarify the crack depth effect on fracture toughness quantitatively. In addition, the
scattering of fracture toughness caused by a little difference of initial crack depth was investigated by
using COD specimens which precracking condition was the same.

FRACTURE TOUGHNESS TEST

Fracture toughness tests were performed in accordance with BS5762 [9].Three point bend COD speci-
mens were made of mild steel (SM400B), which chemical composition and material properties are shown
in Table 1.

Table 1 Chemical composition and material properties (plate thickness = 16[mm])

Chemical composition (Wt%) Material properties
C Si Mn P S Y.S. T.S. El. vE at 0[ C̊]

[ MPa ] [ MPa ] [ % ] [ J]
0.15 0.20 1.05 0.009 0.002 299 452 33 260

Two types of the ratio of specimen breadth (W ) to initial crack depth (a0) were equiped for the exper-
iment. One named standard specimen in this paper is that a0/W = 0.5, the other named short cracked
specimen in this paper is that a0/W = 0.1. Fracture toughness tests by using standard specimen were
performed under three ambient temperatures (-75, -60 and -40 C̊). These results were investigated
to verify the hypothesis which the scattering was caused by the difference of strain rate in fracture
process zone. The tests by using short cracked specimen were done only -75 C̊. By comparing fracture
toughness of two types of specimens, crack depth effect on fracture toughness was also investigated.
Both tests were performed under constant crosshead speed (about 0.04mm/s), which could be seen as
static loading.
Round bar tension test were also performed by collecting test pieces from the same material of COD
specimens. Crosshead speed (0.005mm/s) could be recognized as a static loading. Four ambient tem-
peratures (-130, -80,-30 and 25 C̊) were set under the tests.
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Figure 1 Relationship between ambient temperature and critical CTOD

EXPERIMENTAL RESULTS

Critical CTOD used as fracture toughness was calculated by using the conversion formula in BS5762 [9].
Measured values, mouth COD, crack length etc., at unstable fracture generating were applied to the
calculation of fracture toughness, because the strain rate effect on the scattering and crack depth effect
of fracture toughness at the moment of brittle fracture generating was highlighted in this paper. Crack
length in calculating fracture toughness was equal to the sum of initial length and fibrous crack length
grown by stable ductile fracture.
Figure 1 shows the relationship between ambient temperature and fracture toughness derived from
the experiments. A noticeable scattering of fracture toughness can be recognized in Fig. 1. Fracture
toughness of short cracked specimen shows a large value in the same ambient temprature. This is a
same manner of ref.[5].

EVALUATION OF FRACTURE TOUGHNESS BY USING R PARAMETER

To evaluate the scattering and crack depth effect on fracture toughness, R parameter in fracture process
zone (Rγ) at brittle fracture generating were calculated by the procedure stated in ref.[10]. Relationship
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Figure 2 An example of R parameter, strain rate and temperature rise due to plastic work
distributions in IDNZ
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Figure 4 Comparison of Rγ and temperature as a parameter concerning the scattering of fracture
toughness

between R parameter and yield stress (σY ) of the material had been provided from the round bar tension
tests in advance. This relation is shown as follows.

σY = 106.7 exp(5607/R) (2)

Unit in yield stress is MPa and in R parameter is abosolute temperature.
Figure 2 shows an example of R parameter distribution in IDNZ [11] which can be considered as fracture
process zone. Abscissa in Fig. 2 is normalized by the distance from crack tip to the tip of IDNZ (rIDNZ).
The value of R parameter at the center of IDNZ was regard as Rγ in this paper, because R parameter
in IDNZ keeps a approximately constant distribution at an arbitrary time throughout the loading. The
calculation results of strain rate (ε̇) normalized by the nominal strain rate (ε̇∞) and of temperature
rise (∆T ) due to plastic work are also shown in Fig. 2. Calculation procedure and the definition of
nominal strain are explained in ref.[8] and [10]. As a result of the heat conduction, maximum value of
∆T appears in inside region apart from crack tip. This result was in agreement with the measuring
result of temperature distribution near crack region [12] qualitatively. Strain rate in IDNZ increases
more than about twice comparing with nominal strain rate. The strain rate increasing ratio in IDNZ
showed a different value in each specimen.
Figure 3 shows the relationship between Rγ and fracture toughness. The different tendency of the
relation can be recognized according to ambient temperature. However, the relation in Fig. 3 under
each ambient temperature can be considered as an inherent relation. Comparison of Rγ and temperature
as a parameter concerning the scattering of fracture toughness, which test temperature was -75 C̊, is
shown in Fig. 4. Bold line and alternative long and short dash lines in the right side of Fig. 4
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represent the mean line and ±2SD (SD: standard deviation) ones of experimental results respectively.
Figure 4 shows that the scattering of fracture toughness can be considerably reduced by using Rγ as
a evaluating parameter for fracture toughness. This result indicates that the scattering of fracture
toughness originates in the difference of strain rate in fracture process zone due to the difference of
initial crack length.
The relationship betwen Rγ and fracture toughness of both standard specimens and short cracked
specimens under the same ambient temperature can be seen identical in Fig. 3. Fracture toughness
derived from the same ambient temperature can be considered as an inherent function of Rγ regardless
of crack depth.

THE NEW PARAMETER CHARACTERIZING FRACTURE TOUGHNESS

An adequate parameter for possessing the universal relation to fracture toughness was studied. The
dimensionless parameter (R0) defined by Eqn. 3 was investigated as a candidate of the parameter.

R0 = ln(A/ε̇Q) (3)

where, A: frequency factor (= 108 [s−1]), ε̇Q: strain rate in fracture process zone [s−1]. The midpoint
in IDNZ was considered as the reference point of ε̇Q. Figure 5 shows the relationship between R0



and fracture toughness. It can be recognized that fracture toughness is the inherent function of this
parameter. On the othre hand, Figure 6 shows the relationship between the dimensionless parameter
derived from substituting nominal strain rate for the term of strain rate in Eqn.3 and fracture toughness.
The result in Fig. 6 remains the difference caused by the crack depth and the scattering on fracture
toughness.
Figures 5 and 6 insist that the scattering and the crack depth effect, namely the plastic constraint
effect, on fracture toughness are caused by the difference of strain rate in fracture process zone. The
effect of temperature appears in value for the parameter in Fig. 5 indirectly, because the effect of strain
rate and temperature on constitutive equation was considered to identify the stress/strain fields in the
vicinity of a crack tip.
Yokobori [13] shows the relationship between activation free energy and applied stress as follows.

U ∝ ln(1/σ). (4)

Comparing the form of Eqn. 3 with Eqn. 4, it can be expected that R0 has a close relation to activation
free energy in fracture process zone.

CONCLUDING REMARKS

Quantificational evaluation for the scattering and crack depth effect on fracture toughness is performed
by considering the strain rate effect on fracture toughness. By postulating that fracture toughness is a
function of R parameter in fracture process zone, it makes clear that the crack depth effect, namely the
plastic constraint effect, and the scattering on fracture toughness can be explained by the difference of
strain rate in fracture process zone. Moreover, the parameter defined by Eqn. 3 could be the universal
parameter to characterize fracture toughness.
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ABSTRACT 
The fatigue crack initiation and propagation behavior have been studied considering the distance 
between two hole defects in this work. The location of two hole defects is defined by an angle and the 
distance between two holes. The stress distribution around two holes is calculated by finite element 
method. The fatigue crack initiation is changed with the distance and the relative location of two 
holes. A parameter is introduced to predict the fatigue crack initiation life. This parameter contains 
the plastic deformation area and strain at stress concentrations.  
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INTRODUCTION 
 The life time of engineering materials can be associated with the size, the shape and the relative 
location of defects contained in the components. Thus, it is important to understand the fatigue crack 
initiation and propagation behavior in the vicinity of the defects under the complex stress field caused 
by those defects. When defects are located close to each other, the fatigue crack initiation life of 
material is very different from that of the material with sparsely distributed defects. The knowledge of 
fatigue crack initiation mechanisms from such interacting defects becomes a main concern of 
engineers engaged in fatigue life assessment. Song et al. [1] have studied the stress distribution and 
interaction around closely located two circular inclusions by the finite element method and 
experiments. The results indicate that interaction effect between two holes occurs at s/r<2.2. In other 
works, the interaction effects between flaws aligned perpendicular to the loading direction have been 
studied [2-3]. However it is hard to find the studies which deal with the fatigue crack initiation life at 
arbitrarily located defects. The life of crack initiation at simple notch has been predicted from the 
simple parameters such as stress concentration factor and local strain, but it is not fully understood 
that the parameters can always be applicable. In this study, the relative location of two hole defects 
with respect to the loading direction and the distance between hole defects are varied, and the fatigue 



crack initiation life is investigated. A parameter based on the plastic deformation area and strain is 
proposed to predict the number of cycles to crack initiation.  
 
EXPERIMENTAL PROCEDURE 
The fatigue test was performed using a commercial bending testing machine (Model TB10). The 
crack was observed using an optical microscope. The material used in the test was ASTM Al-5086. 
The mechanical properties and chemical compositions of this material are shown in Tables 1 and 2. 
The geometries of specimen are illustrated in figure 1. The maximum applied stress was 90MPa and 
the stress ratio was R(σmin/ σmax)=-1. The stress waveform was sinusoidal. Hole defects were 
machined by using a 0.5 mm drill. The depth of defect was 0.5 mm. The relative location of two holes 
is shown in figure 2. For examining crack initiation life, the angle between the line connecting two 
centers of holes and x-axis were chosen as θ =0°, 30°, 45°, 60° and 90°, and the distance between two 
centers of holes was chosen as l=3,4 and 5. Here, l=L/r. The stresses and the strains were analyzed by 
a commercial finite-element package [4]. 
 
Table 1 Mechanical properties of Al-5086 

Yield   
stress   
(MPa) 

Ultimate 
stress 
(MPa) 

Elongation  
(%) 

Elasticity 
modulus 

(GPa) 

Poisson's 
ratio 

190 260  22 62.4 0.32 

 
Table 2 Chemical properties of Al-5086 (wt %) 

  Al Mn Mg Cr 

95.4 0.1 4.0 0.15 

 
RESULTS AND DISCUSSION 
When two hole defects are located close together, the crack initiation lives are affecte by the distance 
and relative locations of them. The stress concentration is varied with the distance of defects. The 
angle between the line connecting two centers of holes and x-axis was varied with θ=0°, 30°, 45°, 60° 
and 90°. Figure 3 shows the stress concentration factor(Kt) when the distances of two hole are l=3 and 
l=5. The stress concentration factors were calculated by two-dimensional finite element method. Kt is 
defined as the ratio of the y-direction maximum stress σ max to the nominal stress σ nom.  

nom
tK σ

σ max=                                    (1) 

Kt is maximum at θ=30°, and minimum at θ=90°. Kt when l=3 is much larger than those when l=5 
because the interacting effect of two holes are promoted by the adjacent hole. The crack initiation 
lives obtained experimentally are shown in figure 4. As seen from the figure 4, the crack initiation life 
strongly depends on the distance and the angle between two centers. Here, the fatigue crack initiation 
life is defined as the cumulative cycles up to crack length a=0.1 mm on the surface, because it is 
difficult to observe the crack initiation smaller than a=0.1 mm 



 
Figure 1: Geometries of test specimen 

 

 
Figure 2: Position of two holes (l=L/r) 

 
Kt is explicitly one of the main factor affecting crack initiation when the material behavior is 
supposed to be elastic. The relation of Kt and crack initiation life are drawn in figure 5. It shows the 
relation when l=3. The stress concentration factors and fatigue crack initiation lives is not correlated. 
Although the stress concentration factor at θ=30° was the largest, the crack at θ=0° was detected 
sooner. And the crack at θ =60° was detected sooner than the crack at θ=45°. This is attributed to the 
local stress that exceeds the yield stress as well as the difference of the stress gradient. Because of the 
rapid decrease of stress concentration with increasing distance from the defect and the existence of 
complex states of stress at a small distance from the defect, it is difficult to predict crack initiation life 
by using stress concentration factors. Strain-life concepts may be useful to estimate the crack 
initiation life when plasticity is dominant. The relation of post yield strain and crack initiation life is 
investigated. The equivalent strain is calculated by finite element method. The two-dimensional eight 
node plane stress element and full Newton-Raphson iterative scheme were used. The strain hardening 
of materials in finite element method was considered as elastic-piecewise linear, which was obtained 



from the tensile test. The yield criterion is Von-Mises. The relation of strain and crack initiation life 
has the same tendency of Kt. Because there is no correlation between local strains and crack initiation 
lives like the case of stress, it needs more precise parameter to find correlation. 
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Figure 3: Stress concentration factor when l=3,5 
 
The plastic strain area was also calculated to investigate the relation of crack initiation lives and stress 
distributions. In the experiment of this study, the plastic deformation area strongly played a role in the 
crack initiation life. A parameter is introduced to predict the fatigue crack initiation life. This 
parameter contains local strain magnitude and plastic deformation area as follows: 

3AA lp ×= εε                                           (2)  

1A
A

A l=                                                (3) 

εl : equivalent local strain obtained by F.E.M.  
Al : the area of plastic deformation occurred at each specimen  
A1 : the area of plastic deformation occurred at one hole notched specimen 
At θ=0°, even though the magnitude of local strain is small, the plastic deformation area is so large 
that consequently the value of Apε becomes large. At θ=0° and 45°, stress concentration factor is large 
but the plastic strain area is small, so that Apε becomes small. Therefore crack initiation lives and Apε 
for Al-5086 are fitted by the following equation: 

76.0

4100.9

−









×

= εp
i

A
N                                       (4) 

Ni : crack initiation life 
The results are shown in log-log plot of Fig.8. If we find Apε , we can predict crack initiation life of the 
material used in this study. 
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Figure 4: Relation between crack initiation life and relative location  
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Figure 5: Relation between crack initiation life and stress concentration factor  
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Figure 6: Relation between local strain and crack initiation life 



 
CONCLUSIONS 
 
In this study, the fatigue crack initiation and propagation behavior of Al-5086 with two interacting 
hole defects were investigated experimentally. The obtained results are as follows. 

 
1. The relative location of two hole defects, the distance and angles, affects the crack initiation life. 
2. When the defects are located close to each other, the fatigue crack initiation lives vary with the 
relative location of two hole defects. A new parameter is proposed for the prediction of fatigue crack 
initiation life. It contains an equivalent local strain magnitude and a plastic deformation area as 
follows. 

3AA lp ×= εε  
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ABSTRACT 
 
  Solid materials possess two modes of elastic deformation to an external load. One is distortional and the other 
is dilatational. At the limit of elasticity, failure occurs by one of the two modes corresponding to respective 
elastic ones, i.e., yielding occurs as a limit of distortional deformation and fracture as a limit of dilatational one. 
Yield condition has been established with deviatric strain and stress in the theory of plasticity, but fracture has 
not been described with dilatation. In this paper, authors show close connection between dilatation and fracture, 
and proposes a criterion to predict the failure mode for a given material, non-elastic behavior, with the ratio of 
the elastic constants G/K, where G and K denote shear and bulk moduli, respectively. 
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INTRODUCTION 
 

Fracture of materials has been discussed in terms of various physical quantities as summarized in Table 1.  
 
 

TABLE 1 
 FRACTURE CRITERION FROM VARIOUS VIEWPOINTS 

Viewpoint of fracture Physical quantity Criterion for fracture 
Energy Surface energy Griffith’s theory [1] 

 Elastic energy J-integral [2] 

Stress space Force Crack extension force [3] 

(Mechanical aspect) Stress Stress intensity factor [4] 

Strain space Displacement Crack opening displacement [5] 

(Geometrical aspect) Strain Dilatation (and Distortion)* 

Property of matter Elastic constant Local elastic constant [6] 
* The authors are proposing in this paper. 

 



Fracture as a natural phenomenon is supposed to obey a universal principle, but we can describe it in many ways 
from various viewpoints. Each description is related to a view to visualize respective aspect of fracture through 
the employed physical quantity. 
For example, Griffith’s theory visualizes fracture through energics by noting that with an extension of a crack 
strain energy can be converted to surface free energy. Similarly, description in terms of stress concentration near 
the crack tip is related to the view that a solid is broken by a force (stress) beyond a critical value. Fracture may 
be related to degradation of materials around a crack tip, which involves the field of materials science in addition 
to mechanics. We can also consider fracture a geometrical problem as in the theory with the crack opening 
displacement. In this paper, we point out that dilatation of a solid body is closely connected with fracture and 
proposes a criterion to predict the failure mode for a given material as a first step toward establishing a fracture 
criterion in terms of dilation. 
  Elastic deformation can be classified into two modes, i.e., dilation (volumetric change) and distortion 
(shearing deformation). Isotropic solid bodies possess two independent elastic constants, shear modulus G and 
bulk modulus K, each of which represents resistance to distortion and dilatation, respectively. At the limit of 
elasticity, failure occurs by one of the two modes corresponding to respective elastic ones, i.e., yielding occurs 
as a limit of distortional deformation and fracture as a limit of dilatational one. Yield condition has been 
established with deviatric strain and stress in the theory of plasticity, but fracture has not been described with 
dilatation. We propose to classify other physical properties also in connection with those two modes as shown in 
Table 2. 
 
 

TABLE 2 
CLASSFICATION BASED ON THE DEFORMATION MODE 

Deformation 
mode 

Elastic constant Strain energy Property of 
material 

Failure 

Distortion Shear modulus G Distortion 
energy Es 

Ductility Plastic 
deformation 

Dilatation Bulk modulus K Dilatation 
energy Ev 

Brittleness Fracture 

Es = G (ε ijε ij-ε iiε jj /3 ),  Ev = Kε iiε jj /2 , where ε ij is the strain component. 
 

 
 
RELATED PHENOMENA 
 

We can correlate the present idea with various behaviors of materials as follows: 
1) Rubber is nearly incompressible materials [7]. It means that dilatation associated with deformation is 
negligibly small, hence we expect that deformation will not be easily terminated by fracture.  
2) The volume of a body is nearly unchanged during plastic deformation, hence plastic deformation will not be 
easily terminated by fracture. 
3) Materials become more ductile under hydrostatic pressure [8]. This can be interpreted as that fracture is 
prevented by constraining dilatation. 
4) The thick specimen (plane stress) of a ductile material becomes more brittle than the thin one (plane strain). 
Under uni-axial tensile stress σ , volumetric strain Vε  with the plane stress condition becomes 

  σνε
EV
21−

= ,      (1) 

and volumetric strain  with the plane strain condition is *
Vε

  σνε
EV
−

=
1* ,     (2) 

where E and ν  denote Young’s Modulus and Poisson's ratio, respectively. When 5.00 ≤≤ν , we get the 



identical relation, 1
1

21
* ≤

−
−

=
ν
ν

ε
ε

V

V . Therefore, dilatation with the plain stress condition is smaller than that with 

the plain strain condition. 
5) In the fracture of brittle materials, voids are observed in tensile region at high temperature. It seems that 
dilatation is the driving force to form voids at high temperature, and that elastic dilatation influences fracture at 
room temperature.  
  The consideration given above suggests a possibility that the ratio G/K(=3(1-2ν )/2(1+ν ), which decreases 
monotonously with Poisson's ratio ν ) governs the failure mode, i.e., ductile vs. brittle behavior, of a given 
material. Table 3 summarizes the values for typical examples [9,10], and we see that this expectation in fact 
works. Materials which easily change volumes are brittle and materials which can be easily distorted are ductile. 
This tendency is independent of various classifications of materials such as metal vs. nonmetal, crystal vs. 
amorphous, and so on. Consequently, we can regard the ratio G/K (or Poisson's ratio) as a measure to predict the 
failure mode for a given material. It is called Pugh's rule [11]. Kelly et al. [12] pointed out the similar result that 
the ratio G/E is the index of ductile-brittle from comparison between shear and tensile stress. The ratio G/K and 
G/E are also the monotonous function of ν , hence both indices bring the same result. But the original viewpoint 
of each index is completely different. 
 
 

TABLE 3 
CORRELATION BETWEEN G/K AND FAILURE MODES 

Material E(GPa)  G(GPa)   ν   K(GPa)   G/K  
Quartz (fused)   73.1   31.2   0.170    36.9   0.846  
Glass (Crown)   71.3   29.2   0.22    41.2   0.709 ↑  
Cast iron  152.3   60.0   0.27   109.5   0.548  Brittle 
Mild steel  211.9   82.2   0.291   169.2   0.486  
Fe80B20  (amorphous)  168.7   64.9   0.30   141   0.460  
Copper  129.8   48.3   0.343   137.8   0.351  
Aluminum   70.3   26.1   0.345    75.5   0.346  Ductile 
Brass (70 Zn, 30 Cu)  100.6   37.3   0.350   111.8   0.334 ↓  
Gold   78.0   27.0   0.44   217.0   0.124  

 
 
NUMERICAL EVALUATION OF DILATATION AND DISTORTION NEAR CRACK  
 

It is interesting to see how the difference in G/K affects the distribution of the strain and the strain energy 
density relevant to each of the two modes of deformation. Taking gold and crown glass as typical examples of 
ductile and brittle materials, we calculated the distributions by the finite element method for plates with cracks at 
their centers under 1% uniaxial tension with the plane strain condition. The results are given in Figs.1 and 2, in 
each of which a quarter of the plate is shown and the strain energy density is normalized with the total strain 
energy Et stored in the entire plate. For gold, distortion energy density Es is high along the 45 degrees direction 
from the crack tip over a wide region, while high values for dilatation energy density are limited to a small 
domain around the crack tip. On the other hand, in the case of glass, relatively large amount of strain energy is 
stored as the dilatation energy over a relatively wide region around the crack tip. 

The distributions of distortion, represented by γ 12 are almost the same for gold and glass because the plates 
are stretched by the same amount of strain (Fig.2(a)). On the other hand, distributions of dilatation, represented 
by ε ii are very different between gold and glass (Fig.2(b)). Those numerical results suggest that materials with 
small G/K tend to fail plastically while materials with large G/K tend to have cleavage fracture. 
 
 
 
 
 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(a) Distortion energy density           (b) Dilatation energy density 
Figure 1: Distribution of strain energy density. 

 

 
 

 
(a) Distortion 12γ     (b) Dilatation 

Figure 2: Strain distribution. 
 
 
CONCLUSION AND DISCUSSION 
 

We notice the close connection between the deformation mode (distortion and dilatation) and the failure mode 
(plastic deformation and fracture), and that brittleness and ductility are not only material property. In fracture 
mechanics, we ignore close connection between dilation and fracture. In the combined mode of fracture, we 
might discuss the singularity of dilation instead of the stress singularity near crack tip.  
  Microscopically, topology of atomic array changes in distortion, and many 'meta-stable states' appear in the 
process. Therefore, we should evaluate the yield condition by (distortion) energy. On the other hand, the 
inter-atomic distance increases in dilatation, and the 'critical state' appears. Therefore, we could evaluate fracture 
by (dilatation) strain. Furthermore, lattice defects are also classified into two categories; one is the dislocation, 



which causes distortion, and the other is the vacancy, which causes dilatation. Therefore, it could be possible to 
establish new micromechanics from the viewpoint of the distortion and dilatation. 
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ABSTRACT 

Fasteners exposed to hydrogen during processing can fail unpredictably at applied stress levels well 
below the fracture stress. The unpredictable nature of these failure mechanisms, which may be 
attributed to hydrogen concentrations of the order of a few parts per million, represents a serious safety 
hazard to the automotive industry. In this study the susceptibility of a commercial fastener steel has 
been investigated. All testing was performed using a slow strain rate tensile testing technique on 
fatigue pre-cracked cylindrical specimens. Results describing the effect of thermal treatment and 
coating on the susceptibility to hydrogen embrittlement are presented. 

KEYWORDS 

Hydrogen embrittlement, slow strain rate, fastener steel, stress intensity. 

INTRODUCTION 

High-strength fasteners are widely used in the automotive industry. However, in literature it has been 
reported brittle failure of high strength bolts sometimes occurs. Embrittlement in fasteners may occur 
as a result of hydrogen introduced into the material during processing [1]. This sort of failure is 
normally observed in electro-galvanized high strength steel bolts and the fracture is assumed to be 
caused by hydrogen which was introduced during bolt manufacturing, namely, during electroplating or 
during acid pickling before plating. This is referred to as internal hydrogen embrittlement (IHE) or 
delayed failure. Hydrogen that is absorbed is diffusible within the metal lattice and tends to accumulate 
in areas of high stress. It is at such locations that microcracking initiates and subsequently may 
proceed to catastrophic fracture. The susceptibility of high strength steels to IHE depends on alloy, 
strength level, microstructure, and the amount and distribution of the absorbed hydrogen. It is 
suggested that steels with yield strengths less than 1250 MPa, i.e. which are tempered at a high 
temperature, are resistant to delayed fracture due to hydrogen [2]. The purpose of this work is to assess 



the susceptibility of a commercial fastener steel with yield stress of approximately 1100 MPa to IHE 
and to establish the effect of a typical low temperature annealing on the mechanical properties. 

EXPERIMENTAL PROCEDURE 

To evaluate the effects of low temperature annealing a series of experiments on pre-cracked specimens 
were performed. The materials were supplied by the Dutch fastener company Koninklijke Nedschroef 
Holding N.V. in a number of processing conditions, namely: a) quenched and tempered, b) quenched, 
tempered and electrolitically plated with zinc and c) quenched, tempered, plated and annealed. The final 
microstructure of the material is a heavily tempered martensite with scattered polygonal ferrite (Figure 1). 

 

Figure 1: Photomicrograph of the tempered structure. The matrix composes mainly heavily tempered 
α′ with some scattered polygonal ferrite A. 

The composition of the material and mechanical properties after heat treatment are shown in the Table 1 
and Table 2. 

TABLE 1 
COMPOSITION OF THE NEDSCHROEF STEEL 

Element C Mn P S Si Cr Ni Mo Ti B 

% 0.35 0.76 0.011 0.008 0.05 0.2 0.03 0.01 0.028 0.002 

TABLE 2 
MECHANICAL PROPERTIES OF THE NEDSCHROEF STEEL 

Yield strength 
σ0.2, MPa 

Ultimate tensile 
strength σUTS, MPa 

Fracture strain,  
ε, % 

Reduction of area,  
ψ, % 

1100 1190 13.2 63.2 

 
The types of specimens used for mechanical testing were circumferentially notched cylindrical bar 
specimens (Figure 2). The fatigue precracking was performed on a four-point rotating-bending 



machine. For most specimens the resulting precrack was not concentric. This necessitated, in order to 
determine the stress intensity factors, the application of a correction for eccentricity found by Ibrahim 
et al [3]. 

 

Figure 2: The specimen geometry used for fracture toughness testing 

The fracture toughness tests were performed on a tensile machine in air either at the strain rate that is 
recommended by ASTM E 399-90 in fracture mechanics testing (1 mm/min) or at slow strain rate 
(0.001 mm/min) using fatigue pre-cracked specimens for all conditions. The test procedure of the slow 
strain rate test is described and compared with others in [4]. The fracture surfaces of tensile specimens 
were examined under both the optical microscope and scanning electron microscope (SEM). 

RESULTS AND DISCUSSION 

The mechanical properties of the materials investigated, measured at a strain rate of 0.001 mm/min by 
tensile testing are shown in Table 3. 

TABLE 3 
THE MECHANICAL PROPERTIES OF THE INVESTIGATED MATERIAL CONDITIONS. 

Material Yield strength 
σ0.2, MPa 

Ultimate tensile 
strength, 
σUTS, MPa 

Fracture strain, 
ε, % 

Threshold stress 
intensity factor, 
K1H MPa m1/2 

Quenched and 
tempered 

1064 1190 11.1 80 

Quenched, tempered 
and plated 

1027 1155 11.7 50 

Quenched, tempered, 
plated and annealed 

1019 1151 12.5 60 

 
The series of fracture toughness tests, performed at a tensile strain rate of 1 mm/min, did not reveal a 
significant difference between samples which had been plated and those which were unplated. The 
values of the threshold stress intensity factors K1H obtained at a tensile strain rate of 0.001 mm/min 
(Table 3) were considerably lower than the K1C value (104 MPa m1/2). 
 
The microfractographic investigations of the fracture surfaces of slow strain rate failure specimens 
revealed three zones (Figure 3): fatigue precracking, slow-crack propagation and overload failure. The 



region of stable, subcritical crack growth was observed for all conditions investigated (quenched and 
tempered; quenched, tempered and plated; quenched, tempered, plated and annealed). 
Microfractografic investigations of the fracture surfaces of samples tested at 1 mm/min showed no 
evidence of stable crack growth. Instead, the surfaces were composed of two regions: fatigue and 
overload. 
 

 
(a) 

 
(b) 

Figure 3: Fracture surface of a slow strain rate failure samples: (a) – unplated material; (b) – plated 
material. A – fatigue precrack; B – slow-crack propagation area; C – overload failure. 

Observation of the overload region of the fracture toughness samples subjected to fracture toughness 
testing at 1 mm/min revealed a ductile fracture mode due to microvoid nucleation and growth (Figure 
3). Fast fracture areas of the slow strain rate failure samples indicated the same ductile type of fracture. 

 
25  µm 

Figure 3: Fracture surface in the overload region close to the fatigue precrack for a sample 
failure at the 1 mm/min. 

The most attention was paid to the investigation of the slow-crack propagation areas. Fracture surfaces 
were observed to comprise features indicative of brittle failure in this region. Many secondary cracks 
were also evident. It may be concluded that this embrittlement is due to either dissolved hydrogen (for 
the quenched and tempered material) or hydrogen introduced by the plating process (for plated 
material). It has been shown that for quenched and tempered material cracking was intergranular with 
respect to the prior austenite grain boundaries (Figure 4a). Whereas, the observed fracture mode for the 
plated material was quasicleavage (Figure 4b). The result shown in Figure 4 is not consistent with a 
known effect of hydrogen on the fracture mode. For plated material, where more hydrogen may be 



expected, the failure along the prior austenite grain boundaries should be preferable. The contradiction 
can be explained on the basis of the following assumptions: 
 
a) at a lower hydrogen content, H occupies mainly high-angle boundary sites (i.e. prior austenite 

boundaries) whereas at higher H contents more hydrogen occupies low-angle boundary sites 
(martensite laths) or microstructural heterogeneities (carbide precipitates, manganese sulphide, 
etc.) within grains; 

 
b) continuum plasticity theory predicts that even at negligibly small load a maximum stress is attained 

ahead of the crack tip. For crack propagation the plastic zone size must exceed a critical value, 
which might be related to characteristic distances such as a prior austenite grain diameter, the mean 
distance between carbide precipitates, etc [5]. 

 
Therefore the observed intergranular fracture for quenched and tempered material is probably a 
consequence of hydrogen segregation to prior austenite grain boundaries and a resulting lower 
cohesive force in those regions. In this case the characteristic distance may be the prior austenite grain 
diameter. For plated materials the hydrogen at martensite laths, carbide precipitates, etc. may play a 
more important role and the characteristic distance could be related to the spacing of such 
microstructural heterogeneties. 
 

 
(a) 

 
(b) 

 
(c) 

40  µm 40  µm 40  µm

Figure 4: Slow-crack propagation area for quenched and tempered material (a), 
plated and unannealed (b) and plated and annealed (c) materials. 

The application of a low temperature annealing on the material was observed to increase the threshold 
stress intensity factor (cracking started at higher stress level compared to unannealed material Table 3). 
The fracture surface for annealed samples was revealed to be similar to that for unplated material 
(Figure 4b). 
 
The benefits of annealing in releasing the hydrogen introduced during plating have been investigated 
by Rebak et al [6]. It was shown that a zinc layer offered a strong barrier to hydrogen escape. In the 
light of this observation, the increase in resistance to hydrogen induced cracking may instead relate to 
a redistribution of hydrogen within the steel. According to Townsend [7] hydrogen, introduced during 
plating, is driven into deep trap sites where it loses mobility and is not available to affect 
embrittlement. The lower K1H value for plated and annealed material compared to unplated material 
might be related to the generation of hydrogen at the crack tip via an electrochemical reaction with 



moisture in the laboratory air due to the galvanocouple ‘zinc coating – steel’. This hydrogen 
exacerbates the effect of any internal hydrogen which may be present. 

CONCLUSIONS 

1. Embrittlement, which may be attributed to hydrogen, occurs during slow-strain rate testing in air in 
the steel under investigation. 

 
2. An increase in hydrogen content during the application of a Zn coating during manufacture and 

possibly the generation of hydrogen via cathodic reaction during testing leads to embrittlement of 
the steel under investigation. 

 
3. The mechanism of subcritical crack growth observed for quenched and tempered and plated 

materials is different. This change in mechanism may be attributed to a change in the critical crack 
tip plastic zone size which relates to a microstructuraly characteristic length scale. 
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ABSTRACT 
 
In LEFM, it has been predicted that under pure mode II loading a smooth test specimen would fracture at an 
angle of �C=–70.5°.  However, for aluminum alloy 7075-T6, it has been found that �C=0 whether the 
specimen is grooved or not.  This apparent inconsistency has now been resolved by adopting a specimen of 
appropriate geometry and loading configuration, which can distinguish between plastic and brittle fracture, 
thereby opening the way to standardisation of the mode II fracture toughness testing of metals.  
Accordingly, various studies have been conducted, both by FE analysis and laboratory testing, which 
address the selection of suitable test specimens, the requirements of specimen configuration and the analysis 
of test results.  As a result, it may be concluded that the proposed specimen would be suitable and a grooved 
specimen would be needed in order to achieve true mode II fracture. 
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INTRODUCTION 
 
Interest in KIIC testing has increased in recent years and various mode II specimens have been proposed 
[1,2].  The two commonly-used criteria to evaluate the suitability of these specimens have been i) the 
intensity of normal stress ahead of the crack tip which would correspond to the error in measuring KIIC and 
ii) the compactness of the test specimen which would provide for a lower fracture load and thus minimal 
plastic deformation. 
 
The intensity of normal stress ahead of the crack tip of the test specimen may be determined from the value 
of the ratio of �KI/KII� under mode II loading.  If KI>0 indicating a tensile normal stress ahead of the crack 
tip, fracture due to mixed mode I-II loading could result.  On the other hand, if KI<0, the compressive stress 
at the pre-crack face behind the crack tip could give rise to friction and overestimation of the fracture 
toughness.  From the point of achieving a pure mode II fracture, the absolute value of the ratio would have 
to be as small as possible. 
 
The compactness of the test specimen may be determined by the normalised mode II stress intensity factor 



KII�.  A common form of the normalised mode II stress intensity factor, which is adopted in this study, is 
given by 
 

 IIII KK
aF

WT

π
=′ , (1) 

 
where F is the applied load, and T the thickness, a the crack length and W the width of the specimen 
respectively.  Hence, specimens with similar dimensions of W, T and a but also smaller values of KII� 
would need higher loading to cause fracture.  However, a higher load would result in greater plastic 
deformation during fracture testing, which is a source of error, hence KII� should be kept as large as 
possible. 
 
Investigations [2,3,4] have shown that both the foregoing criteria have not been well satisfied in KIIC testing.  
Firstly, the development of normal stresses ahead of the crack tip has seemed inevitable, and generally KI<0 
due to the effects of Poisson’s ratio.  As indicated in the foregoing discussion, friction would develop as a 
result.  Secondly, KII� has been generally small compared with KI� of mode I test specimens, where 
 

 II KK
aF

WT

π
=′ . (2) 

 
Thus, in taking into account the additional factor that KIIC would probably be larger than KIC, the fracture 
load in a KIIC test might be expected to be much higher than that of a corresponding KIC test. 
 
Another problem in KII testing has been the direction of crack extension.  According to reports on brittle 
materials such as PMMA and tool steel [4,5], the crack would extend at an angle of about –70.5� with 
respect to the self-similar direction.  Although this failure mode coincides with brittle fracture theory [6,7], 
the fracture mechanism is thought to be mode I by some researchers [7,8,9] because it is actually the near 
field tensile stress and not shear stress that causes the failure.  On the other hand, for more ductile materials 
such as aluminum alloy, the crack tends to extend along the self-similar direction [10,11].  The load-
displacement record in such test would become nonlinear at small loads [11], so the concepts of linear 
elastic fracture mechanics would not be applicable any more.  Thus, a KIIC value obtained under these 
circumstances would have some other connotation in terms of elastoplastic fracture. 

Figure 1:  Mode II Fracture Specimens. 
 
In view of the preceding considerations, a specimen for KIIC testing is proposed herein which is essentially a 
modification of the mode II fracture test specimen originally proposed by Richard [12].  There are two 
aspects to this modification, as shown Figure 1(a).  Firstly, the ligament length of the specimen has been 
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extended to produce a non-uniform shear stress distribution along it under mode II loading.  With this 
modification, a considerable reduction in the value of ½KI/KII½ as well as increase in KII� may be achieved.  
It was also found that brittle fracture could thereby be obtained under mode II loading for relatively ductile 
materials such as aluminum alloy, where the crack extended along the –70.5� direction.  Secondly, a narrow 
groove was introduced in the normal direction to the face of the specimen, along the crack line and on both 
faces, so as to reduce the ligament thickness and assist in guiding the crack to extend along its self-similar 
direction and thus obtain a truly Irwin-type of brittle mode II fracture.  The influence of the groove and 
relative stiffness of the loading fixture on the values of ½KI/KII½ and KII� were also investigated.  In an 
earlier investigation [13,14], the grooved specimen was found to be appropriate for fracture toughness 
testing as grooving was found to have no adverse influence on the distribution of the stress intensity factor 
along the crack front. 
 
KIIC test was carried out on aluminum alloy 7075-T6 using the proposed specimen.  It is noteworthy that in 
the case of KIIC testing, the "pop-in" phenomenon was observed. 
 
 
TEST SPECIMEN 
 
Proposed Mode II Test Specimen 
 
The proposed specimen and its loading fixture are shown in Figure 1(a).  The specimen is an adaptation of 
Richard’s [12] specimen shown in Figure 1(b), with the exception that the ligament of the specimen has 
been extended and a 0.25 mm wide has been introduced along the crack line on both faces of the specimen 
and normal to the direction of each face.  The extension of the specimen’s ligament provided a non-uniform 
shear stress distribution along the ligament under mode II loading, in which the shear stress was highest 
near the crack tip and decreased at a significant rate away from it.  This ensured that plastic deformation 
was localised within the near field of the crack tip while zones away from it remained largely elastic.  Such 
circumstances would be more conducive to the development of brittle fracture. 
 
The groove, on the other hand, was introduced to hinder the occurrence of brittle fracture at –70.5� under 
mode II loading.  As a consequent and also due to the relative weakness of the reduced thickness of 
ligament in the plane, a crack extension in the self-similar direction would be more imminent.  The depth of 
grooving required would, therefore, depend on its ability to deter the non self-similar crack extension under 
mode II loading.  In the present study, the dimensions of the specimen adopted for analysis and testing are 
as shown in Figure 1(a).  The thickness of specimen and depth of groove were varied. 
 
Comparison of Mode II Test Specimens  
 
Two commonly-used mode II test specimens are the ones proposed by Richard [12] and Banks-Sills and 
Arcan [4], as shown in Figures 1(b) and 1(c) respectively.  In the present study, the suitability of the 
proposed specimen has been evaluated by comparing it against the two specimens whose dimensions 
adopted for analyses are shown in the same figures. 
 
Two-dimensional (2-D) finite element analyses were carried on all three specimens using ABAQUS [15].  
Eight-noded quadratic quadrilateral isoparametric elements were used and the singularity at the crack tip 
was simulated by triangular quarter-point elements formed by collapsing one face of the 8-noded 
quadrilateral element and relocating the mid-side nodes to respective quarter-points from the crack tip, as 
proposed by Barsoum [16].  The respective stress intensity factors were deduced from the displacements of 
the crack faces accordingly.  The grooved specimen was idealised as a 2-D finite element model by 
modifying the Young’s modulus of the elements at the ligament pro-rata to reflect its reduced thickness.  
This technique has been verified and found suitable in an earlier investigation [14]. 
 
In the present study, the material adopted for the three specimens and subsequently used for fracture testing 
of the proposed specimen was aluminum alloy 7075-T6 having a Young's modulus of E=72 GPa and 



Poisson's ratio of �=0.32.  The loading fixtures of the three specimens were also presumed to be of 
aluminum alloy 7075-T6 for the purpose of comparison.  The effects of stiffness of the loading fixture on 
the proposed specimen was analysed separately. 
 
The three specimens were analysed for pre-crack lengths, af varying from 0.5 mm to 10 mm and 
corresponding values of ½KI/KII½ and KII� are shown plotted against pre-crack length for the three 
specimen in Figure 2(a) and 2(b) respectively.  Generally, the value of ½KI/KII½ was lower while KII� was 
higher for the proposed specimen suggesting that it is the most compact specimen and at the same time 
experiences the least influence from a normal stress ahead of the crack tip.  Furthermore, an optimal pre-
crack length of approximately 3 mm is suggested in Figure 2(a) for the configuration of the proposed 
specimens at which the value of ½KI/KII½ would be zero.  This is not apparent in the case of the other two 
specimens.  Also a pre-crack length of 3 mm would be appropriate from the point of view of Figure 2(b) as 
there would be no significant increase in the value of KII� with pre-crack length from then on.  Hence, 
based on the foregoing considerations, it would appear that the proposed specimen would be the most 
suitable for mode II fracture testing.  
 

 
Figure 2:  Analytical Results. 

 
Investigation of Grooving and Loading Fixtures 
 
As indicated in the foregoing discussion, the application of a groove to the faces of the proposed specimen 
would be a necessary feature of mode II fracture testing.  Hence, the influence of grooving on the two 
characteristic parameters ½KI/KII½ and KII� has been examined.  In the analyses, the groove depth was 
varied such that the ratio of ligament thickness after and before grooving (t/T) ranged from 0.2 to 1.  The 
results have been plotted in Figures 2(c) and 2(d).  In Figure 2(c), it is apparent that grooving did not 
significantly influence the value of ½KI/KII½ while on the other hand, as shown in Figure 2(d), KII� 
increased with depth of grooving, which, from the standpoint of compactness, would be advantageous.  In 
both instances, the optimum pre-crack length of 3 mm was maintained. 
 
The influence of the stiffness of the loading fixture was also examined, where the relative stiffness of 
loading fixture and the proposed specimen was specified as: 
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in which E and Ef are the Young's modulus of the specimen and loading fixture respectively and Tf the 
thickness of the loading fixture.  The analyses were carried out for relative stiffness D ranging from 1 to 
14.58, where D=14.58 corresponds to the configuration used in subsequent fracture testing.  The results 
have been plotted in Figures 2(e) and 2(f).  In Figure 2(e), the value of ½KI/KII½ decreased with increase in 
relative stiffness and furthermore, if a pre-crack of 3 mm were used, the relative stiffness would, in 
principle, have no effect on the value of ½KI/KII½.  However, since it is often not possible to control the pre-
crack length, a stiffer loading fixture would be desirable.  On the other hand, according to Figure 2(f), the 
relative stiffness would have practically no influence on KII¢ at all.  This would in turn suggest that KII¢ 
may be taken to be a measure of compactness of the specimen as it would depend on specimen 
configuration alone. 
 
 
FRACTURE TESTING 
 
KIIC tests were performed on aluminum alloy 7075-T6 based on the proposed specimen, a comprehensive 
account of which has been reported elsewhere [17].  The tests were carried out on both grooved and smooth 
specimens.  The specimens were orientated in the LT direction of the metal and loaded via steel fixture in an 
MTS machine.  The specimens were pre-cracked under mode I loading conditions according to the 
recommendations of ASTM E1820-96 [18] and thereafter grooved using a 0.25 mm wire cutter in an 
electro-discharge machine.  The pre-crack length was kept close to 3 mm as suggested by the preceding 
analyses.  During testing, the crack-mouth sliding displacement (CSD) was recorded using a clip gage 
attached to a knife edge which had been secured near the crack-mouth.  Four set of grooved and one set of 
smooth specimens were tested in which the thickness of all specimens, T was 6 mm. 
 
In the case of the smooth specimen, the crack extended in the –70.5� direction and in the load-CSD record 
of Figure 3(a), no "pop-in" was found.  It is noteworthy that this observation has apparently not been 
reported on aluminum alloy before.  In previous KIIC testing [5,10,11], the crack invariably extended along 
the self-similar direction without satisfying brittle fracture theory.  On the other hand, the proposed 
specimen herein is capable of developing brittle fracture even for a relatively ductile material such as 
aluminum alloy.  Moreover, the result obtained would imply that it would not be feasible to obtain brittle 
mode II fracture on smooth specimen. 
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Figure 3:   Experimental Results. 
 
As for the grooved specimen for which t/T ranged from 0.68 to 0.8, the crack extended in the self-similar 
direction and similarly as the load-CSD record of Figure 3(b), "pop-in" was found in all tests.  It is also 
noteworthy that this observation has apparently not been reported before in a KII test.  The "pop-in" load 



was selected as the conditional load, PQ to calculate KIIC based on the recommendations for KIC testing [18].  
The KIIC values obtained were consistent and independent of groove depth, which appears to indicate that 

the grooved depths adopted were within reasonable range.  The average value of KIIC was 63.7 mMPa  
which is approximately 2.1 times the known value KIC for the metal. 
 
 
CONCLUSIONS 
 
A specimen is proposed for KIIC testing, for which finite element analyses and fracture tests have been 
performed.  As a result, the following findings have been made:- 
 
1. In comparison with the KIIC specimens of Banks-Sills and Arcan, and Richard, the proposed 
specimen is more compact and has significantly less intensity of normal stress ahead of the crack tip.  Also 
the influence of the normal stress may be eliminated in principle by choosing the appropriate pre-crack 
length of 3 mm. 
2. Grooving improves the compactness of the specimen while an increase in the stiffness of the loading 
fixture reduces the intensity of normal stress ahead of the crack tip. 
3. In the KIIC testing of a smooth specimen, the crack extends in the �C=–70.5° direction while for a 
grooved specimen, the crack can extend in the �C=0 direction.  "Pop-in" has been found in the load-CSD 
records of all grooved specimens tested.  These observations have apparently not been reported before. 

4. For aluminum alloy 7075-T6, KIIC was found to about 63.7 mMPa  which is approximately 2.1 
times the known  value of KIC for the metal. 
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ABSTRACT

The paper deals with a formulation for nonlocal (integral) continuum damage models where the ther-
modynamic principles are consistently satisfied for nonlocal media. The nonlocal field is chosen to be
an internal variable which describes the activation damage threshold. The present approach possesses
several analogies with a recent one proposed by Polizzotto et al. [1,2] for elastic-plastic softening
material models. The present choice shows that, when structural strain localization starts to develop,
the amplitude of the damage band tends to become narrower and narrower as the damage loading
proceeds, but the solution is kept objective with respect to mesh refinements. It is a remarkable fact
that the amplitude of the damage band naturally evolves without introducing any “ad-hoc” rule for
the evolution of the internal length. As a drawback, a nonlocal iteration procedure is required in
order to establish the damage active region.

KEYWORDS

Damage, Nonlocal formulation, Thermodynamics, Localization.

INTRODUCTION

An effective way of modelling the constitutive behaviour of quasi-brittle materials is the so-called
continuum damage mechanics, which is able to represent the overall volumetric degradation of the
material elastic properties and eventually the induced strain softening state [3]. On the other hand,
it is known that specific difficulties arise when strain softening regime develops, mainly related to
constitutive instability matters [4]. Classical local theories lead to solutions in which strain fields
localize in bands with zero width measure and, consequently, the collapse occurs with zero global
energy dissipation. Such a physical meaningless condition has revealed to be an intrinsic limit of the
traditional formulations applied to softening regimes. These difficulties can be removed introducing
regularization techniques, which basically require a proper internal length scale parameter.
Among several regularization techniques, the most effective seem to be the gradient [5,6] and the
nonlocal (integral) approaches [4,7-9], which have been developed, and successfully applied, by many
researchers. Modern nonlocal formulations consider as nonlocal, i.e. obtained by a spatial integral
averaging, only a suitable scalar measure associated to the dissipative softening process, preserving
as local all the other involved variables. In this way, traditional field relations, like equilibrium and



compatibility, remain of local type, whereas, the nonlocality complexities are confined within the
dissipative part of the constitutive relations.
The present contribution starts by selecting as nonlocal field a specific internal variable which is
directly related to the yield limit of the damage activation function. This choice is alternative to the
most common choices which selects as nonlocal field the damage, or its thermodynamic conjugate
force, which is the energy released rate. The mechanical meaning of the present choice is that when
a point suffers damage flow, the neighbour points register a reduction of their damage limit strength,
so that a diffusion, or a nonlocal redistribution, of the damage is possible.
The present formulation also focuses on the thermodynamic consistency of the nonlocal model and
a reasoning path, recently presented for nonlocal plasticity models [1,2], is considered. In fact, as
a consequence of the nonlocality, the second principle of thermodynamics is enforced in an integral
form all over the spatial domain occupied by the body. Its local form is still existing but it needs an
additional term, the nonlocality residual, which is related to the energy exchanges of the mutually
interacting particles.

FORMULATION

In order to derive a formulation which satisfy a-priori thermodynamic restrictions, let us consider an
elastic-damage material for which the Helmholtz free energy is written as

ψ(ε, d, κ, κ̄) = ψe(ε, d) + ψl
in(κ) + ψnl

in(κ̄) =
1

2
(1− d)2ε : C0 : ε+

1

2
hlκ

2 +
1

2
hnlκ̄

2, (1)

where ε is the (infinitesimal) strain tensor, d is the damage variable, κ and κ̄ are two internal
variables which describe the damage evolution and are local and nonlocal, respectively. Isotropic
damage is here considered, so that the damage d is a scalar variable ranging within the interval
[0, 1]. C0 is the elastic moduli tensor of the undamaged material. In analogy with the elastic strain
energy, ψe, the internal energies ψl

in and ψnl
in have been assumed as quadratic forms of the local and

nonlocal internal variables and, consequently, linear hardening laws follow, where hl > 0 and hnl < 0
are the hardening/softening damage moduli. The nonlocality affects only the internal variable κ̄
and the physical meaning is that, when damage develops in a point, its strength to further damage
developments increases by local hardening hl κ, whereas the strength of the neighbour points decreases
by the nonlocal damage hardening hnl κ̄. A nonlocal operator R transforms the local scalar field κ(x)
in the nonlocal counterpart κ̄(x) by means of the following integral relation

κ̄(x) = R(κ)
∣

∣

x
=

1

Vr(x)

∫

V

α(||x− y||)κ(y) dV (y), (2)

where α(r) is a spatial influence function, which is not negative and decrease with the distance
r = ||x− y||. Moreover, Vr(x) is the representative volume defined as

Vr(x) =

∫

V

α(||x− y||) dV (y). (3)

The influence function is usually chosen as the Gaussian error function, α(r) = exp[−(kr/`)2], where
` is the material internal length scale.
To enforce the satisfaction of the second principle of thermodynamics, let us write the Clausius-Duhem
inequality in global form over the entire domain V

∫

V

(σ : ε̇− ψ̇) dV ≥ 0. (4)

Equation (4) can be written in a pointwise form after the introduction of the nonlocality residual
function P (x), [1,2,10], which takes in to account the energy exchanges between neighbour particles

D = σ : ε̇− ψ̇ + P ≥ 0 in V, (5)



where D indicates the intrinsic local dissipation. Assuming the body a thermodynamically isolated
system, the following insolation condition holds

∫

V

P dV = 0. (6)

Substitution of (1) into (5) leads to

D = σ : ε̇− ∂ψ

∂ε
: ε̇− ∂ψ

∂d
ḋ− ∂ψ

∂κ
κ̇− ∂ψ

∂κ̄
˙̄κ+ P ≥ 0 in V, (7)

which holds for any, reversible or irreversible, deformation mechanism. Following standard procedures,
it is possible to recognize the following state laws:

σ =
∂φ

∂ε
= (1− d)2C0 : ε, Y := −∂ψ

∂d
= (1− d)ε : C0 : ε (8a, b)

χ :=
∂ψ

∂κ
= hl κ, χnl :=

∂ψ

∂κ̄
= hnl κ̄ = hnl R(κ), (8c, d)

so that the explicit form of the dissipation function reads

D = Y ḋ− χ κ̇− χnl ˙̄κ+ P ≥ 0 in V. (9)

The thermodynamic force Y , conjugated to the damage d, represents the energy release for unitary
increment of damage. χ and χnl are the thermodynamic forces associated to the local κ and nonlocal
κ̄ internal variables, respectively. The dissipative irreversible mechanism associated to the damage
is governed by the local fluxes ḋ, κ̇. The dissipation D can therefore alternatively be written as the
bilinear form

D = Y ḋ−X κ̇ ≥ 0 in V, (10)

where X represents the equivalent nonlocal force that is associated to the increment of the local
variable κ. By comparing eqs. (9) and (10), we can specify P as

P = χ κ̇+ χnl ˙̄κ−X κ̇ in V. (11)

The imposition of the insulation condition (6) leads to

∫

V

(

χ κ̇+ χnl ˙̄κ−X κ̇
)

dV = 0 (12)

for each dissipative mechanism and then for each κ̇. It can be shown that the following (Green)
identity holds for the operator R

∫

V

χnl R(κ̇) dV =

∫

V

R∗(χnl) (κ̇) dV, (13)

where R∗ is the adjoint operator of R defined by

R∗(χnl)
∣

∣

x
=

∫

V

1

Vr(y)
α(||x− y||)χnl(y) dV (y). (14)

By considering identity (13), eq. (12) turns out to be

∫

V

[

R∗(χnl) + χ−X
]

κ̇ dV = 0. (15)



Since (15) has to hold for any possible damage mechanism, and thus for any choice of κ̇, it follows

X = R∗(χnl) + χ in V. (16)

After substitution of (16) in (10), the dissipation can be written in explicit form

D = Y ḋ− [χ+R∗(χnl)] κ̇ ≥ 0. (17)

The structure of the dissipation in eq. (17) justifies the assumption of a damage activation function
φ(Y,X), which, in the hypothesis of associative damage behaviour, gives the following flow rules:

ḋ =
∂φ

∂Y
λ̇, κ̇ = − ∂φ

∂X
λ̇, in V. (18a)

Finally, the usual loading/unloading conditions complete the constitutive damage nonlocal relations

φ(Y,X) ≤ 0, λ̇ ≥ 0, φλ̇ = 0 in V. (18b)

Relations (18) are analogous to the correspondent relations characterizing local formulations for
generalized standard materials [3]. At difference with the local case here, an extra term appears in
the damage activation function, that is χ̄∗

nl = R∗(χnl) and, therefore, eqs. (18) is a system of spatially
coupled relations. In the present paper, for sake of simplicity, the nonlocal damage activation function

φ(Y, χ, χ̄∗
nl) ≡ Y − χ− χ̄∗

nl − Y0 ≤ 0 (19)

has been assumed.

FINITE ELEMENT DISCRETIZATION

A nonlinear finite element structural analysis requires an iterative incremental solution procedure, in
which the equilibrium, and the constitutive relations, are satisfied implicitly in a stepwise form, i.e.

Ne
∑

e=1

∫

Ve

BT
e (x)σk+1(x) dV = Fk+1, (20)

where Ne is the total number of elements, Be is the compatibility matrix and F is the equivalent
nodal load vector. Equation (20) is the equilibrium condition to be enforced using an iterative scheme
of Newton type. Inside the equilibrium loop, the integration of the constitutive relations, between
the previous equilibrium state, k, and the new one, k + 1, has to be carried out. Indicating with ∆
the increment of a quantity in the step, the discrete form of the constitutive relations (18) reads

∆d =
∂φ

∂Y

∣

∣

∣

∣

k+1

∆λ = ∆λ, ∆κ = − ∂φ

∂X

∣

∣

∣

∣

k+1

∆λ = ∆λ, (21a)

φk+1 ≤ 0, ∆λ ≥ 0, ∆λφk+1 = 0. (21b)

Due to the nonlocality nature ofXk+1, equations (21b) represent an integral complementarity problem
that cannot be solved localwise, but it rather requires an inner iterative loop inside the equilibrium
equations.

Iterative scheme

The iterative equilibrium procedure gives the increment displacement vector ∆u and, consequently,
the increment of total strains ∆ε.



The procedure that leads to the satisfaction of the nonlocal spatially coupled constitutive relations
(21) is based on:
• a predictor phase: at each integration point the trial value of the damage activation function is

evaluated as
φtr
k+1 = Y tr

k+1 −Xk − Y0, (22)

where Y tr
k+1 = (1−dk)(ε+∆ε) : C0 : (ε+∆ε) and Xk is the nonlocal internal variable obtained at

the previous equilibrium iteration. If, at some points φtr
k+1 > 0, then a corrector phase is necessary,

otherwise a new equilibrium loop begins;
• a corrector phase: a further iterative inner loop is devoted to the identification of the damage
active points as well as the damage increments. The procedure used closely follows the scheme
originally proposed by Strömberg and Ristinmaa [11] for nonlocal plasticity.

The solution of the consistency condition φk+1 = 0 is then obtained iteratively. In fact, the solution
requires at each point the knowledge of the unknown damage increments of the neighbour points. If
a trial damage increment distribution is assumed, the set of equations φk+1 = 0 can be solved at each
integration point and a new set of active damage points emerges, i.e. some new points can now be
involved and some other can cease to be active. The new values are then assumed for a subsequent
iteration until fulfillment of eqs. (21b)
The numerical strategy to solve the nonlinear equations φk+1 = Yk+1 −Xk+1 − Y0 = 0, where

Xk+1(x) = hl(dk(x) + ∆d(x)) + hnl

∫

V

α(||x− y||)
V 2
r (y)

∫

V

α(||y− z||)[dk(z) + ∆d(z)] dV (z) dV (y) (23)

is based on a modified Newton-Raphson technique. The linearization of the consistency condition
leads to

φk+1(d+∆d+ δd) = φk+1(d+∆d) +
∂φ

∂∆d

∣

∣

∣

∣

d+∆d

δd = 0, (24)

which gives the correction increment

δd = −
[

∂φ

∂∆d

]−1

d+∆d

φk+1(d+∆d). (25)

Finally, instead of evaluating the Hessian, the following (local) approximation is adopted

∂φ

∂∆d
≈ [hl + hnl + (ε+∆ε) : C0(ε+∆ε)] (26)

so that eq. (25), which is spatially coupled, can be evaluated localwise.
Numerical tests have shown that this approach is quite effective, even if the nonlocal iteration loop
inside the equilibrium iterations increases the overall computational cost of the analysis.

NUMERICAL APPLICATIONS

In order to investigate the capability of the proposed method, a simple application has been carried
out. The analysis has been performed for a 1-D bar in a uniform state of stress. The length of the
bar is 100 mm. In the middle part there is a zone, 10 mm long, where an initial damage has been
imposed in order to trigger the damage localization. The material is characterized by the Young’s
modulus E = 20000 N/mm2, the hardening parameters are assumed as hl = 0.0008 N/mm2 and
hnl = −0.0004 N/mm2. Finally, the initial damage threshold is Y0 = 0.0001 N/mm2 and the internal
length is ` = 5 mm. The bar has been discretized by simple constant strain elements and the analysis
has been performed with 20, 40, 80 and 160 elements. Figure 1a shows the load-displacement curves
for the four different discretizations. It appears that the response is objective with respect to mesh
refinement, at least until the very last part of the analysis. In Figure 1b, the damage distributions,
at different levels of the loading process, are reported with reference to the analysis performed with



160 elements. It can be observed that the strain localization phenomenon is well regularized and,
moreover, the damage band tends to shrink as the damage loading proceed. This aspect is quite
remarkable, since it has been obtained without enforcing any special evolution law for the internal
length parameter, which is kept constant in the analysis.
To conclude, numerical tests of 2-D structures are at the moment under study. It is expected that such
analysis will confirm the above discussed properties of the presented thermodynamically consistent
damage model.
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Fig. 1 (a) Load-displacement curves obtained with 20, 40, 80 and 160 elements. (b) Evolution of
the damage profile at increasing damage loading steps. Results obtained with 160 elements.
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ABSTRACT 
 
Fracture properties of different microstructural regions of the heat affected zone (HAZ) 
of modified 9Cr-1Mo steel (tempered base metal, intercritical, fine grained, coarse 
grained with and without δ-ferrite) have been studied by Charpy impact test. Simulation 
technique is used to reproduce HAZ microstructures. The fine-grained region shows 
highest toughness and the coarse grained with δ-ferrite shows the lowest. The results 
have been analysed in terms of tensile properties and microstructural features. The inter 
particle distance seems to affect the energy absorbed up to fracture both in the tensile 
tests and Charpy impact test. The highest toughness is obtained for an optimum inter-
particle spacing.   
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1. INTRODUCTION 
 
Modified 9Cr-1Mo (grade T91/P91) steel in tempered martensitic condition is widely 
used in power plants for headers in steam generators and in tubing for heat exchangers 
due to excellent high temperature creep strength, high stress corrosion cracking 
resistance, low oxidation rate and good weldability. The steel is a modified version of the 
conventional 9Cr-1Mo alloy with controlled addition of niobium, vanadium and nitrogen 
[1]. It derives its high temperature strength from the complex microstructures consisting 
of a high dislocation density, sub-boundaries decorated with carbides and Nb-V carbo-



nitride precipitates of the type MX in the matrix [2,3]. However, welding modifies the 
microstructure of this steel locally (known as the Heat Affected Zone, HAZ) and hence 
the mechanical properties in this region are altered. Specifically the fracture toughness of 
the weldment is a matter of concern. 
 
Microstructure in the HAZ is extremely complex and is controlled by interaction of 
thermal fields produced by heat input from the welding process, the phase 
transformations and grain growth characteristics of the material being welded [4]. A 
systematic study by Chandravathi et al. [5] reveals that the HAZ of modified 9Cr-1Mo is 
composed of coarse prior austenitic grained martensitic region with δ-ferrite (CPAGM-δ) 
adjacent to fusion line followed by coarse prior austenitic grained martensite (CPAGM), 
fine prior austenitic grained martensite (FPAGM) and intercritical region (ICR) merging 
with the tempered base metal (BM). However, the fracture properties of the different 
structures in the HAZ are difficult to obtain because of practical difficulties of fabricating 
samples of adequate dimensions with a single microstructure. The simulation of 
individual microstructure is a powerful method for studying the mechanical behaviour of 
HAZ [5]. The objective of the present study is to assess the fracture characteristics of the 
different microstructures likely to be encountered in the HAZ of modified 9Cr-1Mo steel 
weld joint. This paper reports Charpy impact properties of the steel in different 
microstructural conditions simulating different parts of HAZ. The results have been 
analysed in terms of tensile properties and microstructural features. 
 
 
2. EXPERIMENTAL  
 
 
Forged rounds (of 70 mm diameter) of a modified 9Cr-1Mo ferritic steel supplied by M/s. 
Midhani, Hyderabad, India in normalised (1060 oC/6 hrs/air cooled) and tempered (770 
oC/4 hrs/air cooled) condition were used in this investigation. The chemical composition 
(in wt %) of the steel is: Cr-8.72, Mo-0.90, C-0.096, Mn-0.46, Si-0.32, V- 0.22, Nb-0.08, 
N-0.051, S-0.006, P-0.012, Ni-0.1, Fe-balance. 
 
The microstructures of the HAZ have been simulated by isothermal heat treatments in 
different temperatures representing different phase fields. The details of the simulation 
technique and microstructures obtained are described in the earlier work by Chandravathi 
et al [5]. In the present study, the specimens were exposed for five minutes at five 
different temperatures (800, 850, 950, 1220 and 1350 oC) followed by oil quenching to 
reproduce the BM and ICR, FPAGM, CPAGM and CPAGM-δ regions of HAZ 
respectively.  The tempering treatment at 760 oC/1hr has subsequently been carried out. 
 
Charpy impact tests were carried out on a Tinius-Olsen make 358 J capacity machine 
using sub-size Charpy V-notch specimens (5x5x55 mm and 1 mm notch depth) in the 
temperature range of –156 oC to 61 oC following ASTM E23 [6] criterion. Scanning 
electron microscopy (SEM) was carried out on the fracture surfaces of the specimens 
tested –50 oC. 
 



Tensile tests were carried out in air at room temperature at a nominal strain rate of 3x10-4 

sec-1 on cylindrical tensile specimens of 26 mm gauge length and 4 mm diameter in an 
Instron 1195 universal testing machine. 
 
 
3. RESULTS AND DISCUSSION 
 
Charpy impact energies plotted against testing temperatures are shown in Figure 1.   
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     Figure 1: Charpy test results for simulated HAZ samples 
 

Highest toughness in terms of the highest upper shelf energy and the lowest ductile to 
brittle transition temperature is observed for FPAGM and the lowest toughness is 
observed for CPAGM-δ. The toughness for BM and ICR are comparable and are higher 
than the coarse grained region CPAGM.  
 
The results for the SEM study of the fractured surfaces are shown in Figure 2 (a and b). 
The fibrous appearance of the fracture surface from the FPAGM (fig. 2a) shows the 
ductile nature of the crack growth in this region. Similar fracture surfaces have been 
observed for the BM and ICR also. Void growth and coalescence is dominant in these 
samples. Contrary to the above, brittle cleavage mode of failure features in the fracture 
surface from CPAGM-δ (fig. 2b). The same has been observed for CPAGM also. 
 



 
 
Figure 2 (a-b): The SEM pictures of the fracture surfaces from simulated HAZ samples; 

FPAGM (a)  and  CPAGM-δ (b) 
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Figure 3: Tensile test results of simulated HAZ samples 
 
 
The variations of yield stress, ultimate tensile stress and energy absorbed up to fracture 
(measured from the area under the stress-strain plots) with the heat treatment 
temperatures are shown in Figure 3. 
 
It is evident that the ICR in the HAZ shows the lowest yield stress and the lowest 
ultimate tensile stress. The FPAGM shows reasonable combination of low yield stress 



and high tensile strength. The peak in the energy absorbed up to fracture for the FPAGM 
confirms highest toughness for this region amongst the HAZ microstructures.  
 
Estrin and Mecking’s modified work hardening model [7] has been employed to assess 
the inter-particle spacing from the tensile curves obtained from different simulated HAZ 
microstructures. The Charpy upper shelf energies and the total energy absorbed in tensile 
failure were plotted against the estimated inter particle spacing, Figure. 4. 
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Figure 4. Variation of tensile and Charpy energies with inter-particle spacing 
 
In the HAZ of modified 9Cr-1Mo steel, the general microstructural feature is tempered 
martensitic with various degrees of prior austenitic grain sizes, except the ICR where 
martensitic laths starts transforming to ferrites [5]. In these types of microstructures 
martensitic laths are arranged in packets of the size up to the half of the prior austenitic 
grain size [8]. The crystallographic orientation of the laths is such that they form low-
angle grain boundaries between them [9]. This implies that the crack deviation is small 
for a crack propagation across the laths. On reaching the high angle packet boundary, a 
significant deviation of crack path may take place. In the FPAGM, the finer packet sizes 
contribute to more deviation in crack path, thus leading to the lowest ductile to brittle 
transition temperature. Also its high strength coupled with reasonably high ductility leads 
to the highest upper shelf energy (fig. 1). In the CPAGM-δ, slight increase in the energy 
absorbed (fig.3) during room temperature tensile fracture could be attributed to softer δ-
ferrite formation which may blunt the propagating crack tip, initiated at carbide-matrix 
interfaces in the martensites. But this solute rich δ-ferrite could have lost its ductility 
more sharply with decreasing temperature and act as a probable crack initiation site 
(fig.2b), thus leading to the highest ductile to brittle transition temperature. 



 
The inter-particle spacing plays an important role in determining the mechanical 
properties of steels. The systematic variation of the energy absorbed up to fracture in the 
tensile tests with the estimated inter-particle spacing indicates the existence of an 
optimum inter particle spacing for maximum toughness. In the case of Charpy upper shelf 
region, the same trend is observed with more amount of scatter. The high loading rate, 
constraints in crack propagation etc. may be contributing to the observed scatter.           
 
 
CONCLUSIONS 
 
1. The FPAGM is the toughest amongst the other microstructural regions present in 

the HAZ. This is attributed to its higher strength combined with reasonably higher 
ductility due to finer martensitic packet sizes. 

 
2. The highest fracture energy is obtained for an optimum inter-particle spacing.  
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ABSTRACT 
 
A bimodal concept for predicting a high-cycle fatigue life of the structural details subjected to a variable-
amplitude loading is considered in this paper. The total fatigue life was separated into two phases: crack 
initiation and crack propagation. The portion of life spent in crack initiation was estimated by using S-N data 
obtained on smooth specimens. A fracture mechanics concept was used to calculate the portion of life spent in 
crack propagation. A modified Gray-Gallagher model was used to predict fatigue crack retardation following 
multiple overloads in a block spectrum. An original Gray-Gallagher model was proposed to predict fatigue 
crack retardation following a single overload, not taking into account either a delayed retardation or effect of 
multiple overloads. Both of these effects were incorporated in a modified Gray-Gallagher model used in this 
work. A computer program based on this model was applied to a welding joint subjected to a block spectrum 
loading and the results were compared with the experimental data reported in the literature. 
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INTRODUCTION 
 
Based on the previously determined stress distribution at the critical location, the fatigue life is calculated for 
each ‘microelement’ [Figure 1(a)] along the potential crack path, by using S-N data obtained on smooth 
specimens, as illustrated in Figure 1(b). The reciprocal derivative of this curve represents a rate of crack 
initiation in terms of dx/dN (x = distance from notch root; N = number of cycles), as shown in Figure 1(c). This 
rate may be interpreted as the rate at which the short crack grows due to the breaking of the microelements. It 
was proved [1] that the fatigue crack growth rate can be predicted on the basis of the smooth specimen data. A 
more consistent, but at the same time more complex, use of that approach would require a re-determination of 
the increased stress in each block when the crack tip reaches it and by taking into account the previous damage 
accumulation. It can be concluded that this method [1] should give a greater crack growth rate than the 
initiation rate obtained by the bimodal concept. However, an opposite effect is present during short crack 
growth, i.e. a gradual increase of crack closure level (decrease of ∆Keff) which causes a decrease in crack 
growth rate. In this work, it is assumed, as a first approximation, that these two opposite effects are equal and so 
the estimated rate of crack initiation (or short crack growth) can be considered a reasonably accurate solution. 
The macrocrack growth rate da/dN (a = crack size; N = number of cycles) obtained by using fracture mechanics 
approach, is also shown in Figure 1(c). At some distance ai , from the notch root, the rate of the crack initiation 
equals the rate of crack propagation. The upper zones of these curves, before and after this distance, indicate 
which of the mechanisms is more damaging. This distance ai, when initiation is finished, may be regarded as 
the crack initiation size [2]. Determination of the crack initiation life Ni is based on the stress range at distance 



ai. The crack propagation life Np is obtained by integrating the equation da/dN = f(∆K) from ai to af. The final 
crack size af can be determined from the fracture toughness of a material. 
 

 
 

Figure 1: Schematic illustration of the bimodal concept. (a) Microelements; (b) Fatigue lives of 
   microelements along the potential crack path. (c) Crack initiation and propagation rates and crack size ai. 

 
 

WELDED JOINT 
 
The total fatigue life of non-load carrying, fillet-welded transverse stiffeners (Figure 2) subjected to spectrum 
loading, was determined by using the previously described bimodal concept. The specimens were welded by 
the automatic submerged-arc process. The mechanical properties of the steel (high-strength low-alloy structural 
steel, A588) plates are: σys = 425 MPa, σts = 569 MPa [3]. For simplicity, the influence of the microstructural 
heterogeneity was not considered in this paper. The S-N data, crack growth equation and relevant fracture 
mechanics parameters were assumed from Refs. [4-6] using average values for similar ferritic steels, i.e. 
S-N curve for smooth specimens 

                                                              σ∆log..Nlog 178378513 −=                                                               (1) 
 

The fatigue limit is ∆σfls = 227 MPa (stress ratio R = -1). 
 

 
 

Figure 2: Welded joint; dimensions in mm. 
 

Paris equation for the crack growth [7] 

                                                                            ( )nKC
dN
da ∆=                                                                            (2) 

 

where C = 4.8 × 10-12, n = 3. Fracture mechanics parameters Kc = 55 MPa m , the fracture toughness, ∆Kth = (3 
to 8) MPa m  (for R = 0.8÷0.1, respectively) threshold SIF range [8]. The threshold stress intensity range for 
various R ratios (changed by residual stress) was determined [9] by the equation: 
 

                                                                     ( ) ( )01 thth KRK ∆∆ α−=                                                                     (3) 
 

where α is a material parameter, and ∆Kth(0) = ∆Kth, corresponding to R = 0. To get the best agreement with the 
experimental ∆Kth data [8], a value of α = 0.9 was assumed. The residual welding stresses cause a change in the 
R-ratio, thus influencing the fatigue strength. A typical residual welding stress pattern, through the specimen 
thickness along the section A-A, is shown in Figure 3(c) [curve 1]. The self-balancing stresses were assumed to 
vary from σr = 80% of the yield stress in tension at the weld toes to 40% of the yield stress in compression at 
the centre of the plate [10]. The load-induced elastic stress distribution in an uncracked detail, along section A-
A, is given by curve 2 of Figure 3(c). To find the final stress distribution, curves 1 and 2 were superimposed, 
assuming identical elastic-perfectly plastic behaviour in tension and compression. Curve 3 shows the resulting 



stress distribution at the top of the load cycle with the proper allowance for a redistribution of stresses in excess 
of yield to the adjacent elastic material. Curve 4 represents the stress distribution at the bottom of the load 
cycle. This curve was obtained by subtracting the elastic stress distribution, curve 2, from curve 3. If the 
residual stress distribution after the first cycle was unchanged, the actual stresses would cycle between curves 3 
and 4. However, the mean stress relaxes during cycling; a process that is accelerated at higher stress (strain) 
ranges. The approximate procedure accounting for stress relaxation (described in Ref.[11]) was used in this 
paper. 
 

 
 

Figure 3: Superposition of residual and applied stresses 
 
 

PREDICTION OF VARIABLE-AMPLITUDE FATIGUE LIVES OF A WELDED JOINT 
 
The welded joint was subjected to block-spectrum loading (Figure 4) that simulates service loading. The 
normalized stress ranges (∆σl/∆σmax) and the frequency of each stress level (fl) are given in Table 1. 
 
 

TABLE 1 
DATA FOR BLOCK – LOADING SPECTRUM 

 
Block number, l                    1          2          3          4          5          6          7          8          9          10 
Normalized stress range 
   ∆σl /∆σmax                      0.525   0.575   0.625   0.675   0.725   0.775   0.825   0.875   0.925   0.975
Frequency, fl ,%                 30.6     22.3     15.9     10.8       7.2       4.7       3.1       2.1       1.7       1.6 

 

 
 
                        Figure 4: Block spectrum loading pattern        Figure 5: Finite elements mesh and stress 
                                                                                                   distribution along potential crack path 
 
The number of cycles per spectrum was 105 (at this block-spectrum size, the load interaction effects extend the 
fatigue life [12]). In order to check its reliability the bimodal concept was previously applied to the welded 
stiffener subjected to either constant-amplitude or spectrum loading (the spectrum size, 103 cycles, was chosen 
to avoid interaction effects as a consequence of ‘delayed retardation’, according to Refs [6,13]) [11]. 
Agreement between experimental test results and predictions was good. 
 
Crack Initiation 
 
The uncracked welded joint was first analysed. The stress distribution was obtained using the finite element 
method. Only one-quarter of the double symmetrical joint was modelled (Figure 5). A weld toe radius r = 0.5 



mm (r/t = 0.05) was assumed in this work. The calculated value of the theoretical stress concentration factor is 
KT = 2.6. Interaction effects, in this phase, were taken into account assuming that the residual stress relaxation 
during the first cycle was determined by the maximum stress range in the spectrum (∆σ10), while the relaxation 
during subsequent cycling was determined by the root-mean-cube stress range (∆σRMC) level for the 
corresponding spectrum. The fatigue lives of the microelements were calculated using Miner’s cumulative 
damage rule [14]: 
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where nl = number of cycles at stress range ∆σl in the spectrum, and Nl = number of cycles at constant stress 
range ∆σl that produces the failure. The fatigue life of the microelement can be obtained using Eqs. 1. and 4. to 
produce: 
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where N10 = number of cycles until failure at the highest stress range ∆σ10 in the spectrum. In these calculations 
Eqn. 1. was modified by Gerber’s equation accounting for the effect of mean stress (changed by residual stress) 
on fatigue strength, i.e. 
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where ∆σfs = fatigue strength (σm ≠ 0), ∆σfs(0) = fatigue strength (σm = 0), σm = mean stress and σts = tensile 
strength. Based on these values, the crack initiation rates dx/dN for the various values ∆σRMC are calculated. 
 
Crack Propagation 
 
In order to take into account crack retardation following a single overload, Gray and Gallagher [15] expressed 
the rate of crack growth following the overload as 
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where ∆a is the crack increment since the overload and ZOL is the size of the plastic zone due to the overload 
(load interaction zone). The shaping exponent m in Eqn. 8. was found to be: 
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An overload produces a complete crack arrest (in steel) when S = Kmax,OL/Kmax=2.3. Gray-Gallagher model 
predicts a sudden drop in da/dN after the overload application. However, other investigators observed that the 
lowest growth rate was reached after the crack had extended over approximately one eighth to one quarter of 



the total overload plastic zone (this phenomenon is referred to as delayed retardation) [13]. To model the 
delayed retardation, it is assumed in this work, that the growth rate after an overload remains unchanged over 
an increment in crack length β = ∆a/ZOL. This increment decreases with increase of a number of overload 
cycles (for greater than 10 overload cycles, the minimum growth rate occurred almost immediately after the 
overload applications [16]). Because of that, it is assumed in this work that β varies from β = 0.1 for a single 
overload to β = 0 for greater than 10 overload cycles. The minimum value of da/dN in the load interaction zone 
decreases as the number of overloads increases [17]. This effect was modelled by assuming that the increase in 
closure level (changing ∆Keff) is a function of the number of overload cycles applied [18]: 
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where γ = ratio of the closure stress after NOL overloads to the stabilized overload closure stress; γ1 = the value 
of γ for NOL = 1; Nsat = the number of overload cycles required to achieve saturation (that is beyond Nsat the 
addition of overload cycles produces no additional retardation). The effective stress range ∆σeff, at lower stress 
level after multiple overloads, is then equal to the difference between the maximum stress, σmax, and the closure 
stress, σc: 

                                     ( )[ ]
1

1
1

1 γ
γσ∆σσ

γ
γσσσσσ∆ effmaxmaxcmaxcmaxeff −−=−=−=                                (12) 

 
This equation can be expressed in terms of stress intensity factor: 
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where (∆Keff)1 = effective range of stress intensity factor in lower stress level following a single overload, 
calculated from the first of Eqs. 8. The stress intensity factor was calculated by the expression [19,20]: 
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where c = major semi-axis of the elliptical crack; t,w = thickness and width of the main plate of a welded joint, 
respectively; ϕ = angle that describes the location at the crack front with respect to the major axis of the ellipse. 
The values of the crack axis ratio a/c were assumed from Ref. [5]. The geometry correction factor is 
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where σbi is the normal stress in a finite element between the distance bi and bi+1. This accounts for the effect on 
K of a stress concentration produced by a structural detail. Verreman et al. [21] used this method for 
determination of FG factor of a cruciform-welded joint and compared it with the accurate solution obtained by 
using high-order crack tip elements with an inverse square root singularity. They reported differences smaller 
than 6%, so this method can be considered accurate for engineering purposes. The advantage of Albrecht’s 



method is that only one stress analysis needs to be made for each joint geometry, i.e. the stress analysis of an 
uncracked joint. The values of γ1 and Nsat (γ1 = 0.70; Nsat =500) were selected to provide the best fit of the 
predicted crack propagation life to the experimental data for the welded stiffeners (of the same material) with 
known initial cracks [5]. The crack propagation rate was calculated using Eqn. 7. 
 
Total Fatigue Life 
 
The crack initiation size ai is determined by using the crack initiation rate curve and the crack propagation rate 
curve. The crack initiation life Ni is determined using Eqn. 5. with the stress range for the distance ai. The crack 
propagation life Np is calculated by solving Eqn.7. from ai to af by the Runge-Kutta method (using the 
computer program). The total fatigue life is obtained by summing the initiation and propagation lives. The 
predicted fatigue lives for various equivalent stress ranges (∆σRMC = 133; 196; 249 MPa) as well as 
experimental data [12] are shown in Figure 6. 
 

 
 

Figure 6: Comparison of predicted fatigue lives with experimental data 
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ABSTRACT 

This paper presents an approach to predict ductile fracture of real-life structures. It relies on 
Rousselier’s constitutive model to describe plastic void growth, a specific finite strain 
formulation that preserves energetic properties and a non local theory to deal with strain 
localisation. It is finally applied to the computation of a notched specimen. 

KEYWORDS 
ductile fracture, non local formulation, finite strain. 

INTRODUCTION 

This work proposes a model to predict ductile fracture of real-life steel structures, describing the inception of 
damaged zones, their propagation and the resulting final structural instability. 

The physics of plastic void growth is modelled by Rousselier’s model which has already proved its 
predicting capabilities compared to experimental results [1]. Its yield surface is : 

( ) ( )F , ; exp
tr D Dτ

τ
τ τA f D f Aeq

y
eq= +







 − − = ⋅τ σ

σ
σ τ1

13
3
2

with  (1)

τ  denotes Kirchhoff stress,  the porosity, A an isotropic hardening variable and σ ,  and D material 
parameters. There are two main differences with Gurson model, see [2] : the elastic domain is unbounded in 
compression, as von Mises model, and the yield surface is singular on the hydrostatic axis in traction. 
Localisation phenomena are expected with such a model. To control them, the resulting high spatial 
gradients of mechanical fields in the localisation zone have to be explicitly taken into account ; this is 
achieved by introducing the gradient of the cumulated plastic strain in the model. This non local approach 
can be expressed as a variational principle for generalised standard materials. To ensure this property in the 
context of finite strain, a special formulation has to be stated, close to Simo and Miehe’s one [3]. 

f y σ1

Part 1 is dedicated to this specific finite strain formulation while part 2 presents the two main steps of the 
non local theory. Finally, part 3 aims at demonstrating the operational character of the whole approach. 



1. FINITE STRAIN FORMULATION 

1.1 Application to Rousselier model 

To provide a consistent framework with the variational principle we aim at, classical finite plasticity theory, 
based on Jaummann rate for instance, can not be used. Actually, we have to build a new theory, see [4], 
which relies mostly on Simo and Miehe’s one [3] and extend the class of generalised standard materials to 
finite strain. As will be shown, it allows to express the integration of the constitutive relation as a 
minimisation problem, a crucial point for the application of our variational principle. 

It begins with the introduction of a relaxed (stress free) configuration leading to the classical multiplicative 
split of the total deformation . Then, the free Helmholtz’ energy F F Fe p= Φµ  is assumed to be the sum of an 
elastic energy  that depends only on the elastic strain  yet to define (isotropic hyperelasticity) and a 
stored energy  that depends on a hardening internal variable p :   
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where K,  and R denote respectively the bulk and shear moduli and the hardening function. The intrinsic 
dissipation can be derived for such a choice : 
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where D denotes the Eulerian strain rate. We can notice that a plastic strain measure  and driving forces 
 and A associated to e and p are naturally defined in the process. As the dissipation is required to be zero 

for elastic evolution, the following stress - strain relation is obtained : 

GP

s

( )τ = −s Id e2  (5)

Moreover, to ensure a positive dissipation, we assume the principle of maximal plastic dissipation with 
respect to the yield surface characterised by ( )F , ;s A f = 0. We can notice that, compared to Eqn. (1), 
Kirchhoff stress  is replaced by the driving force s. Here lies the difference with Simo and Miehe’s 
approach. Nevertheless, thanks to the stress - strain relation Eqn. (5), 

τ
τ  and s are close to each other while e 

remains small. Such a choice leads to the following evolution equations : 
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Some insights on the advantages of such a formulation compared to a Jaumman rate one are given in [4]. 
Here, we only mention that these equations are objective (and incrementally objective) since the derivation 
with respect to time acts on  which is a tensor defined on the initial configuration. Finally, the porosity 
evolution is based on an eulerian plastic rate :  
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( )& tr & &T T Tf f= − −




 − =1

1
2

1
2

F G F F G F F D Fp pwith e p e  (7)



1.2 Integration of the constitutive relation 

From now on, we are interested in deriving the time integration of the constitutive behaviour over a single 
time step. Let us denote respectively by ,  and q − q ∆q  the value of a quantity q  at the beginning and the end 
of the time step, and its increment over the time step. Then, the integration procedure can be stated as : given 

 (or G ), , ,  and , find , ,  and e − p−
p − f − F− F e p f τ . For the sake of simplicity, the porosity is treated in 

an explicit way, while the other variables are dealt with an Euler scheme, classical for plastic constitutive 
law, see [5]. Let us introduce now the solution for an elastic trial (  denotes the value of a quantity  
during the elastic trial and ) : 
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Then, the non linear system corresponding to the integration of the constitutive relation reads : 
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We do not pay further attention to the resolution of this system, except to mention that special attention 
should be pay to the singular point of F (corresponding to σ eq = 0 ). Finally, the porosity is explicitly 
computed by : 
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As above mentioned, one of the advantage of such a finite strain formulation is the expression of the system 
Eqn. (9) as a minimisation problem. Let us introduce the dissipation potential, where I  denotes the 
indicator function of the convex K (  outside K, 0 inside) : 
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Then, following [6], it can be shown that Eqn. (9) is equivalent to : 
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  are solutions of      µ µ+ + + pe,  (12)

2. NON LOCAL FORMULATION 

2.1 Introduction of gradient terms 

In Andrieux et al. [7], a homogenisation scheme was proposed to derive gradient constitutive relations from 
fully local (microscopic) ones. It allows to take into account potential spatial variations of the macroscopic 
mechanical fields which may occur with a length scale of the same order as the microscopic scale, that is the 
scale of an elementary representative volume for the microscopic constitutive relation. Such variations, 
which can namely occur in presence of singularities or localisation, are not compatible with the assumptions 
of quasi-periodic homogenisation. Let us apply the main steps of this homogenisation scheme to Rousselier 
model. 



An elementary representative volume is introduced which is made of a collection of N microscopic cells of 
position , where . In each of these cells, the material state is described by a microscopic 
deformation tensor F  and the microscopic internal variables  and  which obey a microscopic 
constitutive relation stated in terms of the microscopic potentials 

zi Σ zi = 0
i ei pi

Φµ  and ∆µ . The simplest localisation 
relation introducing a spatial variation is assumed : 

F F e e z pi i ip p= i= = + ⋅• • • ∇  (13)

where , ,  and p  appear as a macroscopic variables. Then, a macroscopic free energy F• e• p• ∇ Φ  and a 
macroscopic dissipation potential  are derived, depending on the macroscopic variables. Straightforward 
application of [7] and some simplifications for the dissipation potential (to allow practical computations) 
leads to : 
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J  is a second-order symmetric tensor which introduces the so-called internal material lengths and depends 
on the spatial cell distribution. In the case of an isotropic cell distribution, with  the distance between the 
centres of two neighbour cells, it reads : 

Lb

J I=
2
13

2Lb d  (16)

Note that , p  and  are expressed in the initial configuration : they are lagrangian tensors. Therefore, the 
internal lengths are implicitly modified by the deformation (induced anisotropy for the non local terms). 
Finally, it is assumed that at the macroscopic scale, p  is equal to the gradient of , a choice which is 
consistent with Eqn.(13) : 
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2.2 Variational principle 

Although the material behaviour is totally defined at the material point scale through the potentials Eqn. (14) 
and Eqn. (15), the boundary value problem stated over the structure generally does not admit solutions 
because the state variables  and p  are linked by relation Eqn. (17) and therefore they are no longer 
independent. This is however a strong requirement of generalised standard materials. Indeed, this nonlocal 
relation Eqn. (17) hinders the normality property at the material point scale. 

p• ∇

To overcome this difficulty, we propose to put aside the local normality rule, over-constraining, while 
preserving the formalism of generalised standard materials at the scale of the structure, see [8]. First, the 
definition of state variables is extended : they become fields over the structure, so that the set of state 
variables is reduced to the fields F ,  and e p . The former variables  and  now appear only through 
different functional operations on the field 

p• p∇

p , see Eqn. (17). Then, global potentials are defined, which are 
functions of the state variable fields and their rates : 
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Φ ∆
Ω Ω

 (18)



where  denotes the body domain in the initial configuration. The generalised standard material formalism 
is preserved, so that a global constitutive relation can be derived from these potentials Eqn. (18). Thanks to 
the local character of the elastic strain, the former stress - strain relation is retrieved : 

Ω

( )τ ( )x
e

x= − −
•

∂Φ
∂

Id e2 ( )  (19)

However, the evolution of the internal variables obeys a non local problem (where appear partial 
differentiations of functionals with respect to fields and a functional subgradient) : 
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In spite of the complexity of this evolution equation, the interesting minimisation property Eqn. (12) remains 
applicable. In the context of an implicit Euler scheme, time integration of Eqn. (20) results in the following 
minimisation (global) problem, while the evolution of the porosity keeps its former expression Eqn. (10) : 
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∆ ∆
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, min F ,
,

  are solutions of      + + + peD ,  (21)

3. NUMERICAL APPLICATION 

To examine the characteristics of such a non local model, a numerical simulation is carried out. A widely 
studied structure in the context of ductility is an axisymmetrical notched specimen  submitted to tension, see 
figure 1 for the geometry, the loading and the material parameters. A first computation is made with the 
local model, a second with the non local one. 

The integration in the former case is achieved in a classical fashion with a return mapping algorithm based 
on Eqn. (8) - (10). In the latter case, the integration of the non local constitutive relation relies on the 
resolution of the minimisation problem Eqn. (21). It presents severe difficulties : 

− non differentiability of D (which is positive homogeneous of degree one), 

− presence of non linear inequality constraints (indicator function that rules the growth of the cumulated 
plastic strain), 

− large size (as many unknowns as the number of nodes in the mesh). 

Therefore, a specific algorithm is required, see [9]. Without entering into further details, let us just mention 
that it is based on the explicit introduction of the fields  and  at the Gauss points and the dualisation of 
the resulting constraint Eqn. (17), thus leading to an augmented lagrangian : the relaxed problem is then 
solved by means of a Newton’s method, while BFGS with Wolfe line search is used for the dual one. That’s 
why the expression of the integration as a minimisation problem appears essential. Note that such an 
algorithm has already proven its efficiency on brittle damage simulation. 

p• p∇

The numerical results are presented in terms of the cumulated plastic field around the notch and the 
horizontal displacement at the notch tip versus the applied force (figure 2). By now, some convergence 
difficulties are encountered, so that the non local computation does not go as far as the local one. It appears 
that in this first stage, the results are very close, due to the small characteristic length ( ) compared to 
the characteristic size of the gradients triggered by the notch, as shown by the plastic field picture. To 
observe a significant difference between both models, we have to wait for localisation to appear, which is 
achieved with the local model but not yet with the non local one... 
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figure 1 - Test problem : geometry, loading and material parameters 
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figure 2 - Test problem : local and global responses 
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ABSTRACT 
 
 The light weight and high specific strength magnesium alloys are important as structural materials. 
However, magnesium and magnesium alloys have low plastic formability and occur brittle fracture at room 
temperature, because their active slip systems are not sufficient. In the behaviors of slip deformation and 
dislocation motions, the critical and effective parameter is the generalized stacking fault (GSF) energy. The 
GSF energy is identified with the energy necessary to ideal slip, and shear strength of real materials should 
increase as the GSF energy increases. In HCP metals including magnesium, { 0001} < 112 0>  basal slip and 

  {101 0} < 112 0>  prismatic slip with 1/3  < 112 0>  a dislocations are well known and basal slip is active and 
dominant in magnesium. We employ ab initio pseudopotential method for magnesium to study accurate the 
GSF energies on basal and prismatic plane and discuss the difference between basal and prismatic slip. It is 
also investigated from the GSF energy that the dissociation with stable stacking fault of a dislocations on 
prismatic plane is not so clear. The calculated GSF energy on basal plane is much lower than that on 
prismatic plane. This result agrees with that the observed main slip system is basal slip in real magnesium.  
 
 
KEYWORDS 
 
ab initio, pseudopotential, basal plane, prismatic plane, generalized stacking fault, stable stacking fault, 
dislocation, magnesium 
 
 
INTRODUCTION 
 
 Recently the usage of magnesium alloys are increasing as light weight and high specific strength structural 
materials in automotive and aerospace industries. However, it is large problem that magnesium alloys have 
low plastic formability. The cause is that the active slip systems of magnesium are not sufficient near room 
temperature, and so it becomes low ductility. The ductility greatly depends on slip deformations and it is 
important to understand the deformation mechanism associated with the slip.  
 In HCP metals including magnesium,   {0001} < 112 0>  basal slip with the dislocations along the shortest 
Burgers vector a=1/3  < 112 0>  (so called a dislocations) is the most commonly known plastic deformation 
mode and this slip system is active and dominant in magnesium. For a general loading, it is not only basal 
slip but also other independent slip systems are needed to deform the polycrystalline materials. It has been 



reported that   {101 0} < 112 0>  prismatic slip, {1 01 1} < 112 0>  first order pyramidal slip and 

  {112 2} < 1 1 23>  second order pyramidal slip are also activated in magnesium at high temperature [1,2]. 
These slip systems are shown in Figure 1. Additionally, it is interesting that the dominant slip mode is 
different in HCP metals. For example, slip occurs preferentially on basal plane in Mg, Be, Cd and Zn, but 
prismatic slip is preferred in Ti, Y, Hf and Zr.  
 
 

{112 2}{101 0} {101 1}

{0001}  
 
 
 
 
 
 
 

Figure 1: Slip systems in magnesium. 
 
 In slip deformations, the critical parameter is a property of the generalized stacking fault (GSF) energy 
which is also called γ -surface [3]. The GSF energy is defined as follows; a crystal is cut into two halves 
along the slip plane and one half is displaced relative to the other by the vector t. As this vector is varied, the 
energy changes and traces out the GSF energy  γ (t) , which is normally defined as energy differences from 
bulk crystal. If this vector are varied along with Burgers vector, the GSF energy is identified with the 
potential energy necessary to ideal slip. So shear strength of real materials should increase as the GSF energy 
increases. There exists a relationship between the GSF energy and the dislocation density or Peierl's stress 
[4]. Especially, the stable stacking fault energy which is the minimum of the GSF energy play a major role in 
the behavior of dislocation core. 

Legrand [5] calculated the GSF energy on basal and prismatic planes for various HCP metals including 
Mg using empirical pseudopotential method and tight-binding method. He found good agreements between 
the observed main slip system of various HCP metals and ratio of basal to prismatic stable stacking fault 
energy. It can be explained that the stable stacking fault energy is a dominant factor of the splitting width of 
the dislocation core and it is easy to slip as the energy is smaller. However, their calculations are based on 
the semi-empirical method and there is hardly quantitative and accurate investigations. Thus, in the present 
work we employ ab initio pseudopotential method for magnesium to study accurate GSF energy on basal 
and prismatic plane. 
 
 
METHODS 
 
 All calculations presented in this paper were performed using Cambridge Serial Total-Energy Package 
(CASTEP). CASTEP is an ab initio pseudopotential method code for the solution of the electronic ground 
state of periodic systems with the wavefunctions expanded in plane wave basis using a technique based on 
density functional theory (DFT) [6,7]. The electronic exchange-correlation energy is given by the 
generalized gradient approximation (GGA) of Perdew and Wang [8] in the DFT. We use the norm-
conserving pseudopotential of Troullier and Martins [9] in a reciprocal space. The pseudopotential is 
transformed to a separable form as suggested by Kleinman-Bylander [10]. The partial core correction [11] is 
also included in this pseudopotential. The electronic ground state is efficiently obtained using the conjugate-
gradient technique [12]. The cutoff energy for the plane-wave basis is 4.36× 10-17J (20Ry) which is sufficient 
for all our purposes. The stable atomic configurations are obtained through relaxation according to the 
Hellmann-Feynman forces. 
 The supercells containing 10 basal atomic layers and 12 prismatic atomic layers are used for the calculation 
of the GSF energies on basal and prismatic plane, respectively (see Figure 2). For basal and prismatic 
supercells, Brillouin zone integration over k points are performed using 12× 12× 2 and 11× 7× 3 regular 
divisions of each axis in reciprocal space, respectively.  
 The slip deformation occurs with dislocations along Burgers vector, but dislocations are dissociated to 



partial dislocations with stacking fault. Hence, it is important the GSF energy displaced by dissociated 
Burgers vector of partial dislocations, not simple Burgers vector of dislocations. We calculate the GSF 
energies displaced by vector t that changes continuously 0 to bp. The bp is dissociated Burgers vector of 
partial dislocations. The atomic layers are cut into two half halves parallel to basal or prismatic plane and 
one half is displaced by displacement vector t. The GSF energy  γ (t)  defined as 
 

     
   
γ (t) = E fault(t) −Ebulk

2A
,                               (1) 

 
where Ebulk is the total energy of supercell of magnesium bulk, Efault(t) is the total energy of supercell 
containing two generalized stacking faults displaced by vector t and A is the area of stacking fault per a 
supercell.  
 
 

(b) 
(a) 

Displacement vector t 

Slipping atoms 

Fixed atoms 

 
 
 
 
 
 
 
 
 
 
 
 

Figure 2: (a) Supercell for basal slip and (b) supercell for prismatic slip. 
 
 
RESULTS 
 
 When considering dislocation splitting in HCP metals, the situation is clear for a dislocations on basal plane 
which can always dissociate into Shockley-type partials. The dissociation of a dislocations is the splitting on 
basal planes according to the reaction 
 

          
 
1
3
< 112 0>= 1

3
< 101 0> +

1
3
< 011 0 > ,                        (2) 

 
with the I2 stacking fault between the partial dislocations. However, the dissociation of a dislocations on 
prismatic plane is not so clear. Using a hard-sphere model, Tyson [13] proposed the splitting  
 

          
 
1
3
< 112 0>= 1

6
< 112 1> + 1

6
< 112 1 > .                        (3) 

 
Vitek and Igarashi [14] suggest from the γ -surface calculations of empirical many-body potentials that the 
same dislocations may also split on prismatic planes according to the reaction 
 

          
 
1
3
< 112 0>= 1

6
< 112 x > +

1
6
< 112 x > ,                        (4) 

 
where x varies from material to material.  
 We calculate the GSF energies displaced by the vector bp= 1/6[1  12 x], x is from 0 to 1.2, in order to 
examine the stable stacking fault point on prismatic plane. The results are shown in Figure 3. We find lowest 



energy stable stacking fault point bp=1/6[1 12 x] , x=0.76. Vitek and Igarashi [14] calculated x=0.9 by 
empirical many-body potentials but their value is different from our value. This difference is based on the 
difference between the calculation methods. The stable stacking fault energy is 255.1 mJ/m2 at x=0.76. From 
x=0.6 to x=0.9, this staking fault energy change little (~0.3 mJ/m2) . The stable stacking fault on prismatic 
plane may exist in some extent range. 
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Figure 3: The stable stacking fault energy on prismatic plane. 

 
 Then, we calculate the GSF energies displaced by t=1/6[1 01 0]u, with u from 0 to 1 on basal plane, and the 
GSF energies displaced by t=1/6  [112 x] u, x = 0.76, with u from 0 to 1 on prismatic plane. These are 
calculated by using the three different relaxation methods of atoms. First, the atomic relaxation 
perpendicular to the slip plane is allowed but parallel is not allowed at all. Second, the atoms of two layers 
constituting stacking fault are relaxed only perpendicular to the slip plane, while other atoms move freely in 
all directions. Third, the atoms of two layers constituting stacking fault are relaxed in all directions, while 
other atoms are relaxed only perpendicular to the slip plane. On both basal and prismatic plane, the GSF 
energies do not change very much by different three relaxation scheme. The results by third relaxation 
method are shown in Figure 4. The calculated GSF energy on basal plane is much lower than that of 
prismatic plane. This results agree with that the observed main slip system is basal slip in real magnesium.  
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Figure 4: The GSF energies on basal and prismatic slip. 

 
 The stable stacking fault energy on basal plane, which is the minimum of the GSF energy path, is 32.4 
mJ/m2. On prismatic plane, it is different from basal plane, and stable staking fault point is the peak of the 
GSF energy path. We summarize the stable stacking fault energies in Table 1, which also includes other 
theoretical values.  
 



 
TABLE 1 

THE STABLE STACKING FAULT ENERGIES ON BASAL AND PRISMATIC PLANE 
 

BASAL (mJ/m2) PRISMATIC (mJ/m2) 

32.4 255.1 

44a [15]  

30b [5] 125b [5] 
aAb initio pseudopotential method     bEmpirical pseudopotential method 

 
The result on basal plane is in good agreement with other theoretical values 30 mJ/m2 by empirical 
pseudopotential method of Legrand [5] and 44 mJ/m2 by ab initio pseudopotential method of Chetty and 
Weinert [15], while Chetty and Weinert calculated only the stable stacking fault energy, and not the GSF 
energies. However, the stable stacking fault energy on prismatic plane is 255.1 mJ/m2, and it is much 
different from 125 mJ/m2 by empirical pseudopotential method of Legrand [5]. In order to obtain accurate 
GSF or stable stacking fault energies, the precision is not sufficient by semi-empirical method, and so ab 
initio method is effective. 
 
 
SUMMARY 
 
 The GSF energies on basal and prismatic plane in magnesium has been studied by ab initio pseudopotential 
method. It is also investigated that the dissociation with the stable stacking fault of a dislocations on 
prismatic plane is not so clear. We find the lowest energy stable stacking fault point 1/6  [112 x] , x=0.76. The 
calculated GSF energy on basal plane is much lower than that on prismatic plane. This result agrees with that 
the observed main slip system is basal slip in real magnesium. The stable stacking fault energy, which is the 
minimum of the GSF energy, is 32.4 mJ/m2 on basal plane and 255.1 mJ/m2 on prismatic plane. In order to 
obtain accurate GSF or stable stacking fault energies, the precision is not sufficient by semi-empirical 
method, and so ab initio method is effective. In the future, much knowledge about slip systems will be 
obtained, if the similar calculations are performed on other slip planes or in other HCP metals. 
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ABSTRACT 
 
Characteristics determined for low cycle fatigue, high cycle fatigue or fatigue crack growth are different. 
The question arises, whether common mechanical and microstructural features can be found or not in this 
narrow field of loading types, based on which relationship between the materials constants can be assumed. 
The paper introduces the similarity of the stress and strain state, furthermore the dislocation structure having 
been developed during low cycle fatigue and fatigue crack growth. This can form a basis for the 
establishment of a connection between the material characteristics determined during the above mentioned 
two types of testing. The validity of the hypothesis has been illustrated here by comparing the test results 
determined for different material grades, steels (micro-alloyed and thermomechanically treated steels) and 
aluminium alloys (groups of different microstructure). 
 
 
KEYWORDS 
 
Low cycle fatigue (LCF), fatigue crack growth (FCG), Manson-Coffin equation, Paris-Erdogan law 
 
 
INTRODUCTION 
 
The behaviour and the properties of the different materials are determined by the quality of materials 
(chemical composition, type of atomic bonding, spatial arrangement of atoms, micro- and macrostructure), 
furthermore the stress state, the strain rate and the temperature. Due to the great variety of these influencing 
factors we do not have a general model for describing the behaviour of materials, thus we have to use 
several material constant to be able to characterise it. Even if we consider the fatigue loading of the possible 
loading conditions we have to determine more material constants to be able to provide sufficient data for 
sizing and control. 
 
We determine different properties in case of low cycle fatigue, high cycle fatigue, and fatigue crack growth 
rate measurements. We can ask if there are common mechanical or microstructural properties – at such a 
relatively small area – that could be taken as a basis in order to build a connection between the materials 
constants. 
 
The aim of this paper is to introduce the similarity of the mechanical stress state and the dislocation 
structure in case of low cycle fatigue (LCF) and fatigue crack growth (FCG) which can be the basis of the 
connection of the determined constants. The assumption is supported by the results measured and analysed 



on the same steel and aluminium grades. Micro-alloyed and thermomechanically treated steels and 
aluminium alloys with different microstructure were used for the investigation. 
 
 
COMPARISON AND SIMILARITY OF THE MECHANICAL STRESS STATE AND THE 
DISLOCATION STRUCTURE 
 
Comparison of the mechanical stress state 
 
In case of low cycle fatigue the load of the specimen is so large that the whole volume of measuring part of 
the specimen will suffer plastic deformation during the first half of the loading cycle. At the majority of the 
experiments the controlled parameter is the total strain amplitude and its time variation generally follows a 
sinus or a triangle function. Since the connection between the stress and strain is not linear in the region of 
plastic deformation, in case of total strain controlled low cycle fatigue the time dependence of the stress is 
influenced by the material, as well. 
 
Figure 1 shows the time variation of the strain amplitude and the stress amplitude in case of low cycle 
fatigue with a saturated strain amplitude of εa = ±1%. The difference is can be seen well. If the measuring 
part of the specimen is cylindrical with a uniaxial apprehension the same axial stress raises in each point of 
the cross section analysed. 
 

Figure 1: Time variation of the total strain amplitude and the stress amplitude in case of 
low cycle fatigue 

 
Measuring the fatigue crack growth rate a plastic zone is forming at the crack tip during the first tensile 
cycle. The maximum size of the plastic zone (w) depends on the yield stress of the material (σ0) and the 
stress intensity factor (KI). Supposing an ideally elastic-plastic material and maximal loading the stress 
distribution in y direction in the function of the distance from the crack tip is going to form as shown in 
Figure 2 a). The maximum stress in the plastic zone is equal to the yield strength (σy = σ0). Decreasing the 
load the stress distribution will change. When the load is zero again the stress distribution in y direction 
ahead of the crack tip is as shown in Figure 2 b), which demonstrates the reversed plastic zone, too.This 
means that a compressive stress arises in the plastic zone. Repeating the loading up (Figure 2 c)) and down 
the stress will be similar as experienced during low cycle fatigue. 
 



 
Figure 2: Stress distribution at the crack tip of the fatigue specimen 

 
Comparison of the dislocation structure 
 
Mild metals and alloys close to the equilibrium state can be characterized by a relatively small dislocation 
density (1011 – 1013 m-2) and a homogeneous dislocation distribution [1]. Under the influence of low cycle 
fatigue the dislocation density is growing and the dislocation distribution becomes heterogeneous even in 
the first cycle. At the early stage the edge dislocations, dislocation loops and dipoles, the labouring 
dislocation parts form uncondensed, blurred cell walls. With increasing number of cycles the number of 
multipoles and the dislocation density of the walls increases, the cell walls and the matrix will become more 
and more separated [1, 2]. At the beginning the cell size decreases with increasing the cycle number and 
after the dislocation density becomes stable the cell size will not change significantly. The orientation 
difference of the matrix crystal planes at the two sides of the cell-walls is increasing continuously during the 
entire fatigue process. The size of the cell is inversely proportional to the strain amplitude [7, 8]. 
 
In case of fatigue crack growth, a very large local plastic deformation will develop in front of the crack in 
the plastic zone, although its measure is different in the different points of the zone. Due to the large plastic 
deformation a cell structure will form [5, 6, 7]. In the crack vicinity the size of the cells is very small, while 
increasing the distance away from the crack their size is increasing. As well, the orientation difference of the 
planes of the neighbouring cells is the biggest near by the crack and getting more and more away the 
orientation difference is decreasing [8]. 
 
Based on these facts we can establish that the dislocation structure developing during low cycle fatigue is 
very similar to that which forms around the crack vicinity during fatigue crack growth. 
 
 
INVESTIGATIONS AND RESULTS 
 
For the experiments different micro-alloyed (37C, KL7D, DX52) and thermomechanically treated (X80TM, 
QStE690TM, StE690) steel grades (own tests and [9]) and aluminium alloys (AlMg3, AlMg5, AlMg5.1Mn, 
AlMg4.5Mn, 7075-T6) with different microstructure (own tests and [10], [11], [12]) were used. The 
chemical compositions of the examined materials are summarised in Table 1 and Table 2, the mechanical 
properties are listed in Table 3. 
 
Low cycle fatigue tests have been executed in air, at room temperature, with total strain amplitude-control. 
The change of deformation was measured by a caliper, the time dependence of the load was a sinusoidal 
feature. The fatigue asymmetry factor was R = -1, the cycle number until failure was chosen at the 25% 
decreasing of the maximum tensile load. During the measurement the maximum values of the total strain 
and stress amplitudes and the hysteresis loop were recorded. 
 



TABLE 1 
CHEMICAL COMPOSITION OF THE TESTED STEELS, IN WT % 

 
Material grade C Si Mn P S Al Nb V Cr Mo
37C 0.15 0.38 0.89 0.029 0.016 0.016 0.021 0.023 - -
KL7D (1) 0.17 0.24 1.31 0.020 0.036 0.049 - 0.01 0.11 0.02
DX52 (2) ≤0.18 0.15-0.20 ≤1.50 ≤0.030 ≤0.035 - - 0.02-0.06 ≤0.25 -
X80TM (3) 0.077 0.30 1.84 0.012 0.002 0.036 0.046 - - -
QStE690TM_FCG 0.08 0.29 1.75 0.011 0.002 0.041 0.04 0.061 0.037 0.32
StE690_LCF 0.15 0.53 0.87 0.011 0.004 0.038 - - 0.63 0.22

(1) Ni = 0.08%, Ti = 0.0017%, Cu = 0.26%. 
(2) Cu ≤ 0.30%. 
(3) Ti = 0.018%, N = 0.005%. 

 
TABLE 2 

CHEMICAL COMPOSITION OF THE INVESTIGATED ALUMINIUM ALLOYS, IN WT % 
 
Material grade Si Cu Fe Mn Mg Ti Cr Zr Zn Pb
AlMg3 (1) 0.179 0.022 0.310 0.2770 2.950 0.040 0.0430 0.0012 0.044 0.009
AlMg5_FCG 0.31 0.01 0.32 0.45 5.20 0.020 0.1 0.01 - -
AlMg5.1Mn_LCF <0.40 <0.10 <0.40 0.75 5.1 0.20 0.12 - 0.25 -
AlMg4.5Mn_FCG 0.21 0.01 0.27 0.77 4.53 0.015 0.1 0.03 - -
AlMg4.5Mn_LCF 0.19 0.026 0.30 0.72 4.82 0.01 0.096 - 0.085 -
7075-T6_FCG 0.15 1.59 0.35 0.005 2.70 - 0.19 - 5.70 -
7075-T6_LCF <0.4 1.2-2.0 <0.50 <0.30 2.1-2.9 <0.20 0.18-0.35 - 5.1-6.1 -

(1) Bi = 0.0150%, Be = 0.0018%, Al = 96.1170%. 
 

TABLE 3 
MECHANICAL PROPERTIES OF THE INVESTIGATED MATERIALS 

 
Material grade Yield strength 

Ry, N/mm2 
Tensile strength

Rm, N/mm2
Elongation

A5 %
Reduction of area 

Z % 
Source

37C 269 405 33.5 63.5 own experiments
KL7D 392 535 ≥19.0 - own experiments
DX52 396 543 25.0 71.0 own experiments
X80TM 540 625 25.1 73.1 own experiments
QStE690TM_FCG 768 854 20.0 - own experiments
StE690_LCF 743 885 - 57 [9]
AlMg3 127.7 217.9 27.0 - [10]
AlMg5_FCG 185 288 14.5 - [10]
AlMg5.1Mn_LCF 235 400 - 34.6 [12]
AlMg4.5Mn_FCG 230 296 18.0 - [10]
AlMg4.5Mn_LCF 226 348 17.0 22.5 [12]
7075-T6_FCG 533 594 9.2 - [11]
7075-T6_LCF 470 580 - 33.0 [12]

 
The results were evaluated by classical methods. The exponent ant the constant of the Manson-Coffin 
equation were determined by the following expression: 
 
  (1) , c

ap f tNε ε=
 
where εap is the plastic strain amplitude, Nt is the cycle number until failure, εf’ and c are material constants. 
The calculated parameters, the material constants (c), for the different tested steel grades and aluminium 
alloys are listed in Table 4. 



TABLE 4 
PARAMETERS OF THE  MANSON-COFFIN AND THE PARIS-ERDOGAN EQUATION 

 
Material grade Manson-Coffin equation, c Paris-Erdogan equation, n

 average standard deviation
37C -0.287 3.44 0.311
KL7D -0.498 3.36 0.381
DX52 -0.784 3.11 0.140
X80TM -0.478 2.49 0.561
QStE690TM_FCG - 2.39 0.498
StE690_LCF -0.659 - -
AlMg3 -0.787 3.37 0.503
AlMg5_FCG - 3.71 0.405
AlMg5.1Mn_LCF -0.655 - -
AlMg4.5Mn_FCG - 3.57 0.444
AlMg4.5Mn_LCF -0.755 - -
7075-T6_FCG - 2.13 -
7075-T6_LCF -0.987 - -

 
The fatigue crack growth rate measurements were made on compact tension (CT) and three point bending 
(TPB) specimens, in air, at room temperature, with a sinusoidal loading function and stress ratio of R = 0,1. 
The crack size was determined by optical method and using the compliance method. From the collected data 
and results of the fatigue crack growth measurements the exponent and the constant of the Paris-Erdogan 
equation have been determined: 
 

 ,nda C K
dN

= ∆  (2) 

 
where da/dN is the fatigue crack growth rate, ∆K is the stress intensity factor range, C and n are material 
constants. In each case first we calculated the related part of the kinetic diagram of the fatigue crack growth 
(da/dN-∆K diagram), then we determined the two material constants (C and n) with linear regression. From 
these results we calculated the average of the data measured on 5-26 specimens. The average and standard 
deviation values of the exponent are also listed in Table 4. 
 
 
EVALUATION OF THE RESULTS 
 
In our earlier works we showed that there is a correlation between the two parameters of both the Manson-
Coffin and the Paris-Erdogan equation [13], therefore it is sufficient to study the relationship of the two 
exponents (c and n). Figure 3 shows the relation of these material constants. 
 
Despite of the relatively few measurement data we can establish that there is an admissible connection 
between the exponents of the Manson-Coffin law characterising low cycle fatigue and the Paris-Erdogan 
equation describing fatigue crack growth. 
 
The connection among the steel groups of different microstructure is different, which is demonstrated by the 
example of some micro-alloyed steels (37C, KL7D, DX52) and two grades of thermomechanically treated 
steels (X80TM, QStE690TM/StE690). The connection among the aluminium alloy groups of different 
microstructure is different, too, which is demonstrated by the example of some alloys (AlMg3, 
AlMg5.1Mn/AlMg5, AlMg4.5Mn) and one other alloy (7076-T6). 
 
Comparison of the various material grades (e.g. micro-alloyed steels – aluminium alloys, or micro-alloyed 
steels – stainless steels) requires further investigations. 
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Figure 3: Connection between the exponents of Manson-Coffin and Paris-Erdogan equations 
 
 
SUMMARY 
 
Based on theoretical considerations and experiments the following establishments can be made. In the 
plastic zone in front of the crack tip the time dependence of the stress is similar in case of low cycle fatigue 
(LCF) and fatigue crack growth (FCG). The cyclic plastic deformation results in near the same cell type of 
dislocation structure. There is a connection between the exponents of the Manson-Coffin equation and the 
Paris-Erdogan law. The connection has been shown for different grades of steels and aluminium alloys. 
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ABSTRACT 
 
Several papers during the last years were devoted to the problem of plastic zone growth for collinear cracks. 
In this work more general case was studied: plastic zone creation in isotropic, homogeneous elastic-
perfectly plastic infinite plate containing crack and several microcracks near its tip. The macrocrack is 
subjected to a normal loading, acting at the infinity. The Dugdale model was used for plastic zones growing 
from the tips of macrocrack, microcracks are assumed to be elastic. The plastic zone length and crack 
opening displacement are found from asymptotic solution and compared with finite element solution. 
 
 
KEYWORDS 
 
Microcracks interaction, Dugdale model, crack opening displacement. 
 
 
INTRODUCTION 
 
The model of plastic zone ahead of the crack tip, introduced by Dugdale [1], is widely used in fracture 
mechanics. Many works were devoted to the problem of plastic zone creation in cracks interaction. Leonov 
and Onishko [2] considered the problem for two collinear equal cracks. The crack tips were supposed to 
close smoothly due to cohesive forces distributed along zones near the crack tips. The interior relaxed zones 
were coalesced. The review of Karihaloo [3] is devoted to the author's results on the fracture characteristics 
of elastic solids containing inhomogenities in the form of slitlike cracks with plastic zones. A perturbation 
solution was presented for widely spaced cracks. The numerical solution based on the Chebishev 
polynomials of the first kind was also obtained. Harrop [4] extended the Dugdale model for the case when 
plastic zones were being closed by cohesive parabolic stress distribution. Theocaris [5] studied the Dugdale 
model for two unequal collinear cracks. The theoretical and experimental works devoted to the modified 
Dugdale model were reviewed in the paper. 
 
 
ASYMPTOTIC SOLUTION 
 
The solution of Romalis and Tamuzs [6] for the problem of micro-macrocrack interaction was adopted in 
this work for macrocrack with plastic zones. Microcracks are assumed to be elastic. 
 



Let an isotropic elastic-perfectly plastic plane contain a macrocrack and N microcracks of length 2ak . It will 
be assumed that all microcracks have the same length, i.e. ak = a. Cartesian coordinates x and y are centered 
at the midpoint of the main crack with the crack along the x-axis. The local coordinate systems xk , yk are 
attached to each microcrack. The microcrack position is determined by its midpoint coordinate z0

k and the 
inclination angle αk to the x-axis. 
 
The main crack consists from an open zone [- c1 , c2] and two plastic zones created at the vicinities of the 
crack tips - c1 and c2 such that the full length of the main crack is considered to be 2a0 . In such case the 
lengths of the plastic zones are |a0 - c1| and |a0 – c2|. The tensile stress T is applied at infinity while the 
plastic zones are closed by stress q which is normally identified with the yield stress of the material. The 
problem can be reduced to solving the problem with boundary conditions on the crack lines. For non-
dimensional parameters b = c1/a0 ,  d =  c2/a0  and τ = xk/a0 (k=0,1, …, N) the boundary conditions are 
written as 
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    Figure 1: Coordinates of crack tips and plastic zones. 
 
Singular integral equations for the system of cracks with self-equilibrium stresses on their faces have been 
derived by Panasyuk et al [7] 
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where Knk and Lnk are  the regular kernels containing the geometric parameters of the problem [7]. The 

 represents the derivatives of displacement jumps on the crack lines: )(' xg k
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where µ=E/2(1+ν) is the shear modulus, E Young’s modulus, ν Poisson’s ratio, κ=3-4ν for the plane strain 
state and κ=(3-ν)/( 1+ν) for the plane stress state. 
 
By using variables χτ nk axa == ,t  the system (2) can be reduced to a dimensionless form and the 
solution of it is sought as a power series with regard to the small parameter λ=a/a0  
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Inserting series (4) into Eqn. 2. and equating the expressions of like powers of λ, the recurrent relations are 
obtained for the subsequent determination of coefficients . We derived them by retaining terms up to λnpg ' 2 
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Taking into account the expression for p0(τ) (1) the derivative of the vertical displacement on the isolated 
crack line is obtained by first two approximations of }'Re{ 00 gv =′ . 
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The derivatives of the vertical displacement discontinuities on the macrocrack line are written as 
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Then the stress intensity factors at the macrocrack tips -a0 and a0 are defined  
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The length of the unknown plastic zones will be calculated from the condition  
 

0)( 0 =±akI , (12) 
 
which means that the crack faces are closed smoothly. 
 
Solution for an Isolated Crack 
Using the zero-th approximation of derivative of the vertical displacement for the symmetric case, Eqn. 6., 
the SIF for isolated crack is 
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The SIFs at right and left tips are equal for an isolated crack as well as the lengths of the plastic zones. The 
size (1-b) of the plastic zone is obtained by equating the expression of kI00 to zero 
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We obtain well known expression for an isolated relaxed crack with plastic zones of size (1-b) in an infinite 
solid (Dugdale, [1]). The value of  CTOD can be determined by integrating )(00 χv′  and then calculating the 
obtained expression at χ=b  
 

















−=

q
Tbqbv

2
cosln2)(00

π
π

 (15) 

 
Solution for the Macrocrack Interacting with Microcracks 
For the macro-microcrack system the derivatives of the normal displacements on the macrocrack line are 
determined by Eqn. 6-10. Consider the symmetrical case when the plastic zones have same length, i.e. b=d. 
We should determine the second term kI02 in the SIF. 
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The equation for determination the plastic zones is 
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where 
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The second term in the value of CTOD can be determined by integrating )(02 χv′  and then calculating the 
obtained expression at χ=b 
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The full value of CTOD is  . )()()( 02

2
000 bvbvbv λ+=

  
 
NUMERICAL SOLUTION 
 
Finite element method (FEM) was used to solve the problem. Plastic zones are modelled by introducing 
non-linear interface elements along the line of supposed plastic zone growth. The interface elements have 
user defined traction-opening relationship (constant traction equal to the yield stress of the material in the 
case of perfect plasticity). 
 
 
RESULTS 
 
As an example the macrocrack with two horizontal microcracks ahead of its tip was considered. Each 
microcrack is ten times smaller then macrocrack and geometry of the problem is presented in Fig.2. 
(distance between macrocrack and microcracks, d, and between microcrack and center line, h, is equal to 
the size of microcrack). 
 

 
 

Figure 2: Geometry of the problem. 
 



In Fig. 3-4 plastic zone length, C, and crack opening displacement, COD, are presented. The results are 
normalised with respect to plastic zone length and COD of single crack. The analytical results are compared 
with finite element solution. 
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Figure 3: Plastic zone length: a) results are normalised with respect to Dugdale solution, 
b) results are normalised with respect to the length of macrocrack. 
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Figure 4: Crack opening displacement. 

 
 
CONCLUSION 
 
The pair of microcracks ahead of the crack tip increases the COD comparably with COD of a single crack 
whereas the plastic zone diminishes when it approaches to microcracks. So the defects ahead of the crack 
tip can enlarge the brittleness of material. 
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ABSTRACT 
 
Cohesive zone models (CZM) are attractive for fracture process simulation since they provide a link 
between failure at the micro-scale and macro-scale structural response. Throughout the recent past 
many successful applications of CZMs have been reported. To further expand the scope of CZM, 
the development of improved constitutive equations for the description of the mechanical processes 
during material separation are needed.  The present paper reports on several recent developments on 
CZM that incorporate aspects such as triaxiality, rate dependence, damage accumulation during 
cyclic loading, as well as coupling to heat transfer.    
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INTRODUCTION 
 
In the recent past it has become evident that the framework of classical fracture mechanics – despite 
its significant success – possesses a series of limitations as a predictive tool [1].  To obtain a more 
fundamental view of failure it is necessary to adopt a concept in which the competing actions of (1) 
material separation processes in the cohesive zone at and near the crack front, i.e. in the cohesive 
zone, and (2) the deformation of material elements surrounding the fracture process zone, determine 
the observed behavior of a structure.  This type of failure analysis becomes possible if the stress 
strain behavior of a material as well as the material separation behavior is described by an 
appropriate constitutive equation.  

In the cohesive zone model (CZM) approach, the material separation behavior is described 
in a constitutive equation relating the crack surface tractions, TCZ, to the displacement jump across 
the crack, .  This law represents the physical processes of material deterioration in the fracture 
process zone. Its material parameter are the cohesive strength, σmax, the peak traction, the cohesive 
length, δ, the value of displacement jump across the crack at which the stress carrying capacity has 
fallen to zero, and the cohesive energy, φ , the area under the traction-separation curve.  Within the 
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mechanical equilibrium statement written as the principle of virtual work the cohesive zone 
elements are accounted for as internal surfaces: 

 

: d d d
int ext

CZ e

V S S

V S Sδ δ δ− ⋅ = ⋅s F T T u                                            (1) 

 
Contributions in the volume and external surface terms (on V and Sext) are described by the nominal 
stress tensor, s=F-1 det(F)σ, with σ the Cauchy stress, the displacement vector, u, the deformation 
gradient, F, as well as by the traction vector, Te, on the external surface of the body. Traction 
vectors are related to s by T=n s, with n being the surface normal. The cohesive surface contribution 
is described by the integral over the internal surface, Sint.  

The concept of a cohesive fracture process zone abandons the failure criterion used in 
classical fracture mechanics and crack growth resistance of a structure is now viewed as the sum of 
the energy dissipated in the plastic zone and the energy spent in the actual separation process.   

The basic concepts of CZM models are due to [2,3]. Current CZM models [4] differ from 
these classical models in that no initial crack needs to be defined and crack nucleation can thus be 
accounted for.  Also, the length of the cohesive zone is not a parameter of the model.  CZM models 
have been used in studies of monotonic or dynamic loading situations in homogeneous materials, 
composites and at interfaces. An overview paper [1] summarizes several examples of recent 
developments. Despite this success, few developments have been reported that aim at the 
development of improved traction separation laws.  Such development can be accomplished if 
additional state variables are introduces into the CZM formulation [5]. The cohesive surface 
tractions are then no longer dependent on only. The present paper summarizes recent 
developments in this direction undertaken by the author.  Approaches to computational modeling of 
ductile crack growth, rate dependency of failure, fatigue crack growth as well as fracture under 
thermo-mechanical loading are described. 

 
 
TRIAXIALITY DEPENDENT CZM  
 
Fracture of ductile materials is well known to be dependent on the level of constraint being present 
at the crack tip. Several prominent studies have clearly demonstrated that both the peak stress 
carrying capacity as well as the energy dissipated during void growth and coalescence can be 
characterized in terms of the stress triaxiality. While material models specifically geared towards 
failure based on void growth, e.g. the Gurson model [6], were specifically developed to account for 
the effect of triaxiality on material damage, CZMs have commonly assumed constant material 
parameter values for σmax, δ or φ.  This shortcoming can be overcome if these parameters are made 
dependent on the stress triaxiality. Since this quantity is not defined within the CZM itself, the 
effects of local crack tip constraint on the CZM parameters are introduced in dependence of the 
stress triaxiality in the solid elements adjacent to the crack line.  
 In a numerical study on ductile crack growth in a high strength structural steel, [7], the 
dependence of the CZM parameters on stress triaxiality was determined by unit cell simulations. 
The CZM parameters normalized by the flow strength of the material, σ0, and the void spacing, X, 
respectively, are given in Fig. 1a in dependence of the maximum value of stress triaxiality reached 
during loading.  Increasing triaxiality levels lead to an increase in σmax and a decrease in φ. 
Subsequently, to study the effect of specimen size on the crack growth resistance a CZM with the 
CZM parameter dependence as of Fig. 1a was used. Both C(T) and M(T) specimens were analyzed. 
Figure 1b depicts the cohesive energy at ∆a=20X normalized by (σ0X) in dependence of the 
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normalized specimen size (W/X).  The results clearly indicate that the cohesive energy, i.e. the 
energy needed to form new fracture surface, indeed is dependent on specimen size and geometry. 
The limit value of φ=0.5 (σmax X) is reached only for fully developed crack tip constraint. 
Conventional CZMs cannot account for this effect.   
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Figure 1:  (a) Dependence of the normalized cohesive zone parameters on the peak value of stress 
triaxiality as obtained by unit cell computations of void growth, (b) Prediction of the normalized 
cohesive energy (∆a=20 X) in dependence of the normalized size for C(T) and M(T) specimens. 

 
 
RATE DEPENDENT CZM FOR ADHESIVES 
 
In studies of the integrity of adhesive bonds, CZM can conveniently be used to describe the 
combined deformation-failure behavior of the adhesive.  To accurately describe polymeric adhesives 
it is necessary to account for the rate dependent fracture behavior exhibited by these materials.   
 
 
 
 
 

 
 

Figure 2: A rate-dependent CZM based on a standard linear solid model. 
 
 
To capture such effects, a rate dependent CZM based on the standard linear solid was developed [8].  
In this new CZM model (Figure 2), a rate-independent CZM, a secondary stiffness parameter, 0

1E  

(force per displacement per area), and a viscosity, 0η , (force per velocity per area) characterize the 
adhesive. To calibrate these parameters, fracture tests on DCB specimen bonded by a HDPE 
adhesives were performed for a wide range of applied loading speeds, V.  A total of three tests were 
necessary to determine all CZM parameters.  Figure 3a compares measured and predicted peak loads 
for DCB fracture tests. Subsequently, the new dependent CZM model was applied to investigate 
DCB tests with stepwise constant applied loading speeds.  Figure 3b depicts the result of one of 
these tests.  A good agreement between the experimental data and the numerical predictions was 
obtained. Especially, the short-term stress relaxation behavior was well captured. 
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Figure 3: (a) Calibration of rate dependent CZM to peak loads of DCB tests at various crosshead speeds; (b) 
DCB test with three levels of crosshead speeds, simulation and experimental results. 

 
 

CZM FOR FATIGUE CRACK GROWTH 
 
For investigations of fatigue crack growth (FCG) the use of the Paris equation, da/dN=A (∆G)m, to represent 
FCG data is a widely accepted approach [9].  However, this equation is empirical and provides a data 
correlation scheme rather than a predictive capability. This fact becomes especially important for interface 
FCG since experimentally determined ∆G-da/dN curves in this case depend on factors not of concern in 
homogeneous materials. Motivated by this need, it is attractive to extend CZMs to account for irreversible 
deformation, incorporate loading-unloading conditions and effects of accumulation of damage [10]. 
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Figure 4: (a) The effective traction separation behavior accounting for unloading and damage dependent 
cohesive strength; (b) Numerically predicted fatigue crack growth rates for three values of the fatigue 

strength parameter, σf ; cyclic loading with R=0. 
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For cyclic loading, the evolution of the cohesive strength of the FPZ is accounted for by the use of a damage 
variable, D. The current cohesive strength is given as σmax= σmax,0 (1-D), where σmax,0 is the initial cohesive 
strength. For the case of mode I loading, the evolution of the damage variable, D, depends on the amount of 
the total accumulated displacement jump, ∆tot, and on a fatigue limit stress, σf :  
 

( ) max
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with , 1.0 0.0
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D if T

δ σ σ
δ σ
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� �
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�
��

�
              (2) 

 
A parametric study of fatigue crack growth in an adhesively bonded DCB specimen was performed using a 
formulation accounting for Eqn. 2. Figure 4a depicts the evolution of both the crack surface traction and the 
damage variable as a function of the number of applied load cycles for three locations in the FPZ. Figure 4b 
summarizes the numerically obtained crack growth rates in dependence on the normalized applied ∆G/φ0 for 
three levels of fatigue strength, σf.  The numerically obtained d(∆a/δ )/dN values can be described by the use 
of the Paris relation.  For the present choices of the fatigue limit (C=0.25, 0.40, 0.55) the predicted values of 
the Paris exponent, m, are 2.0, 2.5 and 3.1, respectively. 
 
 
HEAT TRANSFER CZM 
 
Past applications of the CZM were directed towards the analysis of mechanical loading only. In many 
situations, however, fracture is coupled to and influenced by other physical processes. As an example of 
interest, consider the thermal gradient loading of a composite with crack bridging fibers [11]; see Fig. 5 for a 
schematic drawing.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5: Thermo-mechanical processes during failure of a composite with bridging fibers. 
 

A computational framework is required that allows for physically realistic fracture simulation for this 
thermo-mechanically coupled loading situations under the simultaneous consideration of crack growth and 
heat flux across the crack and the fracture process zone. 

For a solution of this problem the system must fulfill thermodynamic equilibrium in addition to the 
mechanical equilibrium equation, Eqn. 1. In variational form and using Fourier’s law, this can be expressed 
by: 

Cohesive Zone Wake 

θθθθc2 

θθθθc1 

Gas Conduction 
& Radiation 

Conduction 
through 

intact fibers 

Temperature 
Gradient 

Undamaged 
material 



 6 

 
                                                                                (3) 

 
The volume and external surface contribution (on V and Sext) are described by the temperature field, θ, the 
material density, ρ, the heat capacity, cp, the conductivity matrix, k, the heat flux per unit area of the body 
flowing into the body, q, and the heat supplied externally into the body per unit volume, r.  The cohesive 
zone contributions, representing the crack wake and the process zone in front of the crack tip, are again 
described by the integral described by the integral over the internal surface, Sint. Two quantities describe the 
conductance across the cohesive zone: the cohesive zone conductance, hCZ, and the temperature jump across 
the cohesive surface, ∆θ=θC1−θC2, with θC1 and θC2 the temperatures of the opposite crack surfaces.  The 
coupling between stress and heat transfer part of the fracture problem as described by Eqns. (1) and (3), 
occurs via the cohesive zone conductance, hCZ. This quantity, in general, is dependent not only on 
temperature but also on both the traction as well as the displacement jump, , across the cohesive surface:  

 
 (4) 

 
The conductance law, Eqn. 4, describes the energy transport across cracks or delaminations. In the process 
zone hCZ depends on the level of material deterioration and changes from that given by the solid to the crack 
wake conductance. In the crack wake, hCZ is dominated by gas conductivity or radiation as well as possibly 
by the contact conductance of the two crack surfaces. Fully coupled thermo-mechanical analyses with 
repeated non-uniform and non-steady heat flow as well as secondary mechanical loads are possible with this 
approach. It describes the creation of new free surface and thus accounts for the changing heat transfer 
boundary conditions due to crack growth.  
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ABSTRACT 
This paper discusses the development of methods, which will allow aircraft structural integrity to be 
maintained under conditions where an airframe is deteriorating through corrosion.  The program discussed is 
exploring methods of assessing corrosion damage in terms which are compatible with existing life 
management approaches.  In practical terms this involves relating the corrosion damage to an equivalent 
cracked condition, to determine the point at which corrosion would reduce the remaining fatigue life of the 
aircraft to an unacceptable level.  While a number of types of corrosion are being examined this paper 
discusses only pitting and exfoliation corrosion. 
 
KEYWORDS 
Corrosion, structural integrity, aircraft, pitting, exfoliation 
 
INTRODUCTION 
In 1997, DSTO established a research program examining the effects of corrosion on aircraft structural 
integrity based on RAAF fleet observations detailed in [1] and worldwide research detailed in [2].  This 
research aims to provide a basis for introducing corrosion into the approaches used to manage aircraft 
structural integrity in the Australian Defence Force (ADF).  This will allow the ADF to minimise both the 
cost and risk of owning and operating aircraft in which corrosion might become a threat to safety or fleet 
viability. 
 
PITTING CORROSION RESEARCH 
Both the F/A-18 and F-111 in RAAF service have had problems with pitting in structural components 
initiating fatigue failure [3,4].  However, in a number of cases pitting has also been observed that has not 
initiated fatigue cracks.  The present airworthiness requirements call for the immediate removal of the 
pitting corrosion, in some cases tripling maintenance times or requiring component replacement.  At the 
same time research at DSTO has shown that the use of certain corrosion protection compounds (CPC’s), can 
greatly retard pitting corrosion [5].   
 
The significant question in terms of improved fleet management is “can pitting corrosion be treated and left 
in place to a more suitable maintenance opportunity”.  To answer this question by equating a pit to a crack 
whose size gives it the same fatigue life, a number of matters need to be addressed; 1) what are the shape 
and dimension “metrics” of the corrosion pits, 2) what is the spatial distribution of the pits, 3) which critical 
pit “metric” can be correlated to fatigue life, and 4) how can this information be used in aircraft lifing 
models.  Questions 1 and 2 can be determined from fractography and measurement of large numbers of pits.  
Questions 3 and 4 are more difficult. DSTO has adopted [6] an approach identified in early research 
conducted by the USAF on machining marks and their effect on fatigue initiation, which identified the 
possible use of an Equivalent Initial Flaw Size (EIFS) parameter.  The EIFS approach, described in DSTO as 
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Equivalent Precrack Size (EPS), relies on identifying the crack size which gives the same fatigue life as the 
corroded specimen.  It is important to note two things; 1) that the fatigue life of the cracked configuration is 
generally determined using a fatigue life prediction model and 2) that the EPS is not real and may bear no 
relationship to any physical dimension. 
 
The F/A-18 has a number of structural components manufactured from thick (>100mm) rolled 7050-T7451 
plate.  This plate has a tendency to form very deep corrosion pits due to its microstructure [7].  To examine 
what effect this sort of pitting would have on a component’s structural integrity an extensive test program 
was initiated.  The specimens were flat dogbones, 30mm wide and 10mm thick with a 6mm-diameter hole in 
the middle to provide a stress concentration [7].  The specimens were all tested in a chamber to keep relative 
humidity below 20%.  The corroded specimens had been subjected to 3.5%NaCl for 24hours [7].  The 
fatigue test results are shown in Figure 1. 
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Figure 1:  Comparison of machined specimen fatigue life with corroded specimen fatigue life. 
 
Figure 1 clearly shows that the corrosion pits have two effects on fatigue: 1) a 50% reduction in the fatigue 
strength limit and 2) a general reduction in fatigue life which varies with stress.  These results are very 
similar to results obtained by Pao [8] on the same material, but using a different specimen configuration 
(although with the same kt) and a different corrosion time (>300hrs).  Fractographic examination revealed 
large corrosion pits. 
 

  
 
Figure 2:  Typical 7050-T7451 corrosion pits on a coupon bore surface – 24hrs at 3.5%NaCl.  In both cases 
the corrosion pits initiated a fatigue crack. 
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The corrosion pits “metrics” were measured from all pits that initiated a fatigue crack on the fracture 
surface.  Also noted were the pit or pits that initiated the major crack.  This provided a distribution of pit 
depths that initiated fatigue cracks, Figure 3.  The distinction between pits and inclusions is blurred at depths 
below 100µm , and sizes below this are in fact usually inclusions and porosity; pit depths above 380µm are 
generally pit clusters where it is not possible to distinguish individual pits.  Pit depth is only one of the 
“metrics” collected along with pit aspect ratio, pit tip radius, pit area and pit opening width.   
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Figure 3:  Distribution of depths for the flaws that initiated fatigue cracks.  Below 100µm, these are 
generally inclusions and porosity, above 380µm, generally pit clusters. 
 
The EPS modelling used AFGROW, a fatigue crack growth program developed by the USAF [9].  Several 
specimen geometries were examined; 1) a double corner crack, 2) a double surface crack and 3) a double 
through crack.  A comparison of the pit depth vs EPS depth is shown in Figure 4.  The best correlation 
between pit depth and EPS was with the double corner crack geometry. As can be seen there is a substantial 
amount of scatter in the relationship between pit depth and EPS, although the scatter is less than with pit 
width vs EPS and pit area vs EPS. 
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Figure 4:  A comparison between pit depth and EPS depth.  The dark line is the line of best fit and the light 
grey line is pit depth = EPS depth. 
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Research into the effect of pitting on structural integrity is also examining high strength steel, D6ac, which is 
used in the structural components of the F-111.  While in its early stages the EPS approach appears to be 
substantially better, with higher correlations due to the reproducible and uniform nature of pitting in D6ac – 
all pits are close to hemispherical, Figure 5. 
 

 
 
Figure 5:  Corrosion pit and fatigue fracture generated in high strength steel fatigue specimen. 
 
 
EXFOLIATION CORROSION RESEARCH 
Flat dogbone test specimens, [10], were machined from 6mm thick 2024-T351 and 7075-T651 plates.  In the 
centre of the 20mm wide gauge section, a circular region was exfoliated with EXCO solution (ASTM 
Standard G-34). Exposure times in EXCO ranged from 2-300 hours.  Damage states ranged from mild 
pitting at short exposure times to severe flaking up to 400-550 µm deep at times approaching 300 hours.  
The specimens were fatigue tested at 240 MPa, R=+0.1 until fracture occurred and were tested in air at 
relative humidities of either <20%RH, f = 10 Hz or >90%RH, f = 2 Hz. 
 
For both materials, there was a very rapid initial decrease in fatigue life with small exposure times (<10 
hours) and then the gradual levelling out with longer exfoliation times. The results indicate that the major 
effect of the exfoliation corrosion on fatigue life is to cause a dramatic reduction in life with small corrosion 
depths, suggesting that most of the fatigue effect is associated with the introduction of small pits, rather than 
more general stress concentration associated with the bulk of the exfoliation attack.  
 
Examination of the exfoliated region showed grain lift-off and separation typical of exfoliation.  At the short 
exposure times, multiple distinct pit-like nucleation sites were present, but as the exposure time increased, 
these sites joined together to become one large exfoliated region.  New pit-like discontinuities were visible 
at the base of the exfoliation.  This observation forms the basis of an exfoliation/fatigue model discussed 
below. 
 
Figure 6 is an example of corrosion damage in 7075-T651 aluminium after 48 hours exposure in EXCO. In 
most cases with the 7075, the pits that caused fatigue failure were approximately 60-100µm deep.  Around 
the base of these pits, areas of intergranular attack could be seen, but these regions were quite small, 10 to 
30µm in depth.  
 
A number of models have been proposed to describe exfoliation corrosion.  Russo et al. [10] undertook 2D 
modelling based on an Equivalent Precrack Size (EPS) approach.  The approach was to predict the growth 
life of a crack-like defect that represented some geometrical feature of the gross or macroscopic exfoliation 
corrosion. 
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Figure 6:  Fatigue crack origin under exfoliated grains, 7075-T651. 
 
If this growth life were to be similar to that of the real corroded specimens, then the crack-like defect could 
be regarded as the EPS and could be substituted for the corrosion in further analyses.   Three geometrical 
representations were considered:  
 

1) a semi-elliptical crack with the same dimensions as a 2D slice through the exfoliation,  

2) a semi-circular crack with a depth equal to that of the exfoliation, and  

3) a geometric stress concentration, as though the exfoliation was blended out with a typical 
inclusion-sized starter crack (a=3µm and c=9µm) at the base. 

 
The exfoliation/fatigue model was further refined based on the observation that the deepening exfoliation 
corrosion geometry has at its base pit-like intrusions from which intergranular cracks grow (model 4).  The 
combination of a pit and crack represents a process zone that progresses through the material.  
 
The proposed model is shown in Figure 7, where the process zone forms under environmental influences in 
the first few hours of exposure to EXCO. The authors postulate that for modelling purposes, the size of the 
zone stabilises and is followed by formation of the exfoliation stress concentrator. 
 
To model the impact of the process zone on fatigue, notch (pit) and crack (intergranular attack) 
combinations derived from the experimental observations of different corrosion stages were input to 
FASTRAN II [11].   Figure 8 shows the three models used for 7075-T651 prediction, a range of initial crack 
sizes was explored based on experimental observations.  In this case, model (4a) varies notch (pit) size with 
a 10µm crack, model (4b) varies pit size with a 20µm crack, and model (4c) varies pit size with a 30µm 
crack.  All sub-models include the small effect of the overall material removal, which further reduces life for 
the more extensively corroded cases, and all give slightly unconservative results, close to the experimental 
data. 
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Figure 7:  Concept of how process zone interacts with exfoliation over increasing corrosion time to affect 
fatigue life. 
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Figure 8:  Remaining Cycles to Failure vs. Corrosion Time for 7075-T651 aluminium along with the 
three variants in model 4 discussed in the paper. 
 
 
CONCLUSION 
DSTO has developed models for the fatigue impact both pitting and exfoliation corrosion.  To date the 
models have been tested with success on constant amplitude fatigue specimens.  The next stage is to 
determine whether the models apply equally well for spectrum loading on laboratory specimens and whether 
the same approach can be extended to a wider range of materials, or aircraft components.  In a number of 
special cases, real aircraft structure has been or is being tested containing either laboratory produced 
corrosion or real time environment corrosion. 
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ABSTRACT 
 
In this paper, results from Reese & Schwalbe’s linear normalization (LN) methodology for deriving J-R 
curves are compared, related to J-∆a (J-integral-ductile crack growth) data, to those obtained from traditional 
unloading elastic compliance (UEC) technique. Research results regarding to a nuclear grade steel exhibiting 
a wide range of elastic-plastic fracture resistance, agree quite well for both techniques until a certain level of 
toughness of the material. Below this critical level, linear normalization produces too conservative and 
inconsistent results for sub-sized compact testpieces. Power-law, linear and logarithmic fits were applied to 
the J-∆a data points within well-known limits of validity of deformation-J (JD). The results were assessed in 
terms of two typical J-integral criteria of the nuclear industry, namely, the crack initiation J (Ji) and the so-
called Paris & Johnson’s J50 for ductile instability of cracks. It was concluded that the logarithmic fit 
produces conservative values for both Ji and J50 criteria, when compared to power-law, whereas the linear 
fitting method provides the most non-conservative failure predictions. 
 
 
KEYWORDS 
 
Fitting and extrapolation methods, J-R curve techniques, Structural integrity assessment 
 
 
INTRODUCTION 
 
J-R Curves 
The J-integral is the most important parameter for characterizing the elastic-plastic fracture resistance of 
structural materials and efforts have been continuously conducted to develop simplified methodologies for 
determining the so-called J-R curves. The most recent and promising trend in this field is the use of single-
specimen normalization techniques, which simply demand the determination of the load versus displacement 
record and both initial and final crack lengths. Reese & Schwalbe [1] developed a method, named linear 
normalization (referred LN hereafter), which is based on the original Landes’ work (LMN function [2]). LN 
is grounded upon the principle of load separation [3,4], which has been proved for all specimen geometry 
[5,6]. This principle allows the load, P, to be written as a function of the crack length, a, and the 
corresponding applied plastic displacement, vpl, by two separate multiplicative functions: 
 

P = G(a/W).H(vpl/W)           (1) 



W is the specimen width, and G(a/W) is the geometry calibration function, which is dependent on the 
specimen configuration and can be determined from the J calibration [5,6]. 
 

G(a/W) = B.W.(b/W)ηpl           (2) 
 
B is the specimen thickness, b the uncracked ligament length, b = W – a, and ηpl the geometry correction 
(plastic) factor, which is assumed to depend weakly on material properties. For compact specimens it is 
generally assumed the value of 2.13 [2,5,6]. 
 
Reese & Schwalbe focused their attention on the correlation between the change or gradient in normalized 
load, ∆PN, and the respective crack extension, ∆a. The gradient in the normalized load owing to a slight 
crack growth from the initial (pre)crack length (a0) is: 
 

∆PN(i) = PN(ai) – PN(a0) = P/G(ai/W) – P/G(a0/W)      (3) 
 
A well-defined linear dependency of ∆PN(i) on ∆ai = ai – a0 = b0 – bi has been shown for large amounts of 
crack growth in elastic-plastic fracture toughness testing (J-R curve) [1]. This linear relationship allows the 
complete J-R curve of these materials to be obtained by means of a special graphical procedure. 
 
Fitting Methods 
Power-law is the most widely employed method for both J-R curve fit and extrapolation [7,8], and it is even 
mandatory in current high demanding components codes [9]. J-R data extrapolation for higher levels of 
crack growth is used to compensate insufficiently extensive data obtained in laboratory testing, when the 
failure criteria, e.g., in the ductile instability assessment of a cracked component, is beyond the limits of 
validity of deformation-J (JD), as defined on J-∆a space [10]. By virtue of the downwards concavity typically 
exhibited by J-R curves, which effect is further intensified by the JD-saturation phenomena [11], 
extrapolation through power-law may be a quite non-conservative approach and the higher the degree of 
non-conservatism, the shorter is the crack extension level attained by fracture toughness testing [8]. In a 
previous paper [12], the authors have claimed that the logarithmic fit may be a worthwhile alternative 
method to the power-law, as long as it produces more conservative results with regard to predictions of 
ductile instability events for cracked components, specially when data extrapolation is necessary. Other 
methods used in some extent to fit J-R curves include polynomial and linear fits. 
 
In this work, the performance of the methods for both J-∆a data determination and fitting are evaluated for a 
nuclear grade steel exhibiting microstructures with a wide range of elastic-plastic fracture resistance. None 
of the microstructures tested exhibited cleavage (catastrophic fracture) and in all cases unloading elastic 
compliance (UEC) provided confident results for dealing of close comparison between both techniques. 
 
 
MATERIALS AND TESTPIECES 
 
Seven miniaturized testpieces (0.4TC[S])  were machined from a thick forged plate of a nuclear grade steel 
in the as-received (AR) and several thermally embrittled (TE) conditions, the latter achieved by special heat 
treatments. They were fatigue precracked to an a0/W ratio of 0.55, side grooved (SG) to a 20 or 33% 
reduction of their gross-thickness (B=10 mm) and thereafter tested at 300°C. The mechanical properties of 
the materials and the testpieces’ specifications are listed in Table 1. Notice that the reduction in area of the 
tensile specimens precisely ranks the elastic-plastic crack resistance of the six tested microstructures. 
 
EXPERIMENTAL AND ANALYTICAL PROCEDURES 
 
Unloading Elastic Compliance (UEC) 
J-R curve testing was conducted by clip-gage-controlling elastic unloadings, under a strain rate of            
0.3 mm/min. J-∆a data points were obtained according to ASTM E1820 standard [10], i.e. corrected for 
crack growth. Initial and final crack length predictions by elastic compliance measurements loosely satisfied 
minimum accuracy requirements established by ASTM standard. 



Linear Normalization (LN) 
Linear-normalized J-R curves were derived by making use of the load versus load-line displacement 
diagrams resulting from compliance technique, and following the Reese & Schwalbe‘s analytical procedure, 
which is fully described elsewhere [1]. Initial and final crack lengths, a0 and af, respectively, were obtained 
from the broken specimens, by means of observation in a stereo-microscopy. Figure 1 displays the linear 
dependence of ∆PN on ∆a, as described in Eqn. 3, for all steel structures and specimens tested in this study. 
 
J-R Fitting Methods 
Power-law, logarithmic and linear fits were applied to J-∆a data points within limits of validity of 
deformation-J (JD), as delineated by exclusion off-set lines, at respectively 0.15 and 1.5 mm of crack growth. 
Given the reduced testpieces’ size, only the specimen correspondent to the lowest fracture toughness level 
fulfilled both J maximum capacity and minimum thickness requirements established in Ref. 10. Once the J-R 
curves were fitted, the J value for crack initiation, Ji [10], and the so-called Paris & Johnson’s J50 [13] for 
healthy conservative prediction of ductile instability of cracked components, were determined. 
 
 

TABLE 1 
MATERIALS AND TESTPIECES CHARACTERIZATION 

 
_______________________________________________________________________________________ 
     Microstructural         Testpiece          SG            Yield            Ultimate         Elongation        Reduction 
          Condition          Designation         (%)         Strength          Strength              (%)                 in Area 
                                                                                 (MPa)             (MPa)                                          (%) 
_______________________________________________________________________________________ 

A (AR)       JRT7       33             362            548   11     77 
A (AR)       JRT8       20             362            548   11     77 
B (TE)      JRT27       20             361            621   17     71 
C (TE)      JRT32       20             344            611   16     63 
D (TE)      JRT36       33             370            620   12     54 
E (TE)      JRT41       33             376            626   12     49 
L (TE)      JRT86       33             701            810   08     44 

_______________________________________________________________________________________ 
L0 = 4 D0 = 40 mm 
 
 
RESULTS AND DISCUSSION 
 
Incremental Crack Length 
In this analysis, the number of load (P)-displacement (δ) data points, taken evenly spaced regarding to δ, was 
kept fixed and the incremental crack length extension (da = d∆a) was taken at the values of, respectively, 
0.1, 0.01 and 0.001 mm on the fully computerized iterative data processing. Percentage differences among 
the three used approaches were then calculated. Figure 2 points out that crack increments smaller than 0.01 
mm do not promote significant changes on J values. Higher errors invariably occurring post-maximum load 
capacity of the specimen, are certainly due to the effects of both spread plasticity and relatively large 
amounts of crack growth on data processing. However, even for the least accurate approach (da = 0.1 mm) 
such errors have never exceeded ±0.06%, which is a very stringent criterion for purposes of comparing J 
values. 
 
Number of Load-Load Line Displacement Data 
For a fixed crack increment length of 0.01, J-R curves were generated by randomly choosing several 
different number of P-δ data points along the loading curve of the specimen. Figure 3 shows that, as a 
general rule, the larger the number of J (i.e., P-δ) data points, the higher is the J value for a constant ∆a 
analysis. This can be explained in terms of the crack growth correction factor in the deformation-J (JD) 
concept [3,10]. Thus, the larger the number of chosen P-δ data points, the smaller the average crack growth 
correction (i.e., reduction) factor and, consequently, smaller is its cumulative effect in lowering the J-R 
curve. 
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Figure 1: Linear relationship between ∆PN and ∆a, as determined by on-line UEC monitoring. 
 

JRT 36
1361 data

0

100

200

300

400

500

600

0 1 2 3
CRACK EXTENSION, mm

J-
IN

T
E

G
R

A
L

, k
J/

m
2

4

LN(increment=0.1mm)
0.01mm
0.001mm
Compliance

MAX. LOAD LN

UEC

(a) 
 

JRT 36
1361 data

-0.05

-0.03

-0.01

0.01

0.03

0.05

1 351 701 1051

J VALUE

PE
R

C
E

N
T

A
G

E
 D

IF
FE

R
E

N
C

E
, %

0 .01-0.1
0.001-0.1
0.001-0.01

MAX. LOAD

(b) 
 

Figure 2: Incremental crack length affecting LN J-R curve. (a) Testpiece JRT36 with a large number of J 
data points. (b) Associated errors. Arrows indicate maximum load positions. 
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Figure 3: Number of P-δ (i.e., J) data points affecting LN J-R curves for an incremental crack length of  

0.01 mm. Elastic compliance J-R curves are displayed as baseline. 
 
 
The ηpl factor as an indicative of the LN worthiness 
The applicability of the LN technique in the assessment of different fracture resistance behaviors was 
confirmed for very most of the microstructures tested. However, as shown in Fig. 4, LN failed in deriving 
the J-R curve for the least elastic-plastic fracture resistant microstructure. An ηpl factor of 2.13 was assumed 
for the miniaturized specimens herein tested. As a coincidence, or not, it was found out that good results 
regarding to the LN technique were obtained from testpieces which the best linear correlation between the 
normalized load gradient (∆PN) and the ductile crack extension (∆a) is achieved for ηpl ≤ 2.13. Conversely, 
bad LN results were invariably associate to ηpl > 2.13, for a maximum ∆PN-∆a linear correlation. This 
empirical rule could serve as an indicative of the applicability of the LN technique for this class of material. 
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Figure 4: The inability of the LN technique in deriving J-R curve for the least tough microstructure. 

 
 
Ji and J50 Criteria for Structural Integrity Assessment 
The results concerning Ji and J50 criteria, obtained from both UEC and LN techniques, are furnished in Fig. 
5. They are plotted against the Charpy impact energy of standard bend bar specimens precracked in fatigue 
with the same side-grooving level of the correspondent sub-sized compact J-testpiece. It can be seen that 
quasi-static fracture toughness results correlate rather well with the absorbed energy under dynamic 



conditions. It is worthy of note that the LN methodology produces slight conservative results if compared to 
those obtained from the UEC technique. It is also observed that the degree of conservatism of both J criteria 
is strongly dependent on the fracture resistance of the tested microstructure. 
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Figure 5: Ji and J50 criteria for all tespieces, as predicted by the LN technique. Dashed lines correspond to 
UEC results under the same testing conditions. R is the determination coefficient of the LN straight lines. 

 
 
CONCLUSIONS 
 
The following conclusions have been drawn during this comparative study: 
 
1 – Computer programming renders to LN a trustworthy and very simple methodology for deriving J-R 

curves within a broad range of elastic-plastic fracture resistance of low-alloy steels. 
2 – A simple empirical rule has been derived to determine the applicability of the LN methodology. 
3 – A 0.01 mm crack increment is suitable, in the data processing, to produce precise LN J-R curves. 
4 – Even a few load-load line displacement data points allow the generation of sufficiently accurate J-R 

curves through the linear normalization approach. 
5 – There is a trend of LN technique in producing slightly conservative results of J-integral criteria for 

structural integrity assessment, as compared to elastic compliance method. 
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ABSTRACT 
 
An analytical method for studying interacting branched cracks in an infinite plate is developed.   Based on 
superposition and dislocation theory, this method can be used to determine the full stress and 
displacement fields in a cracked material.  In addition, stress singularities at both crack tips and wedges 
(created by crack branching) are calculated so that crack growth and initiation can be analyzed at all 
locations of possible crack propagation.  A key concept of the method is the development of dislocation 
distributions that represent the opening displacements and capture the physical behavior of the cracks.  
Each distribution is a shaping series representing characteristic crack behaviors; therefore, development of 
effective distributions is a crucial aspect of this work.  Branched cracks of complex shapes under general 
loading conditions can be evaluated with this method.  Results show rapid convergence for few degrees of 
freedom (as measured by the number of dislocation distribution terms included in a particular analysis).   
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INTRODUCTION 
 

Material imperfections, corrosion, and fatigue loading can create conditions that cause cracks to branch or 
grow in such a way that they have multiple crack tips.  Damage zones containing cracks of such complex 
shapes, specifically many interacting branched cracks, pose a challenging problem when attempting to 
evaluate these areas for potential crack propagation and possible failure.  To address this type of fracture, 
a two-dimensional analytical technique has been developed to study interacting branched cracks in an 
infinite plate.  Based on superposition and dislocation theory, this method can be used to determine full 
stress and displacement fields in addition to stress intensity factors at crack tips and branch locations for a 
cracked plate.  Previous researchers have used similar approaches to study these types of cracks [1-6], and 
an extensive review of this area of research has been performed [6]. 
 



OVERVIEW OF THE ANALYTICAL TECHNIQUE 
 
To calculate the stress and displacement fields in an infinite plate containing an array of cracks of 
complex shape, each crack’s opening displacement profile must be determined such that all crack faces 
are traction-free under the given loading conditions.   (An opening displacement profile is the shape of a 
deformed crack.)  Once the opening displacement profiles are known, this solution can also be used to 
determine the stress intensity factors at the crack tips and branch locations in order to study crack 
propagation.  Superposition is applied at the global and local levels, and a dislocation distribution 
approach is utilized, to solve for the opening shapes of an existing crack array.  Several excellent texts on 
this subject are available in the literature [7-9]. 

  
Superposition 
To solve this boundary value problem, superposition is first applied at the global level by modeling the 
cracked plate as two separate problems (the trivial problem and the auxiliary problem) where the sum of 
their solutions equals the solution to the original problem.  The trivial problem consists of the given plate 
under the specified far field loading but without the cracks.  Meanwhile, the auxiliary problem is the 
given cracked plate, but without the far field loading.  The loading conditions for the auxiliary problem 
are instead prescribed tractions applied to the crack faces that are calculated to be equal and opposite to 
the stresses induced in the uncracked material at the location of the crack faces.  This loading insures that 
the crack faces are traction-free in the original problem when the stress field solutions to the trivial and 
auxiliary problems are summed.  Obtaining a solution to the auxiliary problem, which constitutes the bulk 
of the analytical and computational effort, requires the development and superposition of certain solutions 
on the local level reflecting detailed crack geometric features. 
 
To solve for the opening displacement profiles of the auxiliary problem, the first step is to subdivide 
cracks into a series of straight crack segments spanning from branch point to tip.  For example, the 
branched crack of Figure 1 is divided into three crack segments, each with its own local coordinate 
system.  Once the opening displacement profile for a single segment is determined, its effects on the full 
stress field can be evaluated separately from the other crack segments.  Superposition of the local 
solutions for all of the respective crack segments yields the full solution to the auxiliary problem. 
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Dislocation Distributions 
Dislocation distributions are the means of describing the opening displacement profile of a crack segment 
and inducing the prescribed crack face tractions of the auxiliary problem.  A dislocation distribution, 
µη(r), is defined as the derivative of a crack segment’s opening displacement profile, where r is an axis 
coincident with the crack segment.  To determine the stresses induced at a point (x,y) in the material 
caused by all of the crack segments, the individual effects of each must first be determined. 
 
Consider crack segment i acting alone (as though all other crack segments are closed) in an infinite, 
linearly elastic, isotropic plate with local coordinate system (xi, yi) such that the xi-axis lies along the crack 
segment which has length ai.  The distance along the xi-axis is ri and is measured from the origin.  The 
dislocation distributions for a single crack segment are symbolized as µ1i(ri) and µ2i(ri).  The subscripts 1 
and 2 represent the tangential and normal directions respectively.  The stress components caused by this 
individual crack segment at point (x,y) are written in terms of a complex variable formulation as 
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where G is the shear modulus of the material, ν is Poisson’s ratio, and κ is Kosolov’s constant (3-4ν, for 
plane strain and (3-ν)/(1+ν), for plane stress).  These stresses are symbolized by s to indicate that they are 
created by a single crack segment and are oriented in its local coordinate system.  Note that point (x,y) 
must also be converted to the local coordinate system for use in these equations.  The full stress field due 
to all crack segments will be denoted by σ and is determined by summing the contributions from all 
individual crack segments after they are converted to the global coordinate system.  The Z are Cauchy 
singular integrals to be evaluated in closed form in terms of the dislocation distributions and are given as 
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where and η = 1 or 2 referring to the tangential and normal directions respectively.  For the 
cases where the point (x,y) falls along the crack segment, these integrals are evaluated as Cauchy Principal 
Value Integrals.  Solutions to these integrals for given dislocation distributions can be found in [6]. 

iz x= + y

 
The stress equations are functions of unknown dislocation distributions for the various crack segments.  
These dislocation distributions are approximated by summing together different types of series that each 
captures a fundamental crack or wedge behavior (such as singularities at branch locations and tips).  The 
Cauchy singular integrals are evaluated analytically for each term of these series.  The results from each 
particular term are then multiplied by an unknown weighting coefficient (or degree of freedom). 
Therefore, the stress equations for each crack segment are now captured through simple algebraic 
equations of unknown weighting coefficients. 
 



Satisfying The Traction-Free Condition 
Physical conditions dictate that the crack faces are traction-free in the full problem. To ensure this 
condition, the opening displacement profiles for each crack segment in the auxiliary problem must be 
exactly those caused by the prescribed tractions. Therefore, a series of equations to enforce traction-free 
crack faces in the tangential and normal directions is applied simultaneously at a given set of points along 
each crack segment.   These equations take the form 
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where N is the total number of crack segments.  The left hand side of these equations represents the 
tractions induced at the crack faces by the loading conditions, while the right hand side represents the 
tractions caused by the opening displacements (dislocation distributions) of the crack segments.  Also, nx 
and ny are the X and Y components, respectively, of the normal to the bottom (-) crack faces. The σ∞ are 
the far field stresses applied to the plate in the directions denoted by their subscripts. 
 
Solving for the Unknown Coefficients 
Satisfying the traction-free condition along the crack faces (Eqn. 3) at a suitably chosen set of points 
results in a system of equations.  These equations are linear functions of the unknown weights of each 
term from each series.  To calculate the weights a large matrix must be inverted; therefore, the use of 
efficient and physically realistic series is imperative to reduce the number of degrees of freedom to the 
smallest number possible.  Solving this set of simultaneous equations requires the inversion of a large 
matrix.  Selection of points and number of terms produces an over-determined matrix that is solved by a 
least squares fit.  Once the weighting coefficients have been calculated, stress and displacement fields and 
stress intensity factors can be readily determined [6]. 
 
 
OPENING DISPLACEMENT SERIES 
 
Different types of series (wedge, tip, and polynomial) are used to build the opening displacement profiles 
of the cracks.  Emphasis was placed on creating efficient series to capture all necessary types of physical 
behavior while minimizing the number of degrees of freedom in an analysis.  Wedge series based on 
singular eigenvalues [10-12] calculated at material wedges greater than 180° induced by crack branching 
will not be presented, since the example provided does not include a wedge of this type.  It should also be 
noted that constraint equations are enforced at branch points to eliminate mathematical, but non-physical 
singularities, created by adjoining crack segments [6].  Each term of a series is multiplied by an unknown 
weighting coefficient, c, and each series is used independently in both the tangential and normal modes.  
Furthermore, each type of series must be applied to every crack segment. 
 
Polynonial Series 
Polynomial series, P(r), provide flexibility in manipulating the overall opening displacement shape in 
addition to allowing for translation and rotation at branch locations.  This series is formulated to constrain 
non-physical jump opening displacements and slopes at the tip end of a crack segment and takes the form 

  
( 1)2

0

( ) ( ) ( 1)
−−

=

      = − − + − −             
∑

j nn

jp
j

r rP r c n j n j
a a

nr
a

                       (4) 



Tip Series 
Tip series, T(r), incorporate the ½ singularity and higher order behavior at crack tips.  This series is 
developed to avoid non-physical jump opening and slope behavior at branch locations and is written as 
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BRANCHED CRACK EXAMPLES 
 
Rigorous testing for accuracy was performed using results of other researchers [13-16], and agreement 
was achieved in all cases studied [6].  Results available in the literature provided only stress intensity 
factors at crack tips, so this parameter formed the basis of the comparisons.  However, overall results with 
this method demonstrated rapid convergence in terms of weighting coefficients, stress intensity factors, 
and tractions along crack faces as induced by the computed opening displacement profiles. 
  
This method can be applied to branched cracks of any configuration and crack segment lengths.  Cracks 
need not be symmetric nor limited to a certain number of crack tips or growth directions.  Furthermore, 
loading is not restricted by type and can be any combination of shear and normal loading modes.   As an 
example, results from one parameter study of two interacting branched cracks are provided. 
 
For this particular case, two symmetric interacting branched cracks in an infinite plate under unit biaxial 
loading were evaluated.  Branch segments were of unit length while the main crack segment had a length 
of 2.  The branch angle, β, and the separation distance, d, were varied.   Calculated values for KI at the 
inner crack tips are shown in graphical form in Figure 3 as a representative sample of the results.  Note 
that as the distance, d, was increased, the KI values converged to those of a single, isolated, branched 
crack. 
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Figure 2: Two interacting branched cracks under unit biaxial loading 
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Figure 3: Mode I stress intensity factors for varying separation distances and branch configu
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ABSTRACT 
In the present paper, an elasto-plastic nonlocal damage model is proposed for studying the mechanical 
response of structural elements made of cementitious materials. An isotropic damage model, able to describe 
the different behavior in tension and in compression of the material is presented. To overcome the analytical 
and computational problems induced by the softening constitutive law, a regularization technique, based on 
the introduction of the damage Laplacian in the damage limit function, is adopted. A Drucker-Prager type of 
plastic limit function is proposed considering an isotropic hardening. A numerical procedure, based on an 
implicit 'backward-Euler' technique for the time integration of the plastic and damage evolutive equations, is 
developed and implemented in a finite element code. Some numerical examples are carried out in order to 
study the structural behavior of elements made of concrete and of fiber reinforced concrete. 
 
 
KEYWORDS: Damage, Plasticity, Softening response, Nonlocal theory. 
 
 
INTRODUCTION 
 
Cementitious materials, such as concrete and masonry, are widely used in structural civil engineering. These 
materials are characterized by softening response coupled with plastic effects, due to the development of 
microcracks and of anelastic deformations.  
The continuum damage mechanics represents an effective framework to model the softening behavior of 
cementitious materials [1], while the plasticity theory allows to take into account the anelastic material 
behavior [2]. Various macromechanical models have been proposed in literature to describe the mechanical 
response of structural elements made of cementitious materials. These models are mainly based on damage 
mechanics [3,4,5] and on plasticity theories [6,7]. 
In this paper, an elasto-plastic nonlocal damage model is proposed with the aim of developing an effective 
model able to predict the main features of concrete or masonry elements response. The stress-strain law 
accounts for damage and plastic effects. 
The damage evolution process is controlled by a variable, which represents an equivalent deformation. The 
damage limit function considers the different response in tension and compression of the material. 
In order to circumvent the pathological drawback due to strain and damage localization, a first gradient-
enhanced theory is proposed. The nonlocal damage model is obtained by introducing the Laplacian of the 
damage variable in the loading function. The presence of the gradient term has a regularizing effect and 
avoids mesh-dependence when finite element analyses are performed.  
The plasticity evolution law is governed by a plastic yield function with different threshold in tension and 
compression and with an isotropic hardening. The yield function and the plastic deformation evolution law 
depend on the effective stress. 



The proposed model is implemented in the finite element code FEAP [8]. Some applications are developed 
to study the behavior of structural elements made of concrete and of fiber reinforced concrete. 
 
 
AN ELASTO-PLASTIC NONLOCAL DAMAGE MODEL 
 
The following stress-strain law is adopted for cementitiuos materials: 
 
 ))D( Pεεεεεεεεσσσσ −−= C(1 2  (1) 
 
where C is the second order elastic isotropic constitutive matrix, Pε is the plastic deformation, D is the 
damage variable that can vary in the range [0,1]; D=0 corresponds to the virgin material state and D=1 to the 
total damaged state. 
The rate constitutive equation is obtained by differentiating equation (1) with respect to the time: 
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The elasto-plastic nonlocal damage model is based on the following assumption: 
 

• the damage evolution is governed by the elastic strain Pe εεε −= in tension, and by the total strain ε  
in compression.  

• the plastic deformation evolution is controlled by the effective stress σ~  defined as: 
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Nonlocal damage model 
An isotropic nonlocal damage model is proposed. The damage evolution is controlled by the consistency 
condition with the classical Kuhn-Tucker conditions: 
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where F(Y,D) defines the damage limit function and Y is the variable associated to the parameter D, which 
controls the damage evolution. In particular, the variable Y is defined as follows: 
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where tY0  and cY0  are the initial damage thresholds in tension and in compression, respectively. The 
quantities tY  and cY  represents the equivalent tensile and compressive deformations and they are function of 
the elastic deformation and of the total deformation, respectively [7].  
The following damage limit function is proposed: 
 
 DhDKaYYF 2)()1( ∇++−−=  (7) 
 
In formula (7) the nonlocal effect is due to the presence of the Laplacian of the variable D, i.e. D2∇ , in the 
damage limit function F(Y,D). The parameter h is linked to the characteristic length of the material and 
controls the size of the localization region. The material constants K and a control the damage rate growth 
and the softening branch slope, respectively [7]. 
 



Plastic model 
A plastic model with isotropic hardening, which takes into account the different strength in tension and in 
compression, is proposed. A plastic limit function ),~( qFF PP σ= , which depends on the effective stress σ~  
(3) and on the thermodynamic force q, is introduced. The force q is associated to the internal hardening 
variable α by the rational relation: 
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where χ is the hardening parameter. 
The plastic deformation evolution is governed by the following equations: 
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where Pλ  is the plastic multiplier that can be evaluated from the classical consistency equation 0λ =PPF . In 
the present model the following yield function is considered: 
 
 tctcP IJqF σσ)σσ(3),~( 12 −−+=σ  (12) 
 
where cσ  and tσ  are the compressive and tensile yield stresses, respectively, I1 is the first invariant and J2 
the second deviatoric invariant of the effective stress tensor σ~ . 
 
 
SOLUTION PROCEDURE 
 
A numerical procedure, based on an implicit 'backward-Euler' technique for the time integration of the 
plastic and damage evolutive equations of the model, is developed. Each non-linear step is solved using a 
predictor-corrector iterative technique within the splitting method.  
In the predictor phase, the elasto-plastic problem (8)-(12) is solved with the damage field frozen. In this 
phase the plastic evolution is computed through a further nested predictor-corrector phase based on a return-
mapping algorithm.  
In the corrector phase the strain field is taken frozen and the damage evolution is evaluated solving the 
problem defined by equations (4)-(7). 
Hence, the solution algorithm consists in the following two steps: 

• an elasto-plastic predictor phase; 
• a damage corrector phase. 

The equation governing the two phases are reported in the following scheme: 
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NUMERICAL APPLICATIONS 
 
The plastic nonlocal damage model is implemented in plane-stress 3 and 4 node finite elements in the code 
FEAP [8].  
Some numerical examples are developed in order to study the structural behavior of elements made of 
concrete and of fiber reinforced concrete (FRC).  
In order to reproduce the concrete behavior the nonlocal damage model without plasticity is adopted; on the 
contrary to simulate the FRC response, characterized by the matrix softening and the fiber debonding and 
pull-out, the nonlocal damage model with plasticity is used. In fact, the adoption of a model characterized by 
a plasticity with rational hardening, reproduces the fact that when the matrix is completely damaged, the 
FRC response tends to a limit value corresponding to the fiber bridging action.  
The material parameters used for the concrete nonlocal damage model and for the FRC plastic nonlocal 
damage model are: 
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where Kt, at and Kc, ac are damage materials parameter in tension and in compression, respectively. In order 
to take into account the beneficial effects of the fibers in improving the material mechanics response the 
values of the parameters Kt, Kc, at and ac adopted for in the FRC model are higher than the ones used for the 
concrete.  



Initially, some analyses are performed to set the values of the material parameters in order to reproduce the 
concrete and FRC behavior in the pure tensile and compressive states.  
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Figure 1: Tensile and compressive behavior of concrete and of FRC 

 
In Figure 1 the stress-strain behavior in tension and in compression for the concrete and the FRC material is 
represented. It can be pointed out the beneficial effects of fibers in improving the mechanical response of 
concrete. In fact, in the post peak phase, when the fibers debonding and pull-out occurs the softening branch 
for FRC composite materials is less steep than for concrete. 
The bending behavior of a concrete and of a FRC beam is investigated.  
The geometrical parameters characterizing the analyzed beam are: 
 

mmwmmL 250800 ==  
 

where L is the length of the beam and w is the height of the cross section. 
In Figure 2, the damage distribution in the FRC beam for different values of the prescribed displacement v is 
plotted. 

 
Figure 2: Damage evolution: a) v=0.26 mm, b) v=1.4 mm 

 



It can be noted that the introduction of the damage Laplacian in the limit function F prevents the damage 
localization in the weakest point of the beam. The damage process starts at the bottom of the middle section 
(see Figure 2(a)), where the maximum tensile strains are concentrated. Then it propagates towards the 
topside of the beam when the compressive strain becomes significative (see Figure 2(b)). 
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Figure 3: Load displacement curves for concrete and FRC 
 
In Figure 3 the bending behavior of the concrete and the FRC beam is plotted. It can be pointed out that the 
plastic nonlocal damage model is able to reproduce the post-peak behavior of the FRC and the results are 
mesh independent. 
 
 
CONCLUSIONS 
 
A plastic nonlocal damage model for cementitious material is presented. The model is able to take into 
account the different behavior in tension and in compression of the material. To avoid the mathematical and 
numerical problems, due to the localization phenomenon, a gradient nonlocal model is adopted. The 
numerical results show the capability of the model in describing the mechanical behavior and the damage 
processes in concrete and FRC structural elements.  
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ABSTRACT 
 
  A improved element-free Galerkin method(EFGM) is used as the numerical tool for 
analyzing dynamic crack propagation problem in functional graded material(FGM). 
The Element-Free Galerkin Method(EFGM) suggested by T.Belytchko et al[1] is a 
meshless method, which uses the Moving Least-Squares(MLS) approximation based 
only on nodes. Since no element connectivity data is needed, the extension of the crack 
is then treated by the growth of the surfaces of the crack naturally and the remeshing is 
avoided. This makes the method particularly attractive for moving dynamic crack 
problems. In this paper, The shear modulus are assumed to vary continuously and 
Poisson’s ratio to be constant. The variation of the material properties is simulated by 
adopting the material properties of the integration point when forming the stiffness 
matrix. The dynamic J integral is evaluated. Some numerical results are provided to 
demonstrate the utility and robustness of the proposed technique. 
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INTRODUCTION 
 
   The functional graded materials(FGM) have been widely used in technological 
application . So, it is very important and necessary to study its mechanical behaviors, 
especially in the fracture mechanics. However the material properties of FGM vary 
with the coodinates, its mechanical behaviors is very complex. The analytical approach 



can only deal with some simple and particular problems. Therefore, numerical methods 
for FGM have to be developed. 
   The Element-Free Galerkin Method(EFGM)[1] suggested by T.Belytchko et al is a 
meshless method, which use the Moving Least-Squares(MLS) approximation based 
only on nodes. Since no element method connectivity data is needed and the extension 
of the crack is then treated by the growth of the surfaces of the crack naturally, it is very 
convenient for modeling the crack propagation. This method provides a higher 
resolution localized derives of strains and stresses.  Also it can adopt the material 
properties of integration points to simulate the variation of the material properties. So, it 
is very suitable to analyze FGM.  

However, in EFGM, the interpolants constructed by the MLS method does not pass 
through the nodal parameter values, the imposition of boundary conditions on the 
dependent variables is quite awkward and the computational cost is quite burdensome, 
which makes EFGM not as fast as FEM. In this paper, the EFGM is coupled to FEM. 
EFG models are only used near the crack tip where their great versatility and high 
resolution is needed, FE models are applied in the other domains. Therefore, the 
boundary conditions can be treated easily and directly by FE models. Meantime, the 
computation efficiency can be great improved.  
   Jin and Noda[2] have shown that the singularity and the angular distribution of the 
stress and displacement near-tip fields for FGM are same as the ones of homogeneous 
materials. Erdogan and Wu[3] have presented the analytical result. Jian.C et al have 
given a modified static integral for FGM. In this paper, based on Moran et al[4], a 
modified dynamic integral for FGM is calculated. Numerical results are provided to 
demonstrate the utility and robustness of the proposed technique. 

J
J

 

 
Element-Free Galerkin Method(EFGM) and Its Coupling to finite elements 
    
  The most difference between the EFGM and the FEM is the construction of the shape 
functions and test functions. In the EFGM, the field variable is approximated by 
moving least square(MLS) approximations, no element connectivity data is needed, 
which is necessary in the FE method. The shape functions of EFGM can be written 
as[1]. 
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To impose boundry conditions with as high a degree of accuracy and improve the 



computation efficiency, the coupled EFG/FE approach is used. 
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here ND is the number of element nodes.  

For the FEM point  in the interface zonebIx BΩ , we also use the MLS method, 
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In the FEM domain, the test function can be expressed as, 
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     With these test functions, mass matrix and stiffness matrix can be formed in general 
way, and boundary conditions can be enforced strictly. Since background finite element 
is used for quadrature in meshless domain, it is very convenient that in the procedure of 
numerical implementation, the material properties of the integration point are adopted 
not only in finite element domain but also in meshless domain.     
 
 
NUMERICAL EXAMPLE 
 
   A single cracked panel (SECP, Fig.1) of unit thickness in elastic plane stress 
conditions is considered.  
  l  and  are the length and the width of the plate. is the edge crack. Poisson’s ratio w a

υ  and mass density ρ  are constant. Young’s modulus is given by the following 

expressions: 
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Fig.2  Node distribution  
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Fig.2  A single edge FGM panel  

   The distribution of nodes is like fig.2 . The plate is divided  into 30×40 elements, 
including the background finite elements only for quadrature. The number of all nodes 
is 1271. The nodes of the EFGM is only distributed near the crack tip. The meshless 
domain is divided into 30×4 background finite elements mesh. The rest of the plate is 
divided into 30×36 finite elements. The nearer to the crack surface, the finer the nodes 
are distributed along Y . Otherwise, the material properties vary along X , so finer 
nodes are distributed along X  than along Y . 
  integral is often used to evaluate the stress intensity factor. Based on Moran[5], we 
obstaine modified dynamic integral for FGM  

J
J
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 only exists for FGM. For 

homogeneous materials, since =ijklD 01,，and =ρ ，the term vanishes. 

      In term of (9), we evaluate the dynamic integral for FGM on two different 

contour  and Γ  with increment of the time step. The numerical results are drawn in 

J

1Γ 2



Fig. 3.  
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Fig.3  Variation of J integral with time step  
 
 
      These curves in fig.3 show that when the strength waves don’t reach crack surface, 
the value of integral is zero, when the strength waves reach crack surface, the value 
of integral become increasing. Because the velocity of strength waves varies with the 

Young’s modulus, a little difference between the integral along 

J
J

J 1Γ  and the integral 

along  exists. However, when the strength waves influence the whole area for 

evaluation, the values of the integral on contour 

J

2Γ

J 1Γ  and 2Γ  are almost equal, namely 

the integral is path independent. So, the trend of variation of the integral is rational. 
The results show that the method in the paper is efficient for FGM. 

J J

 
 
CONCLUSION 

 
In this paper, EFGM is used for analyzing dynamic fracture problem in FGM and 

meanwhile, EFGM is coupled to FE for enforcing boundry conditions strictly and 
improving the computation efficiency. The numerical results show that the technique is 
efficient. Otherwise, in the procedure of forming mass matrix and stiffness matrix and 
evaluating the dynamic integral, we adopt the material properties of Gauss integration 
points. So, not as a great number of nodes are needed as in conventional technique for 
FGM. Not only computation efficiency is improved once again, but also high accuracy 
is achieved.   

J

    Since EFGM facilitates the modeling of growing crack problem, the technique 



proposed in the paper is promising in dealing with dynamic crack propagation of FGM.  
Although only Mode I cracks are reported, it is straightforward to employ this 

method to more complicated crack configurations. 
 
REFERENCES 
 
1 Belytschko T, Lu Y Y, Gu L. Element-free Galerkin methods. Int. J. Numer. 

Methods Engrg 1994,37:229∼256. 
2 Zhi-he Jin, Naotake Noda. Crack-tip singular fields in nonhomogeneous materials. 

ASME  Journal of Applied Mechanics. 1994,61:738∼740. 
3 Erdogan F,Wu B H. The surface crack problem for a plate with functionally graded 

properties.  Journal of Applied Mechanics. 1997,64:449∼456. 
4 Jian C, Linzhi W, Shanyi D. A modified J integral for functional graded materials. 

Mechanics Research Communication.  2000,27:301∼306 
5 B.Moran and C.F.Shih, Crack Tip and associated domain integrals from momentum 

and energy balance, Engng.Fracture Mech.,1987,27:615-642.   
 



1

Examples of the Influence of Residual stresses on Fracture

W. Cheng  and I. Finnie1 2

Abstract Generally compressive residual stresses increase the resistance of a part to fracture while
tensile residual stress degrades strength. It will be shown that the local compressive residual stresses
and the subsurface cracks produced by scribing, at very low loads, are responsible for the low tensile
strength of glass specimens. Also, if metal parts containing surface cracks are subjected to pressure
such as shot-peening, which produces high near surface residual compressive stresses, the initial end
of the crack will experience tensile loading. This paper explains these phenomena using procedures
based on LEFM. A method for residual stress measurement using LEFM solutions is also reviewed.
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Introduction
The literature on cracking due to a sliding indenter, a process often referred to as scribing or

scratching, goes back 80 years ago, when Griffith’s classic work appeared. The scribing process will
be described, and it is seen that “median” cracks propagate downwards, below the indenter, in glass
at loads as low as 0.014 N. The present work is based on loading a sub-surface crack and analyzes
the effect of loading rate in a moist environment in a different manner from previous work by others.
The present wok estimates the strength of glass in the presence of subsurface flaws produced by
scratching. An upper bound is observed by considering an inert environment. A lower bound is
obtained for the strength of glass in moist air.

A related problem is the residual stresses induced by shot-peening or laser surface treatment.
These are shown to have a profound effect on surface flaw detection. It is also shown that the
solutions for LEFM leads to a new method for residual stress measurement.

The Strength of Glass Following Scribing
The scribing process shown in Fig. 1 introduces a zone of deformation under the indenter

which we describe as “the plastic zone” due to a combination of compression and shear. The first
crack to form, described as the median crack, propagates from the base of the plastic zone as shown
in Fig. 2. Currently, the concept that surface flaws are inherent in glass is a common concept. For
example, in the well known book by McClintock and Argon (1966) it is stated that “In some brittle
solid, such as inorganic glass, cracks are formed only at the free surfaces”. To study this assumption,
we take a simple model in which the inherent flaw is treated as an edge crack and residual stresses
are ignored. Taking a fracture toughness K  of 0.76 MN/m  and fracture stress of soda lime glassIC

3/2

in a moist environment of 70 MPa leads to an estimate of crack size of a = [K /(1.12 σ)]  /π = 30 µm.Ic
2

Immediately, we can draw two contradictory conclusions, first, such a flaw size should be detectable
by optical or scanning electron microscope (SEM). Second, to our knowledge no such surface cracks
have been observed directly. It is tempting by saying that the crack faces are touching. However,
SEM examination of glass subjected to bending loads, which should separate the faces of a closed
crack, has not revealed cracks. This suggests that strength impairing flaws are so close to the surface
that they may be removed by surface melting or etching.
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The most likely source of the damage described is scratching or scribing by small abrasive
particles. As shown in Fig. 2 a median crack initiates at the base of the plastic zone. The lowest load
we have observed for such median crack initiation is 0.014 N. Since the size of the median crack, as
just over the threshold load, is only several micrometers, its influence on the fracture stress would be
expected to be small if residual stresses are absent. However, scribing produces a high compressive
stress in the plastic zone which prevents subsurface flaws from growing into the plastic zone. Also,
the plastic zone exerts on opening force at the lower crack tip shown in Fig. 2. The fact that the
median crack is often observed to grow after scribing shows the significance of the residual stress.
In recent work, we have obtained the residual stress distribution below the plastic zone and have
obtained the stress intensity factor for a subsurface flaw (Cheng and Finnie 1992) as shown in Fig.
3, the estimated fracture stress of soda lime glass is greatly reduced by the presence of the
compressive residual stress near the surface. The prediction for moist and inert environments agrees
well with the reported strength values in literature.

Surface and Near Surface Residual Stresses and Their Influence on Flaw Detection
We now consider the case of a flaw which exists before near surface residual stresses are

introduced by shot peening. A typical distribution of residual stresses is shown in schematically in Fig.
4. The high compressive stresses near the surface greatly increase the resistence of a part to crack
initiation. However, if a surface flaw is already present, the compressive stress near the surface
effectively closes the mouth of the crack and may prevent its detection by dye penetrants. If the crack
size is larger than the depth to which compressive stress is present, the crack tip will be subjected to
tensile stresses. The displacement caused by releasing the compressive stress on the surface must be
computed to estimate the force required to open the crack so that it can be detected. 

To obtain the displacement/rotation due to a point load/moment for a cracked body, we use
Castigliano’s theorem (Teda et al. 1973). For two dimensional part of unit dimension normal to the
x-y plane subjected to Mode I loading, the displacements v on the surface at a distance s from the
crack plane may be obtained by introducing the virtual forces F, shown in Fig. 6. This leads to 

where a is the crack length, E' = E and E/(1-µ ) for plane stress and plane strain respectively, U is2

the change of the strain energy due to the crack, K  and K  are the stress intensity factors for anI I
f

arbitrary stress on the crack faces and the virtual force F respectively. Only the opening at the mouth
of the crack is of interest (twice of v under load F) so s = 0. For simplicity, the residual stress due to
shot peening is approximated by a uniform stress σ  from a = 0 to b as shown in  Fig. 3. Ther

corresponding K  is negative and hence fictitious but is needed to obtain the displacements requiredI

for subsequent calculation. Using the expressions for K  and K  given by Cheng and Finnie (1988)I I
f

and Tada et al. (1973), Eq. (1) becomes

where
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In Eq. (3) the dummy variable z represents the ratio of any intermediate crack size to the final crack
size. Displacement v  would only appear when the crack is entirely opened by external loading. Tor

open the crack, we apply a uniform tensile stress σ  over crack faces and the resulting displacemento

v  can be obtained by setting b/a = 1 in Eq. (3). Thus, the stress required for opening the crack iso

obtained by equating v  and v . This leads to σ  = σ  H(b/a). Figure 5 shows the ratio of σ /σ  againsto r o r o r

b/a. It is seen that the opening stress required decreases as the size of the crack increases. Now it is
possible to determine the tensile stress required to open the crack for detection.

The Crack Compliance Method for Through-the-Thickness Residual Stress Measurement
The inverse problem of determining residual stresses from measurements of strain,

displacement or stress intensity factor as a crack is introduced into a part received little attention until
the past decade. Vaidyanathan and Finnie [1971] showed that measurements of stress intensity factor
as a function of crack length could be used to deduce the residual stress due to a butt-weld between
two plates. However, the experimental technique using a photoelastic coating to measure the stress
intensity factor, was time consuming and unsuited to general application. A more useful procedure,
which was subsequently extended to a variety of configurations, was developed by Cheng and Finnie
[1985]. This involved measurements of strain as a function of crack depth to deduce the axial residual
stress in a circumferentially welded cylinder. We refer to this approach as the "crack compliance
method" because it is closely related to the solutions for the compliance due to a crack. Similar
procedures were presented later by Fett [1987], Ritchie and Leggatt [1987] and Kang, et al [1989].

To explain the basis of the method we consider the strip shown in Fig. 6 which contains
residual stresses σ (x). For near surface stress measurement, which will be discussed later, one ory

more strain gages are located close to the mouth of the crack. For through-the-thickness stress
measurement a strain gage is located on the back face of the strip. In either case the normal strain
ε(a,y) at location y = s produced by introducing a crack of depth a is given by differentiating Eq. (2),

Since strains can be measured very precisely with strain gages, Eq. (4) provides a more useful
approach than displacement or stress intensity factor measurement. 

Consider a body with a residual stress distribution expressed in terms of a series expansion
of order n with amplitude factor A  defined for the i  order term. We now introduce a crack or a veryi

th

thin cut of progressively increasing depth to the body while measuring the change of the strain at
location s as shown in Fig. 6. From linear superposition K  can be expressed asI

where K  is the stress intensity factor corresponding to the stress given by the i  term in the seriesI
i th

expansion. Equation (5), when combined with Eq. (4), leads to

where ε  is the strain measured when crack depth equals a  and C  is crack compliance functions.j j i

When the number of the strain measurements is greater than n+1, the unknown A  can be determinedi
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using a least squares fit which reduces the average error over all data points to the minimum.
Crack compliance functions for through-thickness residual stress measurements have been

obtained for a number of geometries. Figure 7 shows a residual hoop stress distribution measured in
a water-quenched thick-walled ring. The agreement with numerical computation and X-ray
measurement at the surface is very good. The method is especially useful when the stress to be
measured varies rapidly both with the distance from the plane of the cut and with the depth of cutting.
Such a situation arises for example at the toe of a fillet weld or at any other welded junction. X-ray
and layer removal techniques are not well suited to such problems.

The Slit Compliance Method for Near-Surface Residual Stresses Measurement
In this case the width of the cut is usually not negligible, and the compliance functions for a

slit instead of a crack are obtained using the body force method [Nisitani, 1978]. Similar to the hole-
drilling method, strain gages are located on the surface near the cut. However, the actual distance
measured from the strain gage to the cut is used in the computation of the compliance functions to
eliminate the mis-alignment error which is often associated with the hole-drilling method. The strain
response obtained by the slit compliance method has been shown to be more than twice of that
obtained by the hole-drilling [Cheng and Finnie, 1993].

Residual stresses produced by surface treatment or cladding usually vary rapidly over a small
distance below the surface. A least squares fit using a single continuous function may become
unstable for numerical computation as the order of prediction increases. To solve this problem, we
have developed a general procedure combining the least squares fit with lower order overlapping
piecewise functions [Gremaud, et al. 1994] and implemented it for estimation of near surface stresses.
Experimental results show that this procedure is capable of measuring stresses with a very steep
gradient which failed to be detected by the X-ray diffraction method. Figure 8 shows a comparison
of the residual stress distribution in a laser-treated specimen measured by the slit compliance and by
the X-ray method with layer removal. The slit compliance method has also been used to measure the
stress due to shot-peening and shows good agreement with X-ray measurements.

Using a specially made electrode for EDM, cuts of almost uniform depth can be introduced
on a curved surface. Measurements can now be made at locations such as inside a valve body where
other techniques would be impossible to implement without cutting the specimen apart.

Discussion
Griffith's classic work is revisited to show the influence of residual stresses on the tensile

strength of glass in moist and inert environments.
The phenomenon of crack closure due to the residual stress in the wake of a propagating

crack is familiar to those working in fatigue. However, the fact that surface compressive stresses may
lead to closing of the crack mouth does not appear to have been fully appreciated in the area of non-
destructive inspection for cracks.

The equivalence of energy release rate and the stress intensity factor, which is required to
derive Eqs. (2) and (6), was shown in Irwin's classic paper in 1957. However, apart from a limited
step in 1971, the use of LEFM for residual stress measurement has been developed only in the past
decade. We have reviewed this recent work which appears to improve measurement procedures for
many practical configurations.
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Fig. 3 Prediction of tensile strength of soda-lime glass as a function
of scratching load dry air ignoring residual stress (heavy dashed line)
 and with residual stress (heavy solid line). For moist air the corre-
sponding predictions are shown by the thin dashed and solid lines.
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Fig. 4 Schematic of residual stress measured for a typical shot-peening
application (solid line) and approximation by a rectangular distribution
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Fig. 6 A thin cut is introduced in a body with residual stress while
strains are measured at selected locations
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Fig. 7 Residual hoop stress in a water-quenched thick-walled ring
measured by the present method (solid line) compared with
numerical computation by FEM (dashed line). The near surface 
stress (data point) was measured by X-ray method.
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Fig. 8 Residual stress due to laser surface treatment measured by
the present method and by the X-ray method from two independent
laboratories. The dashed line represents approximate numerical
computation
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ABSTRACT 
 
The strength and ductility of nanocrystalline WC-Co cermets was evaluated with a modified Kolsky 
torsional bar.  The test specimen structure consisted of a thin walled Al7075-T6 substrate 250 µm thick 
coated with a 250 µm thick WC-Co layer with an average grain size of 100 nm. Dynamic torsion tests 
indicated the coating strength to be ≅ 200 MPa.  The coated specimens exhibited quasi-ductile behavior in 
that, after diffuse microcracking and failure of the coating, the aluminum substrate takes control of the post 
failure behavior.     
 
The use of high-speed photography showed that damage to the coating occurred at the point where 
maximum load was attained.  A sudden drop in load carrying capacity was observed when cracks coalesced 
into a well-defined fracture plane.  This drop was immediately followed by load reduction governed by 
plastic deformation of the Al substrate 
 
 
INTRODUCTION 
 
WC-Co cermets are employed mainly as wear resistant materials.  Properties of high hardness and toughness 
have encouraged their widespread use in a variety of applications, including mining, grinding, and metal 
cutting.  Conventional grades of these cermets possess grain sizes in the 1-10 µm regime, with a 
morphology composed of a hexagonal WC phase bound together with a Co phase.  Mechanical properties 
are significantly influenced by this microstructure in that hardness increases with grain size in accordance 
with the Hall-Petch relation [1,2]. 
 
Recent work has indeed demonstrated that nanostructured cermets offer improved mechanical properties 
over their coarse-grained counterparts [3].  Nanostructured materials are of great interest in systems where 
nano-grained morphology may improve the yieldability of what would otherwise be brittle materials.  As a 
result they possess high interface-to-volume ratios that can expand plasticity and strain to failure of 
normally brittle materials [4,5].  Nanostructured materials can also exhibit increased hardness that follows 
the Hall-Petch relation to a critical point prior to saturation [6,7].   These benefits stem from the large 
number of nano-sized grains per unit volume and their accompanying large interface-to-volume ratio [5,8].  
The presence of porosity in a nanostructured material can result in a lower than expected hardness and 
affects various other mechanical properties as well [9,10].  For the WC-Co cermet material, properties of 
increased hardness and enhanced strain to failure are very desirable.  These advantages have been well 
documented for other submicrometer-grain-sized ceramics [11-14].  



 
The wear resistant applications of WC-Co cermets inevitably expose them to mechanical conditions 
involving local dynamic loading and high strain rates.  Testing of materials under such loading conditions 
present special challenges [15].  Dynamic fracture toughness can be evaluated by a number of techniques 
that include: Charpy test [16,17], drop-hammer experiment [18], and plate-impact experiment [19].   In 
employing these methods, the energy applied to the specimens is considerable, resulting in unstable growth 
upon crack initiation.  Similarly, damage and inelasticity can be addressed using dynamic testing with 
specimen recovery [20-22].  A further consequence of these methods stems from computational and 
theoretical considerations that make up the basis for identifying damage initiation and evolution [23-24]. 
 
It is essential for present and future application design that we are able to predict the high strain rate 
response of the cermet material.  With this in mind, a simple and accurate technique for studying dynamic 
loading conditions is the modified split Hopkins pressure bar [25].  This method has the advantage of 
loading the material under nearly uniform stress and strain rate.  The integration of high-speed photography 
allows for the continual monitoring of specimen shape during testing.  By this approach, a correlation can 
then be made between failure initiation and the stress-strain state of the specimen.  This work investigates 
the response of WC-Co nanostructured materials under high strain rate conditions and examines the effect of 
loading rate on failure mode.  It also evaluates the strength and ductility of the nano-grain sized coatings 
with unique instrumentation and specimen configuration. 
 
 
EXPERIMENTAL PROCEDURE 
 
Materials and processing 
Nanocrystalline WC-Co coatings of 250 µm thickness were produced by a proprietary spraying process 
developed by A&A Company, Inc., South Plainfield, NJ.  In this study, the alloy Al7075-T6 was machined 
as a thin-walled tube and used as the substrate.  Both coated and uncoated aluminum specimens were tested 
to evaluate the mechanical properties of the nanocoatings.  The geometrical dimensions of the WC-Co nano-
coated samples used in the dynamic torsion test are given in Figure 1(a). The Young's modulus and 
Poisson's ratio of WC-Co and Al7075-T6 are: EC = 520 GPa, νC = 0.28, and EAl = 70.9 GPa, νAl = 0.36, 
respectively.  Figure 1 shows micrographs of (b) micro-sized (3-4 µm) and (c) nano-sized (100 nm) grain 
structures.  The micro-sized material provided a basis for comparison in the micro- and nano-indentation 
experiments.  Both materials had the same 11 percent cobalt content.  The surfaces of the coated specimens 
were painted with a very fine speckle pattern that was essential for imaging by high-speed photography and 
for strain analysis by digital speckle correlation.  The ends of the sample were fixed to the incident and 
transmission bars by means of a high strength and fast curing adhesive (DEVCON 5 minute epoxy). 
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Figure 1: Schematic representation of WC-Co nanocrystalline coated dynamic torsion specimen (a). 
The dimensions of the Al7075-T6 substrate are identical for uncoated specimens.  Photomicrograph of 
WC-Co (b) micro- and (c) nano-grain sized structures. 

 
Mechanical testing 
Our modified stored-energy Kolsky bar was used to obtain shear-stress / shear-strain curves at high strain 
rates [22,26,27].  The bar was integrated with a high-speed photography rig to observe deformation events 
and correlate them to specific points along the stress-strain curve.   



 
High-speed photography 
High-speed photography was used to independently monitor specimen inelasticity during testing.  A Cordin 
Model 220-8 camera and K2 long distance microscope were used with a SUNPAK Auto 120J TTK high-
power flash to acquire the images.  Frames were captured at 20 µs intervals with exposure times of 1 µs.  
The incident pulse from the modified Kolsky bar was used to trigger the camera and flash. 

 
Formulae 
The functional dependence of strain rate on the incident, reflected, and transmitted shear strains for a single 
material specimen has been previously reported [28].  For a double-layered specimen, such as the WC-Co 
nano-coating on aluminum thin-walled substrate (see Figure 1(a)), the stresses and strains are obtained from 
the following equilibrium and compatibility relations: 
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where TT is the transmitted torque, G is the shear modulus, I is the polar moment of inertia, γ is the shear 
strain, τ is the shear stress, r is the center line radius, and t is the shell thickness of the aluminum (AL) and 
of the coating (C).  It is important to note that homogeneous deformation and compatibility in the double-
layered specimens is violated when debonding at the aluminum-WC/Co interface or shear localization 
occurs. 
 
 
RESULTS AND DISCUSSION 
 
Dynamic Torsion 
Shear stress – shear strain curves.   
Three thin-walled sample configurations were selected for study.  The first was an Al7075-T6 alloy thin-
walled tube of thickness 250 µm coated with a 250 µm thick nanostructured WC-Co cermet.  The second 
and third were uncoated Al7075-T6 thin-walled tubes of thickness 250 and 500 µm respectively, used 
comparatively for evaluating the nanocoatings mechanical properties.   
 
The measured transmitted torque of the above samples is plotted as a function of time in Figure 2(a).  For 
both uncoated Al7075-T6 specimens, (�) denotes 250 µm thickness and (�) denotes 500 µm, the 
transmitted pulse has an extended steady state region at the top of the curve with large plastic deformations 
being recorded.  However, for the WC-Co coated sample (�), the transmitted pulse drops quickly after 
maximum transmitted torque is reached. This indicates that the WC-Co coating exhibits a quasi-brittle 
behavior and fractures at small inelastic deformations when compared to thin-walled Al7075-T6 specimens.  
The doubling of the wall thickness for the uncoated Al specimens translated into a doubling of the 
maximum transmitted torque as well as its steady state duration. The thin aluminum samples were found to 
be broken after the shear tests, a result of shear localization followed by fracture. This explains the reduction 
in transmitted pulse time to approximately one half of the pulse duration. 
 
The WC-Co coating material is well bonded to the aluminum substrate.  When this coating fails, the 
transmitted torque rapidly drops to a lower level before progressively decaying to zero. This indicates the 
inner-aluminum layer controls the post failure behavior. Furthermore, in view that the Young’s modulus of 
WC-Co is much greater than that of Al7075-T6, the plastic deformation of the inner-aluminum layer is then 
constrained to a much narrower region. Thus, the total plastic deformation, on the whole specimen length, 
was smaller than in the case of the uncoated aluminum specimen.  It can be expected that this sudden loss of 
load carrying capacity of the coating triggers shear localization in the aluminum substrate.  This 
phenomenon was found to exist in all WC-Co nanocoated specimens subject to varying levels of incident 



torque.  Figure 2(b) is a plot showing transmitted torque signatures for specimens with incident torques of 
200 Nm (�), 190 Nm (�), 180 Nm (�), and 130 Nm (�).  It should be noted that they are plotted on an 
arbitrary time scale to separate their signatures and that each data set lasted for a period of ≅ 250 µs.  It is 
important to note that a higher incident torque did not always correspond to a higher transmitted torque. For 
example, the 180 Nm incident torque specimen exhibited the highest transmitted torque. 
 
The shear stress and shear strain are easily obtained from the transmitted torque results via Eqs. (1) and (2).  
The shear stress and shear strain relationship that correspond to the experimental results in Figures 2(a) and 
2(b) are plotted in Figures 2(c) and 2(d) respectively.  Figure 2(c) compares the shear stress - shear strain 
relationship between the coated, (�), and uncoated specimens, (�) for 250 µm thickness and (�) for 500 
µm.  The 0.2 percent yield offset for both uncoated Al7075-T6 specimens was ≅ 185 MPa.  The maximum 
shear stress was ≅ 220 MPa with corresponding shear strain of ≅ 20 percent and matches well with those 
reported in the literature.  The results for the thin- and thick-walled samples are almost identical with 
exception to an extended plastic zone and a sharper decrease in shear stress toward failure. 
 
For the coated specimen (�), the maximum shear stress was ≅ 200 MPa.  The abrupt drop after attaining 
maximum shear stress indicated that micro-cracking began with the offset of yielding by the substrate.   As 
observed in the transmitted torque results discussed earlier, following the sudden drop in shear stress, the 
average plasticity leveled off and progressively decayed to complete failure. This is a clear indication that 
the inner-aluminum layer controls the post failure behavior. 
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Figure 2: Transmitted torque-time signatures, (a) and (b), and the calculated shear stress - shear strain 
signatures, (c) and (d).   Where (�) denotes the nanocoated specimen, (�) and (�) demote the uncoated 
Al7075-T6 thin-walled tubes of thickness 250 µm and 500 µm respectively, and various incident 
torques of nanocoated specimens are; 200 Nm (�), 190 Nm (�), 180 Nm (�), and 130 Nm (�). 

 
This transition in failure behavior was also observed in all coated samples with varying applied incident 
torque, Figure 2(d).  In these data, the maximum shear stress attained for the coated specimens was ≅ 200 ± 
30 MPa, reaching a maximum when the incident torque was 180 Nm.  The absence of an extended strain to 

(a) (b)

(c) (d)



failure region in the stress-strain curve for the nanocoated specimens is likely the result of extensive porosity 
in the coating material.  This aspect was identified in the hardness discussion above. 
 
The hardness of the micro- and nano-grain sized WC-Co was evaluated and revealed that hardness remained 
relatively uniform in the micro-indentation regime for both grain-size structures yielding values between 
12–13 GPa.  Nano-indentation revealed a significant change in behavior where the micro-sized material 
exhibited an increase in hardness to ≅ 20 GPa while the nano-sized material first showed hardness to be 
equivalent to the micro-indentation data at a depth of 500 nm and then increased to ≅ 20 GPa at a depth of 
200 nm.   Given the degree of coating porosity of the nano-sized material, the microstructure consists of 
hard agglomerates (clusters of nano-sized crystals strongly bonged together) that likely behave in a manner 
similar to the micro-grained material during the indentation tests. 
 
High-speed photography.   
Figure 3(a) is a series of images showing the surface of the coated thin-walled specimen.  This series depicts 
a time sequence during torsional loading where a speckle pattern applied to the surface is used to determine 
the relative shear deformation experienced by the specimen.  Two areas of the surface are denoted with a 
square (A) and a circle (B) that track the movement of specific speckles relative to each other.  For the 
specimen in Fig. 9, the position of square A does not significantly change during the test.  However, circle B 
was observed to displace continuously over time as a result of coating cracking and shear localization.  After 
70 µs circle B moved 21.2 µm relative to square A, resulting in an average shear strain of 2.85 percent.  
After 90µs the displacement increased to 105.8 µm and the average shear strain increased to 14.2 percent.  
There is also the initiation of a crack denoted by the arrow.  Displacement and average shear strain increased 
with time until failure.  These strains are a localized examination and differ from those calculated in Figure 
2 under the homogeneous deformation assumption. 
 
Synchronization of strain analysis and high-speed photography.   
The data from dynamic torsion testing can be synchronized with the frames obtained from high-speed 
photography by matching their time scales.  Figure 3(b) is a plot of the transmitted torque versus time for the 
coated specimen.  Superimposed on this plot are the time markers for when each frame of Figure 3(a) was 
acquired during the test.  Frames 1 (0 µs) and 2 (70 µs) were captured before the maximum transmitted 
torque was attained.  When the microcracks coalesce into a dominant crack the coating fails and the 
aluminum substrate then governs the deformation behavior until failure. 
 
 
CONCLUSIONS 
 
Specialized equipment and specimens were developed to investigate strength and ductility of nanocrystalline 
WC-Co coatings.  Dynamic torsion experiments with well-defined stress pulses were performed.  These 
experiments revealed that the strength of WC-12%Co cermets, with an average grain size of about 100 nm, 
was about 200 MPa.  The coating exhibits a quasi-ductile behavior as observed in deformation patterns.  
High-speed photography carried on in real time showed that coating damage occurred in the vicinity of the 
stress peak.  Furthermore, the images revealed that a sudden drop in load carrying capacity coincides with 
micro-crack coalescence leading to the formation of a well-defined fracture plane in the coating.  The stress 
peak in the coated material also coincides with the onset of large plastic deformation of the aluminum 
substrate. It is likely that shear localization in the aluminum thin-walled specimen is triggered by fracture of 
the coating and subsequently confined to the narrow region of the failed coating. The end result is the 
overall splitting of the specimen in two pieces. 
 
Although the properties of the WC-Co nano-coating were far from optimum, a new methodology for 
investigating failure has been established.  This methodology can be applied to examine the behavior of 
other advanced materials that can be manufactured as coatings on ductile substrates. 
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Figure 3: (a) High speed photography images taken during a dynamic shear test and (b) synchronization of 
frames with dynamic strain analysis data (b). 
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ABSTRACT 
 
The strain-induced growth and interaction behavior between neighboring voids located within small clusters 
has been experimentally modeled by determining the thinning behavior of the ligaments between the cavities 
formed by blind-end holes that have (initially) hemispherical ends and that are contained within uniaxial 
tensile specimens.  The key assumption is the strain-induced thinning and coalescence of the ligaments 
between the macro-scale cavities is similar to that between neighboring spherical microvoids.  Results from 
Cu specimens containing 2 or 3 blind-end holes indicate strain-induced cavity growth and coalescence 
behavior that is more rapid for clusters of 3 cavities.  For this case, cavity coalescence also results in the 
characteristic 3-fold symmetry pattern that frequently forms along the ridges on a dimpled ductile fracture 
surface.  When compared to void growth predictions based on the strain-induced growth of isolated voids, 
these results indicate void interaction effects that are sensitive to cluster geometry such that the three-fold 
symmetry conditions created by 3 neighboring voids result in accelerated void growth induced by an 
elevated level of stress triaxiality within the inter-void ligament.  
 
KEYWORDS:  Void growth, void coalescence, ductile fracture 
 
 
INTRODUCTION 
 
Tensile fracture of ductile metals at low temperatures typically occurs by a damage accumulation process 
that involves microvoid nucleation, growth, and coalescence.  For many metals, void nucleation at inclusions 
occurs at small strains, and fracture is dominated by void growth and coalescence.  The strain-induced 
growth of isolated spherical voids was modeled initially by Rice and Tracey [1], and their predictions have 
been subsequently supported by computational studies [2,3].  However, for the case of closely spaced voids 
such as at high void volume fractions near coalescence or among those voids within the clusters, void 
interactions should result in accelerated void growth, as has been observed experimentally [4,5].  Despite 
two-dimensional modeling (both experimental and computational) as well as three-dimensional unit-cell 
models (the study of Thomson et al [6] is especially pertinent to this work), the detailed nature of such 
interactions among small void clusters, such as inter-void spacing effects or which void cluster geometry 
promotes strong interactions, is not well understood. 
 
In this study, as shown conceptually in Figure 1, we utilize a novel specimen geometry to model 
experimentally the growth and coalescence among clusters of three neighboring spherical cavities.  
Specifically we employ tensile specimens containing three blind-end holes with hemispherical ends and 
subject the specimens to interrupted deformation in order to measure the ligament thinning behavior between  
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.Figure 1.   (a) Ductile fracture surface illustrating “ridge-crater” shape formed by clusters of three voids. (b) 

Cross section of tensile specimen geometry employed to model clusters of three voids (c) 
Fracture surface created by our three-cavity cluster geometry. (d)  Micrograph of a strained three-
cavity cluster specimen that has been sectioned and polished. 

 
 
the cavities formed by the hole ends [7].  We believe that the strain-induced thinning behavior of these inter-
cavity ligaments is similar to that of the ligament between neighboring spherical voids located a similar  
relative distance apart.  An important experimental advantage of this modeling approach is the ability to 
measure directly that the inter-cavity ligament width (and therefore the “cavity” growth behavior) as a 
function of strain.  Using this modeling approach, we [7] have previously determined the ligament thinning 
behavior between two adjacent cavities.  Geltmacher et al [8] subsequently established that tensile specimens 
with clusters of three blind-end holes failed such that the fracture surface between the cavities had the 
“ridge-crater” characteristic shape formed by void coalescence during microvoid fracture; however, no 
cavity growth measurements were performed in that effort.  In this communication, we extend these two 
studies by utilizing copper tensile specimens containing either 2 or 3 co-planar holes with hemispherical ends 
to examine thinning behavior between these cavities and therefore to assess the “void growth” behavior 
within such small clusters of voids.  The cavities formed by the hole ends form a triangular pattern and are 
contained on a plane normal to the tensile axis, and thus this cluster geometry differs considerably from 
those assumed in the three-dimensional computational modeling by Thomson et al [6].  In that study, their 
three-cavity cluster formed a linear array, as opposed to the triangular array here. 
 

 



 
 
EXPERIMENTAL 
  
The experimental basis for this study is a “blind-end hole” specimen shown in the three-hole configuration in 
Figure 1.  Round bar tensile specimens with 15.5 mm gauge length diameters and 63.4 mm gauge lengths 
were machined from C11000 copper such that they contained either two or three coplanar holes into the mid 
section of each specimen.  The holes, each with diameter = 1.59 mm, were drilled with a ball end-mill to 
produce hemispherical cavity at the hole end. For the two hole case, the holes were located in the same plane 
but opposite each other, while the three hole configuration had the hole axes separated by 120° to produce 
the Y geometry.  The test specimens were fabricated with initial inter-cavity ligament widths of 0.79, 1.59, 
3.18, 4.77, and 6.36 mm, which correspond to ligament widths of 0.5D, 1D, 2D, 3D, and 4D, respectively, 
where D is the hole diameter.  Typical scatter in initial ligament widths was ± 0.04 D.  Note that the inter-
cavity ligament width dimension, W, is measured from the base of one hole to the base of another. 
The material was C11000 copper, which was vacuum annealed at 375 °C for one hour after machining.  The 
average grain size was 32 µm, which corresponds to greater than 20 grains across the minimum inter-hole 
ligament.  The Cu had a yield stress of 220 MPa and a strain hardening exponent, n = dlnσ/dlnε, of n = 0.28 
for 0.01≤ε≤0.45 as obtained from compression testing. 
 
Inter-cavity ligament thinning was measured by deforming tensile specimens at room temperature at an 
initial strain rate of 10-3 s-1.  The specimens were strained in ≈ 0.015 far-field axial strain increments at which 
point a modified electronic depth indicator with rounded-end probes was used to measure hole depth using a 
procedure described elsewhere [7].  For the cases of the two-hole specimens, hole depth measurements could 
be used to determine the ligament width directly.  For the three-hole specimens, inter-cavity ligament width 
was obtained from a straight-forward geometric analysis based on the determination of the distances from the 
geometric center of the specimen to the ends of two adjacent holes [9].  Five measurements were made of 
each dimension such that the ligament width was measured to within ±0.04D, where D is the hole diameter.   
 
RESULTS AND DISCUSSION 
 
As a measure of cavity growth, we have determined the inter-cavity ligament width, W, as a function of 
strain.  These results, presented on the basis of the instantaneous ligament width, W, normalized to the initial 
ligament width, Wo, are shown for the case of three holes in Figure 2.  In order to interpret these results, the 
choice of the strain axis in Figure 2 deserves a comment.  The strain basis for Figure 2, 2ln(do/d)local, relies 
on measurements of the initial and final specimen diameters, d0 and d, respectively, in the plane of the holes 
and measured along a line inclined about 300 to the holes in order to avoid displacement effects along the 
barrels of the hole.  We have also measured extensional strain values based on both scribe marks along the 
top and bottom of the holes and scribe marks along a 25 mm gauge section of the specimen; these extension-
strain values coincide with the diameter-based strains until about 0.1 strain at which point specimen necking 
occurs in the section containing the holes.  Thus, we have chosen the value of 2ln(do/d)local as the best 
measure of extensional strain in the vicinity of the cavities, despite the fact that strain-induced hole growth 
implies the extensional strain is somewhat greater than the 2ln(do/d)local -values reported in Figure 2. 
Figure 2 shows that the normalized rate of thinning increases as the inter-cavity ligament width decreases, 
consistent with the fact that closely spaced voids coalesce at small strains during microvoid coalescence.   
The special case of clusters of three cavities is also evident in Figure 1a, which highlights the formation of Y 
patterns along ridges formed by coalescence of groups of three microvoids.  We believe that these Y patterns 
form because growth and therefore coalescence is rapid within groups of three voids.  It is also likely that, 
given the small number of voids in such clusters, there is a relatively high probability that clusters of three 
voids are present so as to promote rapid growth (i.e., clustered roughly on a plane normal to the maximum 
principal strain axis).  
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Figure 2.    A comparison of normalized inter-cavity ligament thinning as a function of strain for five inter-

cavity spacings in the three-cavity specimen.  For comparison, the ligament thinning behavior of 
a two-cavity specimen (with an inter-cavity spacing of 1 cavity diameter) is also shown. 

 
The ligament thinning data in Figure 2 is limited by the failure of the ligament between the cavities.  As 
shown in Figure 1c, the fracture surfaces formed within the cluster of three closely spaced cavities (Figure 
1c) mimic the Y ridge patterns formed among clusters of three microvoids in Figure 1a.  In Figure 1c, there 
is sufficient ductility within the inter-cavity ligament at the 0.5D spacing such that the ligaments thin to 
knife-edges due to purely plastic failure.  At larger inter-cavity spacings, an increased level of strain is 
required for the ligaments to thin to the knife-edge, and instead fracture of the ligament intervenes.  In this 
latter case, there is sufficient constraint between the cavities to induce ligament fracture prior to the strain 
level necessary for the ligament to thin to a knife-edge. 
  
Both the rapid thinning behavior and the manner of failure suggest that inter-cavity ligament deformation 
occurs under a level of constraint due to the notch-like geometry of the neighboring cavities.  The 
implication is that the inter-cavity ligaments deform under stress triaxiality ratios higher than that of uniaxial 
tension.  We therefore suggest that it is this locally elevated stress triaxiality that causes the rapid cavity 
growth and inter-cavity thinning depicted in Figure 2.  Compared to the case of the growth of an isolated 
cavity/void under far-field uniaxial tension, these results suggest that cavity growth within a cluster is 
accelerated by the presence of a triaxial stress state within the ligaments. 
 
As an initial attempt to analyze our results, we adapt the analysis procedure used by others [5,10] to analyze 
experimental void-growth behavior on the basis of the Rice and Tracey cavity-growth relationship [1].  As a 
first approximation, we assume spherical growth of cavities under a tensile deformation field at large stress 
triaxiality ratios that remain relatively constant during deformation.  Under these conditions, the following 
relationship describes the radial growth of the cavities: 
 

ln( R/ Ro ) = αεeq exp(β
σ m

σ eq

)      (1) 

 
where Ro and R are initial and final cavity radii, εeq is the equivalent far-field strain, α and β are constants 
whose values should be α = 0.283 and β = 1.5, according to Rice and Tracey [1].  A more recent analysis 
[11] indicates α = 0.427 for σm/σeq > 1 and for σm/σeq < 1, α = 0.427 (σm/σeq)0.25.   

 



 
In this study, we use straight-forward geometry to relate our ligament thinning measurements to cavity 
growth behavior.  The following relationship between R/Ro and the normalized inter-cavity ligament 
width,W/Wo  , is readily obtained: 
 

R
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       (2) 

 
where in our case 2Ro is the hole/cavity diameter and equals 1.59 mm, while Wo/2Ro  is the initial inter-
cavity spacing in terms of the diameter D.   
 
Based on Equation 2 and assuming εeq≅ 2ln(do/d)local , Figure 3 tests the validity of Equation 1 by showing a 
nearly linear dependence of ln(R/Ro) on strain for both the two- and three-cavity cases.  All of these data 
support the general form of Equation 1 as a basis for describing cavity growth within small cavity clusters. 
Small deviations from linear behavior in Figure 3 occur at large strains for the closely spaced cavities in 
which case linear behavior is observed initially and then followed by non-liner behavior as ligament thinning 
accelerates.  Furthermore, a comparison of the cavity growth behavior in Figure 3 confirms that cavity 
growth is more rapid in the three-cavity cluster than in the two-cavity case. 
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Figure 3.   The dependence of cavity growth on strain for clusters of three cavities, designated 3H, and 

two cavities, designated 2H. Data are for a range of inter-cavity spacings from 0.5D to 4D. 
 
It is also significant that increasing cavity spacing appears to be accompanied by an increase in cavity growth 
rates.  While this effect is small in the case of the two-cavity condition, the cavities spaced far apart in the 
three-cavity clusters grow significantly faster than those closely spaced (i.e., at 0.5D and 1.0D).  Such an 
effect is also consistent with the presence of elevated levels of stress triaxiality within the ligaments between 
the clustered cavities.  For example, if the cluster of cavities is viewed as an incomplete circumferential 
notch, then the Bridgeman analysis [12] predicts increased stress triaxiality with increasing inter-cavity 
spacing.    
The combination of the results in Figure 3 and Equation 1 can be used to test our hypothesis that an elevated 
level of stress triaxiality exists between the cavities and causes their rapid growth.  If we assume α = 0.427 
for σm/σeq > 1 and for σm/σeq < 1, α = 0.427 (σm/σeq)0.25 [11] and β = 1.5 [1], then the cavity growth data in 
Figure 3 predict average stress triaxiality ratios within the inter-cavity ligaments that increase somewhat with 
strain but have values ranging from σm/σeq ≅ 0.6 for three cavities spaced initially 0.5D apart to σm/σeq ≅ 0.8 
for the three cavities spaced 4D apart.  Importantly, the predicted stress triaxiality between two cavities is 

 



much less: σm/σeq ≅ 0.4 to 0.5.  While such stress triaxiality levels are significantly higher than the far-field 
value of σm/σeq = 0.33 characteristic of a uniaxial tension test, the elevated triaxiality values are similar to 
those imposed within circumferentially notched tensile specimens with very “mild” notch geometries.  We 
are currently performing three-dimensional finite element analysis to examine this issue further [13].  
 
The important implication of the above analysis is that it suggests that void growth within clusters of voids 
can be predicted on the basis of a straight-forward application of the Rice-Tracey void growth relationship 
provided that the stress triaxiality reflects the local condition within the deforming inter-void ligament. It 
appears that the clusters of three equal-sized voids with roughly three-fold symmetry and located on a plane 
normal to the maximum principal stress create elevated levels of stress triaxiality within the inter-cavity 
ligament (and therefore rapid void growth), and such clusters have a high probability of occurring in the 
optimum configuration/orientation. 
 
SUMMARY 
 
Utilizing copper tensile specimens containing either two or three blind-end holes, we have experimentally 
modeled the growth behavior of neighboring spherical cavities.  Consistent with expectations from fracture 
surface observations of microvoid coalescence, the results indicate that inter-cavity ligament thinning is 
more rapid within a cluster of three cavities than between two cavities at the same inter-cavity spacing.  
Furthermore, the cavity growth within the three-cavity cluster is consistent with the void growth model of 
Rice and Tracey for a large range of inter-cavity spacings provided that the assumed stress triaxiality ratio is 
increased above that of uniaxial tension. As such, these cavity growth results strongly suggest the void 
interaction effects during ductile fracture can be understood on the basis of elevated levels of stress 
triaxiality within the inter-void ligaments.  
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ABSTRACT 
 
An extended Gurson model incorporating the effects of the shape and spacing of the voids on the growth and 
coalescence is proposed.  The onset of void coalescence is modeled as a transition from diffuse plasticity to 
transverse localized plastic yielding in the intervoid ligament.  A simple constitutive model for the 
coalescence stage is also developed.  An assessment of the model is proposed by comparison with void cell 
computations under non-radial loading conditions.  The effect of the void shape on the fracture toughness is 
addressed using the assumption of uniaxial straining state within the fracture process zone.  The analysis 
reveals that the effect of the void shape on the fracture toughness becomes significant for initial porosity 
larger than 10-4 and this effect increases for increasing initial porosity. 
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INTRODUCTION 
 
Recent efforts in the development of computational models incorporating the void growth process has given 
rise to robust predictive methods for crack propagation in ductile solids, e.g. [1,2,3,4,5].  Most of these works 
employed the constitutive model initially proposed by Gurson [6], improved by Tvergaard [7], and finally 
extended by Needleman and Tvergaard [8].  Although good agreement with a range of experiments and void 
cells computations has been observed, the model as it currently stands still suffers from limitations which are 
though to arise partly because (i) void shape is not directly accounted for and (ii) void coalescence is not 
properly modeled.  Hence, an enhanced void growth model incorporating void shape, void distribution et 
void coalescence effects has been developed by integrating contributions by Gologonu [9], Thomason [10] 
and new ingredients related to strain hardening and to the final coalescence stage [11].  The axisymmetric 
version of the model has been extensively validated by comparisons with void cell simulations performed 
under constant stress triaxiality in Ref. [11].  This report addresses two issues.  First, the void growth model 
is again assessed by comparison with unit cell calculations, in the case of a constant strain biaxiality ratio.  
This mode of loading allows analyzing the pertinence of the model under non-radial loading.  In the second 
part, the extended void growth model is used to draw qualitative features about the effect of void shape and 
void distribution on the fracture toughness of metal alloys. 
 
Summary of the model. Only axisymmetric stress states are considered in the present work and the solid is 
made of a periodic distribution of the cylindrical representative volume element (RVE) defined on Fig. 1.   
 



Void growth model. The extension of the Gurson model due to Gologanu et al. [9], which has been adopted 
here to describe behavior prior to void coalescence, gives a constitutive relation for a porous elastoplastic 
material containing (axisymmetric) spheroidal voids.  This particular model, extended for strain-hardening, 
contains as state variables: the components of the mesoscopic stress tensor, Σ , the porosity, f, the void aspect 
ratio, S, and an average yield stress for the matrix material, σm.  The void aspect ratio is defined by S = ln(W) 
while W = Rz/Rr. 
 

Rz

Rr Lz

Lr

 
 

Figure 1: Representative volume element 
 
The functional form of the model prior to coalescence is: 
 

 Φ ≡ Φ Σ, f,  S, σ m( ) = 0 , (1) 
 

 Ý f = 1− f( ) Ý E kk
p , (2) 

 

 Ý S ≡ Ý S f , S,T( ), (3) 
 

 σm
Ý ε m

p 1− f( ) =  Σ ij
Ý Ε ij

p , (4) 
 

 σm ≡ σ m εe( ), (5) 
 

 Ý E ij
p = γ

dΦ
dΣ ij

, (6) 

 
where Φ is the flow potential; Εp is the mesoscopic plastic strain tensor; (2) and (3) are the evolution laws for 
f and S, respectively; (4) is the Gurson [6] energy balance for the plastic work allowing computation of σm 
using the effective stress-strain curve for the parent material (5); and (6) is the flow rule.  The expressions for 
the functions such as Φ  and the evolution of S are given in Ref. [9,11].  
 
Criterion for the onset of void coalescence.  Axisymmetric void cell computations [11,12] have shown that 
void coalescence consists in the localization of plastic deformation in the ligament between the voids, which, 
experimentally, gives rise to a flat dimpled fracture surface.  Thomason [10] has studied the transition to 
localization for elastic-perfectly plastic solids by looking at artificially constrained localized solutions giving 
the load as a function of the void cell geometry.  For axisymmetric geometry, Thomason has proposed that 
the average normal stress acting on the cell at the onset of localization occurs when Σ z  attains Σz

loc where  
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where α  = 0.1 and β = 1.2.  By comparing this expression with our numerical results for strain hardening 
materials [11], we also find that this expression provides an accurate estimate for the onset of localization 
within the cells, provided that σ0  is replaced by an appropriate effective flow stress for the matrix, σm  (see 
also [13]), and α  and β incorporate a dependence on the strain hardening exponent n .  The effective matrix 
stress, σm , is obtained using (4) and (5).  A fitting procedure performed on a large number of void cell results 
[9] has revealed that the coefficient β is almost constant equal to 1.24 while α(n) = 0.1 + 0.22n + 4.8 n2 
(0≤n≤0.3).  With relation (7), a new geometrical variable related to the void spacing has entered the model.  
For the sake of simplicity in the formulation of the model, we have chosen to use A = ln(λ) = ln(Lz/Lr).  The 
model thus depends on all the geometric characteristics of the representative void cell: f, A (or λ), S (or W).  



In [11], the criterion (8) has proved to very accurately predict the onset of coalescence for porosity ranging 
between 10-2 and 10-4, stress triaxialities between 1/3 and 5, void shapes W between 1/6 and 6, and void 
distribution λ between 1/2 to 16.   
 
A model for the post-localization regime.  Relation (7) still pertains after the onset of coalescence and Σz

loc is 
replaced by Σz, assuming the voids do not depart significantly from a spheroidal shape.  The additional 
equations for the evolution of the state variables during the post-localization stage are obtained under the 
approximation that elasticity, as well as any reversed plasticity, are neglected.  In agreement with the void 
cell results, the half-height of the localization zone is approximated as Rz (i.e. h = Rz , see Fig. 1).   
 
 
ASSESSMENT OF THE VOID GROWTH MODEL FOR NON-RADIAL LOADINGS 
 
The predictions of the void growth model under constant applied strain biaxiality ratio are compared to finite 
element void cell simulations performed with the same applied biaxiality ratio.  Results are presented for a 
material with f0 = 10-2, λ0 = 1, σ0/E = 0.002, n = 0.1 and W0 = 1/6, 1, 6. The strain biaxiality ratio β = Εr/Εz 
ranges from –0.5 to 0.  As the applied boundary conditions prevent plastic tensile localization, the void 
coalescence model has been turned off except for the uniaxial straining case (β=0).  Thick lines correspond 
to the unit cell calculations and thin lines correspond to the model predictions.  Figures 2 show the variations 
with overall straining of different quantities computed with the void growth model and with the finite 
element unit cell computations for initially spherical voids (W0=1) : the overall axial stress in (a), the 
porosity in (b) and the void shape in (c).  Figures 3 shows the variation of the overall axial stress as a 
function of the overall axial strain for voids initially (a) very oblate (W0=1/6) or (b) very prolate (W0=6). 
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Figure 2: Variation as a function of the overall axial strain of (a) the overall axial stress, (b) the porosity, and 

(c) the void shape, for a material characterized by f0 = 10-2, λ0 = 1, σ0/E = 0.002, n = 0.1 and W0 = 1.  
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Figure 3: Variation of the overall axial stress as a function of the overall axial strain for a material 

characterized by f0 = 10-2, λ0 = 1, σ0/E = 0.002, n = 0.1 and (a) W0 = 1/6 and (b) W0 = 6 (a).  
 



Figs. 2a and Figs. 3 show that the overall stress-strain behavior obtained with the model quantitatively agrees 
with the finite element unit cell solution.  The most important characteristics, which are the maximum stress 
(the "strength" of the material) and the strain at final fracture (the "ductility" of the material), are predicted 
with an accuracy increasing when the strain biaxiality decreases.  One should note that a constant strain 
biaxiality ratio involves marked variations of the stress triaxiality during deformation.  In the case of large 
strain biaxiality ratio, the stress triaxiality sometimes reaches values larger than 5 or 6 for which other 
phenomena, such as unstable void growth may be expected. 
 
 
FRACTURE TOUGHNESS PREDICTION 
 
As initially proposed by Andersson [14] and then revisited by Tvergaard and Hutchinson [15], the fracture 
process zone at the tip of a sharp crack can be anticipated as a row of multiple interacting voids which, to a 
good approximation, are strained uniaxially during the major part of the void growth.  Indeed, under large 
stress triaxiality, the fracture process involves early localization of the plastic flow in a planar zone of 
essentially one void spacing in thickness.  Assuming spherical voids and isotropic void distribution, 
Tvergaard and Hutchinson [15] have shown that the fracture toughness, JIc, governing crack growth initiation 
can almost exactly be expressed as 
 

J1c = Γ0  (9)  
 
where Γ0 is the work per unit area spent in the band until final failure.  It can be computed from the Gurson 
model according to 
 

 
Γ0

σ0 Lr 0

= F
σ0

E
,n, f0

 
 

 
  (10) 

 
where E is the Young's modulus.  Xia and Shih [16] have shown that the uniaxial straining assumption is 
valid as long as f0 is not too small.  Typically, when f0 becomes smaller than 0.1%, a one void - crack 
interaction mechanism takes place.  In that case, the uniaxial straining assumption looses its pertinence.  The 
analysis of Tvergaard and Hutchinson [15] has been extended by accounting for the effect of the void shape 
using the extended-Gurson model.  Now, F generally writes F = F σ 0 E,n, f0,W0( ), assuming isotropic initial 
void distribution (λ0 = 1).  This extended model allows addressing the anisotropic fracture toughness of metal 
alloys.  Indeed, since it accounts for the void shape, this model is able to capture variations of the fracture 
toughness with the orientation of the crack plane resulting from preferential orientation of the inclusions.   
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Figure 4: Variation of  F = Γ0/σ0Lr0 as a function of the initial porosity f0 for various initial void shape 
 
The variation of Γ0/σ0Lr0 as a function of the initial porosity for various void shapes is shown in Fig. 4 (for n 
= 0.2 and σ0/E = 0.002).  The effect of the initial void shape is significant for porosity larger than about 10-4.  
Prolate shape increases Γ0/σ0Lr0 while oblate shape reduces it.  For void shape departing from spherical, 



Γ0/σ0Lr0 cannot be considered anymore as independent of the initial porosity, it increases with f0 for prolate 
voids and decreases with f0 for oblate voids.   
 
The results of Fig. 4 can be used to qualitatively understand and predict the variation of the fracture 
toughness as a function of the loading direction for rolled plates with preferential orientation of the second 
phase.  From these results it is concluded that void shape effects (and the combined effect coming from the 
change in ligament length) can alone explain a factor two (or more) difference in the toughness of plates with 
elongated inclusions depending on the orientation of the crack plane. Note that this analysis is only 
qualitative because of the assumed axisymmetry.  In other words, a 90° rotation of a prolate void with W0 = a 
does not give an oblate void with W0 = 1/a.  
 
 
CONCLUDING REMARKS 
 
The new model only depends on the initial values of the state variable and thus avoids the use of critical 
porosities (for the onset of coalescence and for final separation).  The two additional microstructural 
characteristics of the new model, the void initial  shape S0 and the initial void distribution λ0, can be obtained 
from the same metallographic analysis performed to ascertain f0 and L0.  The comparison with the void cell 
simulations in Ref. [11] for constant stress triaxiality and, in this report, for constant strain biaxiality has 
established that the full void growth/coalescence model is able to quantitatively account for variations of all 
the characteristic parameters of the representative volume element of Fig. 1: porosity, void shape, cell aspect 
ratio, stress triaxiality, for a wide range of matrix flow behavior.  Consequently, the model naturally allows 
addressing issues such as the anisotropy in fracture toughness observed in many materials formed with large 
amounts of plastic strains.  Most importantly, behavior at low and large stress triaxiality are adequately 
encompassed by the same model, giving thus the possibility to deal with failure of thin and thick structural 
parts within the same framework.   
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ABSTRACT

This paper presents a method for integrating the element-free Galerkin method (EFGM) with the
traditional finite element method (FEM) for analyzing linear-elastic cracked structures. The EFGM is used
to model material behavior close to cracks and the FEM in areas away from cracks. In the interface
region, the resulting shape function, which comprises both EFGM and FEM shape functions, satisfies the
consistency condition thus ensuring convergence of the method. Numerical examples are presented to
illustrate the integrated EFGM-FEM. The stress-intensity factors predicted by this method compare very
well with all-FEM or all-EFGM solutions. A significant saving of computational effort can be achieved
due to coupling in the proposed method when compared with existing meshless methods.
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Element-free Galerkin method, finite element method, fracture, stress-intensity factor, crack propagation.

INTRODUCTION

In recent years, a class of meshfree or meshless methods, such as the element-free Galerkin method
(EFGM) [1,2], has emerged that demonstrates significant potential for solving moving boundary problems
typified by growing cracks. Although meshless methods are attractive for simulating crack propagation,
the computational cost of a meshless method typically exceeds the cost of a regular finite element method
(FEM). Furthermore, given the level of maturity and comprehensive capabilities of FEM, it is often
advantageous to use meshless methods only in sub-domains, where their capabilities can be exploited to
the greatest benefit. In modeling crack propagation in a complex engineering structure with stiffeners,
connections, welds, etc., it is more effective to apply meshless methods at sites of potential crack growth
and FEM in the remainder of the domain. Therefore, numerical methods need to be developed for
combining meshless and finite element methods.

In this paper, a numerical technique integrating EFGM with the traditional FEM is presented for analyzing
linear-elastic cracked structures. The EFGM is used to model material behavior close to cracks and the
FEM in areas away from cracks. In the interface region, the resulting shape function, which comprises
both EFGM and FEM shape functions, satisfies the consistency condition thus ensuring convergence of
the method. Several numerical examples are presented to illustrate the proposed method.



THE ELEMENT-FREE GALERKIN METHOD

Consider a function u(x) over a domain KΩ ⊆ ℜ , where K = 1, 2, or 3. Let xΩ ⊆ Ω denote a sub-

domain describing the neighborhood of a point K∈ℜx located in Ω. According to the moving least-
squares (MLS) [3], the approximation ( )hu x of u(x) is

( ) ( ) ( )
1

N
h T

I I
I

u d
=

= Φ =�x x x dΦ (1)

where { }1, ,T
Nd d=d � and ( ) ( ) ( ){ }1

T
N= Φ Φx x , , x�Φ with Id representing the nodal parameter for

node I and ( ) ( ) ( ) ( )T
I I IwΦ =x a x p x x representing the MLS shape function corresponding to node I,

( )a x is a vector of unknown parameters, which can be determined by imposing reproducibility or

consistency conditions, { }1 2( ) ( ), ( ), , ( )T
mp p p=p x x x x� is a vector of complete basis functions of order

m, ( )Iw x is a weight function associated with node I such that ( ) 0Iw ≥x for all x in the support Ωx of

( )Iw x and zero where Ix denotes the coordinates of node I, and N is the total number of meshless nodes.
According to the reproducibility condition,

( ) ( ) ( )
1 1

( ) ( )
N N

T
I I I I

I I= =
= Φ = Φ� �p x p x x p x x (2)

Substituting ( )IΦ x in Equation 2 gives,

( ) ( ) ( ) ( ) ( )
1

N
T

I I I
I

w
=

� �= � �
� �
�p x p x p x x a x . (3)

INTEGRATED EFGM-FEM

Consider the domain EFGM FEMΩ = Ω ∪ Ω , which comprises two non-overlapping subdomains EFGMΩ and

FEMΩ and boundary bΓ . Depending the location of a point K∈ℜx , the reproducibility condition given

by Equation 3 can be written as follows:

Case 1: If ∈ΩEFGMx and the shape function of all FEM nodes are zero at x,

( ) ( ) ( )
1 I EFGM

N

I I
I = ∈Ω

= Φ�
, x

p x p x x . (4)

Case 2: If EFGM∈Ωx and the shape function of some FEM nodes along boundary bΓ are nonzero at x,

( ) ( ) ( ) ( ) ( )
1 1I EFGM J b

N M

I I J J
I J

N
= ∈Ω = ∈Γ

= Φ +� �
, x , x

p x p x x p x x . (5)

A node on the boundary between EFGM zone and FEM zone bΓ is treated as an FEM node if its FEM

shape function value at the point x is nonzero or else it is treated as EFGM Node. In this case,

( ) ( ) ( ) ( ) ( )
1 J FEM

M

J J
J

N
= ∈Ω

= + �
, x

p x A x a x p x x . (6)

Case 3: If FEM∈Ωx ,

( ) ( ) ( )
1 J FEM

M

J J
J

N
= ∈Ω

= �
, x

p x p x x , (7)



where the FEM shape function ( )JN x can be obtained by Lagrange interpolation. Hence, the effective

shape function for integrated EFGM-FEM, denoted by ( )IΦ x� , can be defined as
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The effective shape function ( )IΦ x� strongly depends on the type of basis functions used. In this study,

the fully enriched basis function was used for analyzing cracked structures [1,2].

VARIATIONAL FORMULATION AND DISCRETIZATION

For small displacements in two-dimensional, homogeneous, isotropic, and linear-elastic solids, the
variational or weak form of equilibrium equation is

0
t

T T T
ud d d W

Ω Ω Γ

� � �
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δ Ω − δ Ω − δ Γ − δ =b u t uê Ç (9)

( ) ( ) ( ) ( ) ( )
J u

T T
u J J J J JW

∈Γ

δ = δ − + δ� �� ��
x

f x u x u x f x u x (10)

where ê is the stress vector, Ç is the strain vector, u is the displacement vector, b is the body force
vector, and t and u are the vectors of prescribed surface tractions and displacements, respectively.
Using the integrated EFGM-FEM method, the displacement field can be approximated by

( ) ( )
1

N Ti ih
i J I J I J

I

u d
=

= Φ =�x x d� �c (11)

where
Ti

J
�c and d are vectors of integrated EFGM-FEM shape functions and nodal parameters

displacements, respectively, and N is the total number of nodal points in Ω. For a single boundary
constraint ( ) ( )i J i Ju g=x x applied at node J in the direction of xi coordinate, when Equations 11 is

invoked, the discretized form of Equations 9 and 10 becomes [2]

( ) ( )0

i ext
J

Ti
i J i JJ

f g

� � � �� � � �
� � =� 	 � 	
� � � �
 � 
 �� 

k d f
x x

�

�

c

c

(12)

where ( )2 2N N∈ ℜ ×ℜk L is the stiffness matrix and 2ext N∈ℜf is the force vector. When multiple

boundary constraints are enforced, an augmented system of similar linear equation can be developed. The
equilibrium equations can be solved using the method of Lagrange multipliers [1] or transformation
methods [2].



COMPUTATIONAL FRACTURE MECHANICS

Consider a structure with a rectilinear crack of length 2a that is subjected to external stresses. Let KI and
KII be the stress-intensity factors (SIFs) for mode-I and mode-II, respectively. The SIFs can be evaluated
using the domain form of an interaction integral (1,2)M , i.e.,

(1,2)

2I

E
K M

′
= , (13)

where E E′ = for plane stress and 2(1 )E E′ = − ν for plane strain, and

(2) (1)
(1,2) (1) (2) (1,2)

1
1 1

i i
ij ij j

jA

u u q
M W dA

x x x

�
�
�
�
�

� �∂ ∂ ∂= σ + σ − δ� �∂ ∂ ∂� �
(14)

where ( )1,2W is the mutual strain energy from the actual mixed mode state for the given boundary
conditions (superscript 1) and the super-imposed near-tip mode I auxiliary state (superscript 2), and q is
another weight function chosen such that it is unity at the crack tip, zero along the boundary of the
domain, and arbitrary elsewhere. Following similar considerations, IIK can be calculated from Equations

13-14, except that the near-tip mode II state is chosen as auxiliary state while computing (1,2)M .

In order to simulate crack growth, the crack-path direction must be determined. There are a number of
criteria available to predict the direction of crack trajectory. In this study, the crack-growth simulation is
based on the maximum circumferential stress criterion [5]. When the values of KI and KII are known, the
direction of crack-propagation can be easily solved using standard numerical procedures. Other criteria,
which are not considered here, can be easily implemented into the proposed method.

NUMERICAL EXAMPLES

Example 1: Stationary Crack under Mixed-Mode
This example involves an edge-cracked plate in Figure 1, which is fixed at the bottom and subjected to far-
field shear stress ∞τ = 1 unit applied on the top. The plate has length L = 16 units, width W = 7 units, and
crack length a = 3.5 units. Figure 2 shows the domain discretization involving 324 uniformly spaced
nodes, some of which are treated as meshless nodes and rest of them are treated as 4-noded quadrilateral
finite elements. The elastic modulus and Poisson's ratio were 30×106 psi and 0.25, respectively. A plane
strain condition was assumed.

Table 1 shows the predicted KI and KII for several values of LEFG/L, where EFGL is defined in Figure 2. The

reference solutions for this problem are: 34 unitsIK = and 4.55 unitsIIK = [6]. The predicted KI and KII

values compare very well with the reference SIF values up to LEFG/L = 6/14. However, the accuracy of
the predicted values deteriorates and oscillates when LEFG/L ≤ 5/14, possibly due to the smaller meshless
zone. Figure 3 plots variation of CPU ratio, defined as the ratio of CPU time using integrated EFGM-
FEM and CPU time using meshless method for the whole domain. It is evident from the plot that CPU
time decreases with decrease in LEFG/L, as expected. Hence combining meshless method with FEM can
significantly reduce computational effort for solving fracture-mechanics problems.

Example 2: Experimental Validation of Crack Propagation
In this example, crack trajectories predicted by the proposed method are compared with the Pustejovsky’s
experimental data [7]. Pustejovsky performed a series of uniaxial tension tests on isotropic Titanium Ti-
6Al-4V plates with oblique center-cracks of length 2a = 13.5 mm (0.53 inch) at γ = 430 and length 2a =
14.2 mm (0.56 inch) at γ = 300. The reported dimensions and material properties of the specimens were:



length, 2L = 304.8 mm (12 inches), width, 2W = 76.2 mm (3 inches), elastic modulus, E = 110 GPa
(16,000 ksi) and Poisson’s ratio, ν = 0.29. A far-field uniaxial tensile stress, σ∞ = 207 MPa (30 ksi) was
applied on the top and the bottom of the specimen during meshless analysis. Figures 4 and 5 show the
dimensions of the specimen and the meshless discretization, respectively. The domain discretization
involves 1124 nodes, some of which are treated as meshless nodes and rest of them, are treated as 4-noded
quadrilateral finite elements. A plane strain condition was assumed.

Figures 6 and 7 show the comparison of the predicted crack trajectories by using meshless method for the
whole domain and by the proposed method when 11 16 and 7 16EFGL L =/ / / , with the experimental data

in a small region ABCD (see Figure 5) surrounding the crack. The results in Figure 6 corresponds to 2a =
13.5 mm (0.53 inch) and γ = 430 and the results in Figure 7 corresponds to 2a = 14.2 mm (0.56 inch) and γ
= 300. The predicted crack trajectories by the proposed method are in good agreement with all-meshless
results or the experimental data.
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CONCLUSIONS

An integrated meshless-finite element method was developed for analyzing linear-elastic cracked structures
subject to mixed-mode loading conditions. The EFGM was used to model material behavior close to
cracks and the FEM in areas away from cracks. In the interface region, the resulting shape function, which
comprises both EFGM and FEM shape functions, satisfies the consistency condition thus ensuring
convergence of the method. Numerical examples show that the stress-intensity factors predicted by the
proposed method compare very well with existing solutions obtained by all-FEM or all-EFGM analyses.
A significant saving of computational effort can be achieved due to coupling in the proposed method when
compared with existing meshless methods. The agreement between the predicted crack trajectories with
those obtained from existing experimental data is excellent.
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ABSTRACT 

 
Materials fracture often involves various length scales from dislocation evolution at the atomic 

scale level to crack propagation at the continuum levels. In this study, an integrated multi-scale 
model is proposed by concurrent coupling an atomic region, a meso-scale region and traditional 
continuum region.  The meso-scale region is defined as a region with subcracks in comparison 
with a main large crack.  The atomic region is solved by the molecular dynamics method and the 
meso-scale region is a finite element region where potentials in various forms may be introduced as 
fracture criteria. Cohesive-zone model with the cohesive law being the potential was used in the 
meso-scale region.  This model has the advantage to simulate the complete process of a crack 
growth from the micro-, to meso- and then to the continuum regions. Unified description of the 
computation algorithm is presented.  Simulation examples using a model with a primary crack and 
a subcrack located in front of the primary crack in bcc alpha-iron are given. 

 
 

Key words: Multi-scale computation, Length Scale, Molecular Dynamics, Finite Element Method. 
 
 
INTRODUCTION 
 

Materials fracture often involves various length scales from dislocation evolution at the atomic 
scale level to crack propagation at the continuum levels. The current capabilities of atomic 
simulations are still restricted to nanoscale length of around 100nm order and are far from meeting 
practical demands of simulating various defects in solids, so a compromise between physical 
precision and computational feasibility is needed.  In the large-scale atomic models, control of 
computation conditions and interpretation of the obtained results are difficult. Models by coupling 
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various length scales and methods provide a means to solve such problems.  Attempt in this 
direction has begun since 1970s.  In the flexible-border or multi-region techniques, a fully atomic 
region is embedded into one or more outer regions and fully coupled atomistic [1] and finite 
element techniques to consider problems with complex nonlinearities were proposed [2-4].  An 
advantage of these models is natural inclusion of atomic potentials as a fracture criterion.  Such 
models successfully explained some brittle microscopic fracture behavior of pure single crystals.  
More recently, the quasicontinuum method with a spatial mesh adaptively refined around highly 
energetic regions appears to be more promising [5].  Multiscale computation has been extended to 
include mean-field quantum mechanics in order to implement semiempirical tight-binding and 
molecular dynamics and finite element methods within one system [6].   

The difficulty inherent in multiscale modeling is the treatment of mesoscale microstructure and 
how it is integrated and connected to micro (or nano)-scale and macro-scale microstructures.  
Computation at the mesoscale level itself involves multiple physical phenomena.  For example, for 
pure materials of single crystals, dislocation nucleation and subsequent interaction and evolution are 
dominant factors, while void or micro-crack formation of various length dimensions and evolution 
are important in more engineering structural materials.  In the case of composites, the interface 
between the reinforcement and matrix represents another microstructure and fracture length scales.  
The fracture behavior of brittle solids often involves the coalescence of many small cracks before 
linking with a main crack [see the review of Ref. (7) and references therein].  This subject has 
been studied extensively within the scope of continuum elasticity [7].  The interaction between 
individual cracks and the effective elastic properties with many cracks is of primary concern. These 
problems have not been treated on the atomic scale.  Viewed from multiscale computation, the 
volume average quantities with regards to the problem having many cracks can be readily taken into 
account in the continuum region within the traditional treatment of coupling atomic and continuum 
models.  This study is concerned with the interaction of individual cracks: a primary large crack 
and a small void-like crack.  The primary crack tip region is deemed atomic, while a meso-scale 
region is introduced to describe the area with the sub-crack and this zone is based on the 
cohesive-zone concept where a fracture criterion is embedded automatically. This model has the 
advantage to consider crack growth interaction at different length scales while still maintaining 
atomic resolution in the most important region. Unified description of the computation algorithm is 
presented and simulation examples using bcc α iron are given.   
 
 
MODEL AND FORMULATION 
  
  Fig.1 shows a central crack model used in the computation; only half of the model is plotted with 
the center of the main crack being a symmetrical axis.  / 2.167a l =  is assumed as an initial 
geometrical condition. The details of the atomic crack tip region embedded within the continuum 
are shown later.  The atomic region notch was created by removing three layers of atoms.  The 
sub-crack region is called a meso-scale region where the cohesive zone theory is applied.  The 
total energy of the system, E , 
 

[ ] (atom) ( ) ( )E E W dV dsδ
Ω Σ

= + ∇ + Φ∫ ∫u u ,                         (1) 

 
where (atom)E  is the total energy of the atomic region, u  the displacement field, Ω  the 
continuum domain, ( )W ∇u  the potential energy of the continuum; ( )δΦ  the cohesive-zone 
potential.  



 The material considered is α iron represented by Johnson’s pair potential [8].  Molecular 
dynamics technique of the velocity Verlet algorithm is used to calculate atom movement with a time 
step of 1fs and the velocity scaling law to control temperature at 300K.  The cohesive surface 
separation model [9] is used in the meso-scale region.  The model relates cohesive tractions T  to 
displacements by =- /∂φ ∂T ∆ , where φ  is the potential and ∆  is the displacement of cohesive 
points.  φ  may be in various forms [9, 10] and a form giving linear cohesive relationship between 
T  and ∆  is introduced here for the brittle materials system, namely, t t tT K= ∆  and n n nT K= ∆ , 
where the subscripts t and n represent quantities at the tangent and normal directions, respectively, 
and nK  and tK  are spring constant-like parameters.  Such cohesive laws are then embedded 
into cohesive finite elements [5].  The cohesive elements are interspersed throughout the material 
of interest; here, the finite element region between the main crack tip and sub-crack tip is such a 
region to see how the main crack and sub-crack interact.  In the atomic region, the crack plane is 
assumed to lie on {100} planes, the cleavage plane of BCC α iron. 
 Additional boundary conditions between the atomic region and meso-scale region are needed, i.e., 
the continuity of force and displacement of the atoms and finite element nodes at the boundary [4].  
The atomic and continuum regions share a common boundary at the neighbor array of atoms and 
finite element nodes.  Based on the virtual work principal, the continuum part in Eq (1) is 
discritized into finite elements.  Quasi-static mode I loading, KΙ , was applied in terms of the 
mode I main crack .  
 
 

Figure 1  Central crack model with one sub-crack located in front of the main crack tip. 
 
 
RESULTS, DISCUSSION AND SUMMARY 
 
 Figure 2 (a)-(d) shows a series of typical snapshots obtained in the simulation. Fig. 2 (a) 
demonstrates that both the atomic region and sub-crack region still undergo elastic deformation at 

an applied loading level of 1/21 53MPamK .=Ι ; it also indicates atom and finite element 
arrangement in these regions.  Figs2. (b)-(d) are the results during subsequent loading for the case 

of K =Ι 2.37, 2.65 and 2.7 1/2MPam , respectively.  In Fig. 2 (b), atom movement to form 
crack-like extension, as indicated at Point A, within the atomic region is observed; the point A is 
slightly away from the initial notch plane.  Meanwhile, the sub-crack also propagates towards the 
atomic region but is then stopped at a distance of about 2 lattice parameters in front of the atomic 
region.  The loading level for this configuration of Fig. 2(b) is smaller than that reported in the 
literature [2].  This is may be due to the blunted initial notch tip, compared to the atomic sharpness 
crack tip in the literature.  In Fig. 2(c), on further loading increase, the sub-crack propagates 

2l

a

Ω



completely across the continuum region to reach the atomic region and initiates a new crack in the 
atomic region as shown at Point A of Fig. 2(c).  It is this new crack that governs the final failure 
path (Fig.2 (d)).  Note that the system grows into unstable growth with additional small loading 
increment from the state shown in Fig.2(c).  This clearly demonstrates the importance of the initial 
sub-crack.  Further investigation regarding effects of lattice trapping and various parameters 
involved in the model is under way.  In summary, the present study provides an effective method 
for simulating crack growth and crack interaction at different length scales.   
 
 

 
 
          (a) 1/21 53MPamK .=Ι                   (b)   1/22 37MPamK .=Ι  
 
 
 
        
 
 
 
 
 
 
 
 
 
 

(c)  1/22 65MPamK .=Ι                 (d)  1/22 7MPamK .=Ι   
  
 
 Figure 2  Simulation results for 4 loading levels (a) 1/21 53MPamK .=Ι ,(b) 1/22 37MPamK .=Ι  , 

(c) 1/22 65MPamK .=Ι  (d) 1/22 7MPamK .=Ι . Note that the deformation 
magnifications for the atomic region and continuum region are different.                
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ABSTRACT 
 
A constitutive model for a joint element is developed based on a generalisation of the Cohesive Crack 
Model. The model uses a constitutive law based on dual external (tractions and crack opening vector), 
and internal variables, the latter of damage nature, responsible for the evolution of the softening cohesive. 
A potential energy of unilateral type couples the crack opening vector with the damage variables, whose 
evolution is ruled by two yielding modes, one accounting for the slippage of the fibres, the other for the 
deterioration of the material due to crack opening. 
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1. MOTIVATIONS, BACKGROUND AND OBJECTIVES OF THE MODEL PROPOSED 
 
The occurrence of fractures causes two main phenomena that affects the mechanical modelisation: first, 
energy is dissipated in a domain of measure zero, since its physical dimension is smaller than the 
dimension of the structure (actually, its dimension is fractal); secondly, the displacement field ceases to 
be continuous, and finite jumps appear, so that the usual compatibility equations lose their validity, that is 
the vectorial space of the displacements changes from H1 to BV. From a physical point of view, these 
phenomena give rise to an unstable behaviour at the material and structural level. 
 

The numerical counterpart is that a simulation of the process with a continuum model suffers of 
numerical problems of mesh dependency, so that either a non-local media has to be used, or some form of 
enhancement of the displacement field has to be introduced. Enhanced elements, with embedded 
discontinuities, like the X-FEM recently developed by Belitschko are a promising example of the latter 
approach. An alternate methodology consists in introducing discontinuous interfaces in some predefined 
locations in the continuum. In the interface model the width of the process zone is assumed to reduce to 
zero, but the amount of dissipation is controlled, allowing a numerical treatment of the material 
instability. Tractions are directly related to the displacements jumps, so that there is no need to introduce 
generalised derivatives. 
 

The latter approach is followed in this paper. Specifically, attention is focused on the constitutive 
behaviour of the interface model, disregarding the problem of refining the discretisation for better 
localising the fracture surfaces. Main objective of the paper is to modify an interface model previously 
proposed in the literature by Carol [1,2], that accounts for mode I and mode II fracture, based on the 



definition of an intrinsic curve for the interface in the traction space, so that a plastic-like behaviour is 
assumed for the dual relative displacements. Cohesive forces are supposed to act after crack opening, and 
softening is introduced assuming a phenomenologically defined degradation of some material parameters. 
The model, thus, appears as a (non associated) elastic-plastic-softening model. Elasticity is introduced for 
numerical purposes. Still retaining the idea of an intrinsic curve and of its degradation as consequence of 
fracture evolution, the model proposed differs substantially from the original one in several aspects that 
will be now briefly introduced 
 

1. The cohesive traction-displacement laws, as well as the softening behaviour of the interface, are 
defined on the basis of thermodynamic potentials, so that they can be easily implemented in a 
variational framework for numerical analysis.  

2. The softening law is introduced through the dependency of the limit surface on a damage parameter, 
dual to the internal variable that rules the reversible loading-unloading. In this way the limit condition 
of the interface (yield surface) is defined in the extended space of the tractions and of the conjugated 
forces. The development follow closely a recently proposed model of continuum damage [3]. 

3. The first consequence of points 1,2 is that it is possible to obtain crack opening and reclosing, without 
permanent residual relative displacements, as in standard damage models. Furthermore, the 
thermodynamic framework allows to easily account for additional effects, like fibre bridging. It is 
sufficient to add an additional term in the internal energy, and additional dissipation mechanisms, that 
account for fibre slippage or yielding, in the dissipation potential.  

 
 
2. PRESENTATION OF THE INTERFACE MODEL 
 
The interface model is local, and is ruled by the following fields of dual variables:  
 

( ) Uww tn ∈= ,w  Relative displacements ( ) ', U∈τσ=t  Cohesive forces 

ℜ∈ω  Internal damage variable ℜ∈ζ  Conjugated damage energy 
I∈α  Hardening internal variable 'I∈χ  Conjugated force 

 ( ) ( ) ( ) pepppeee hhh +=αω+αω=αω= ,,,,,, www  (1) 
 

The indices n,t refer to normal and tangential components respectively. In the remaining of the paper only 
the 2-dimensional case will be addressed. It is underlined that a scalar damage mechanism is assumed, 
while the hardening variables can be in general vectors, so to account for anisotropic friction mechanisms. 
However, in this paper, they will not be explicitly considered. Following the Standard Generalised 
Material Model, the kinematic variables are partitioned in a reversible and an irreversible component, 
identified in (1) by the indices e,p, as done in [3] (the additive decomposition implies linear kinematic). 
The model is characterised by the functional of the internal energy u, that rules the reversible behaviour, 
and of the dissipation d, that accounts for irreversible phenomena. Denoting by (.)c the conjugated 
potential, the constitutive equations are then obtained as 
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The last of (2) are the flow rules for the irreversible kinematic variables.  
 
2.1 The internal energy of the interface 
 
The following form is assumed  
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In (3) Km denotes the stiffness of the concrete matrix, while Kf is the stiffness of the fibre phase, assumed 
to act only in the normal direction. The damage mechanism is assigned only to the concrete matrix, but a 
further degradation, with the same or with another internal variable, can be introduced in the same way 
for the fibre properties. Introducing the set { }0≥= nnn wwW , the presence of the indicator function of Wn 

ensures the no compenetration condition. The set { }1−≥ωω=Ω ee  has been introduced in order to 

preserve the positivity of the damaged stiffness, so that the damage variable range from 0 to –1, as usually 
assumed. However, for the model (3) this term is not strictly necessary, since � tends to –1 asymptotically, 
as will be shown later. Note finally that normal and tangential reactions are uncoupled.  
The potential used, while preserves the unilateral character of the interface, does not fulfil the condition 
that no relative displacement develops until fracture occurs. Although the introduction of a fictitious 
elastic stiffness is usual in interface models [1], in the author’s opinion it introduces serious drawbacks, 
that, however, will not be commented in this paper. 
 
2.2 The dissipation potential 
 

Following the developments in [3,4], in the time independent case considered in this model, the 
dissipation functional turns out to be conjugated to the complementary dissipation functional (plastic 
potential), that is given by the indicator function of the elastic domain S. Multiple dissipation mechanisms 
can then be included considering S as the convex hull of a finite number of domains Si. The elastic 
domain is specified by means of a yield function. For the sake of clearness, the development of the model 
is followed step by step starting from the form assumed by Carol: 

 22
0

2 )()( σµ−−σµ−+τ= ccgC  (4) 

with c, �, �0 material constants. In the plane ��� expression (5) represents an hyperbola having the Coulomb 
bilateral as asymptotes. The intersection of gC with the co-ordinate axes are given by 

)/2(,/2, 0000 σ−µσµ±=τσ−µσ=σ cc . Clearly, any fracture process occurs with irreversible 
displacements. In order to limit the phenomenon of dilatancy, the authors introduce a non-associative 
flow potential that becomes flat for compressive normal tension beyond a certain limit.  

The first improvement consists in introducing the conjugate damage variable � for definitely separating the 
irreversible plastic effects (due either to void development in the concrete or to fibres yielding or 
slipping) from the fracture phenomena which is associated mainly to damage. In the original model the 
parameters c, �0 where affected by the evolution of the fracture process, while � was kept constant. A 
possible straightforward generalisation could then be to assume the yield function 

 ( )fn KKwwccg C +σ=ζ=ζσµ−ζ−−ζ−σµ−ζ−+τ= 000
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where the definition of the new damage variable is required for dimensionality reasons (note that � has 
dimensions of a force per unit of length). The choice of (5) is motivated by the assumption that the 
damage affects equally the cohesion and the uniaxial limit stress. Expression (5) represents a lined 
surface, whose intersection with the plane �=0 are the two straight lines  

 00 2)2( σµ−=σµ+ζµ−σ=ζ+σ c  (6) 

No physical damage mechanism is clearly associated t any of them. In an uniaxial process the initiation of 
the fracture can be found using the elastic law (2), as will be described soon. It is found that the limit 
values for the normal traction and the conjugated damage force are 
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so that neither �0 has a clear physical meaning, nor the value of the energy per unit area at the initiation of 
the fracture process matches the value that one would expect, i.e. ½ �0 w0. 

A further modification is then proposed, inspirited by the form (6) of the lined surface, that is it is 
proposed that the intersection of the limit surface with the plane �=0 reduce to the two lines 

 µ−ζ+σ=σσ=ζ+σ=ζ−ζ /2;,0 000 ckk  (8) 

where the value �0 is the energy necessary for mode I fracture initiation if in the process only damage 
occurs. The expression for the limit surface takes the form 
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The function (9) presents several differences with respect to (5). The intersection with the �- � plane is now a 
parabola, with −∞→σ∞→τ for , as before, but the tangent to the curve tends to 0, so that the problem 
of dilatancy is substantially reduced. The surface (9) is still a lined one, whose intersection with the plane 
�=0 is given by the two straight lines (8), that intersect for the value µ−σ=σ /2 0 c , positive for the 
common values of the material parameters. The activation value of the conjugate damage energy will be 
discussed in the next paragraph in connection with the analysis of an uniaxial process. The surface (9) 
forms in the ��� plane an hyperbola, whose sides are asymptotically tangent to a Coulomb bilateral with 
slope 1/|2�|. Note that, although negative values of the damage conjugate variable are not called out by the 
admissibility condition (9), they are not attainable on the basis of the elastic relations. A sketch of 
criterion (9) and its section with the co-ordinate plane ���� are given in figs. 1,2. The flow rules are given by 

the usual consistency rule, ))((),( sgsgh sp
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It is stressed that the derivatives of the dissipation potential are continuous functions. Furthermore the 
permanent normal opening depends only on the difference between the current value of the damage 
energy and its limit value �0. When the latter is attained, the opening displacement becomes fully 
reversible, but damage still increases thanks to the other mechanism (first term in the latter of (10)). 
Additional dissipation mechanisms can be added in order to account for fibre yielding. The simplest 
choice could be mff KKddh /002 =≤σ−ζ+σ= , with �of the limit tensile stress in the fibres. A 
sketch of the resulting domain in the uniaxial case is presented in fig. 3. First the matrix fails, then fibres 
plasticise, until pure separation of the interface is reached.  

 
            Figure 1 : Elastic domain                Figure 2 : section of the elastic domain             Figure 3 : uniaxial domain 
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3. EXEMPLIFICATION : UNIAXIAL RESPONSE TO MODE I FRACTURE 
 
The characteristics of the model are investigated with reference to the special case of pure normal traction 
acting on the interface. Starting from a virgin state (�e=0), the elastic equations (2) furnish 
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Eqn.(12) is the parametric expression of a curve in the ��� plane, that can intersect the limit surface in one of 
the 2 points that satisfy eqns. (8), according to the relative values of the material parameters kσζ ,0 . First 
is considered the case that the parametric curve (12) hits the limit surface on the line �=�0, corresponding to 
a pure damage (reversible) process. Then one has 
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Therefore, in order to obtain the desired value for the fracture activation energy, it must be 

mn 00 2/ σ=ζ , with �0m the limit stress in the matrix. Indeed, substituting, it is found  
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where the stress in the last expression is relevant to the whole composite. Proceeding with the extension, 
the stress progressively decreases on the fracture surfaces, and tends to 0 asymptotically, as can be easily 
proved. This is in contrast with the cohesive model, that is based on the existence of a limit critical value 
of the crack opening. However, the energy for the entire process is finite, and it can be shown that it is 
equal to [4] 
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The previous equation can be used for estimating the value of n. For whatever value of n, the descending 
branch of the �-w curve is always sublinear. 
 

In the case the path (12) intersects first the second line (8) of the boundary, the following is found (note 
that in the case of absence of fibres, the limit stress coincides with the uniaxial limit tension of the matrix, 
and for the initiation energy one finds ( )( )mkmm Kw 0001lim1lim / σ−σσ=ζ=ζ . 
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Loading-unloading uniaxial processes are shown in fig. 4,5, comparing the cases of pure damage 
activation, and of mixed mechanisms. Fig.4 refers to plain concrete and fig.5 to a small addition of fibres. 
Note that no residual displacement is found after unloading in the pure damage mechanism, and the value 
of the damage parameter � tends asymptotically to 1(full damaged state).  

� 



A different case is encountered if the limit surface is hit on the line 0σ=ζ+σ . In this case some 
irreversible displacement is present, as it happens when fibres are present, and yielding occurs. At the 
same time the stiffness decreases, as damage develops. Increasing the relative displacement the stress 
decreases, and the state point moves on the limit curve until it eventually reaches the condition ���0. At this 
stage the fibres start to slip, and no more permanent displacement is added, while damage in the matrix 
increases further. Note, however, that thanks to the hypothesis (2) the rigidity of the fibres remains 
constant, so that a residual plateau is finally reached with a residual stiffness.  

Figure 4 : Uniaxial fracture process for plain concrete   Figure 5 : Uniaxial fracture process for fibre reinforced concrete 
 
4 FINAL COMMENTS 
 
A constitutive model for a joint element has been developed based on a generalisation of the Cohesive 
Crack Model. The element is intended to be used for the microstructural analysis of fibre reinforced high 
strength concrete. The model is thermodynamically based, and differentiate both in the elastic energy and 
in the dissipation the contribution of the matrix and of the reinforcement. The unilaterality of the interface 
is guaranteed in compression, but some elastic opening is still admitted before fracture occurs. The choice 
of the elastic stiffness Kn is based on the energetic equivalence ½ �0/Km = �0 , fracture activation energy. 
The author is conscious of the fact that the parameter is somewhat arbitrary, and that it introduces an 
internal length (the limit elastic opening w0), that could affect the response of the model. A better model, 
where unilaterality is exactly fulfilled, can be implemented using a logarithmic damage law, and will be 
presented in a future paper.  
 

In the paper only the simplest dissipation potential has been presented, but extra terms can be introduced, 
in the form of additional dissipation modes, for accounting explicitly for fibres yielding and other 
dissipative phenomena. However, the calibration of the parameters requires careful comparison with 
experimental data. 
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ABSTRACT 

The principal mechanisms of failure of high temperature components include creep, fatigue, creep-fatigue 
and thermal fatigue. In heavy section components, although cracks may initiate and grow by these 
mechanisms, ultimate failure may occur at low temperatures during startup-shutdown transients. Hence, 
fracture toughness is also a key consideration. Considerable advances have been made both with respect to 
crack initiation and crack growth by the above mechanisms. Applying laboratory data to predict component 
life has often been thwarted by inability to simulate actual stresses, strain cycles, section size effects, 
environmental effects and long term degradation effects. This paper will provide a broad perspective on the 
failure mechanisms and illustrate a few of the typical ones in boilers. 
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1.0  INTRODUCTION 

Reducing the cost of power production is paramount for staying competitive in the emerging utility market. 
Reducing capital costs by deferring replacement of expensive components and reducing operating and 
maintenance (O&M) costs by optimizing operation, maintenance and inspection procedures will both be key 
strategic objectives for utilities. This poses a significant challenge to the technical community since two 
apparently opposing needs will need to be reconciled. On the one hand, the need for improved plant 
efficiency and availability will dictate more severe and cyclic duty schedules which result in more severe 
creep-fatigue damage and warrant increased attention to the components. On the other hand, the need to 
reduce O&M costs may result in fewer, shorter and lower quality maintenance and inspection outages; thus, 
placing the components at greater risk of failure. The challenge to the technical community, therefore, is to 
develop tools and techniques that will permit more rapid, cost-effective and accurate assessment of condition 
of critical components, both off-line and on-line. In addition to assessing the current condition, these tools 
must also be capable of evaluating the impact of alternative strategies for operation, inspection and 
maintenance. It is crucial therefore that the high temperature research community be more intimately familiar 
with the specific needs of the industry. This paper will bring out some of the industry perspectives regarding 
high temperature failures and illustrate them with some failure examples pertaining to creep and thermal 
fatigue. A detailed review of the failure mechanisms affecting the integrity of utility and chemical plants can 
be found in Reference 1 [1]. Some critical industry perspectives are reviewed in detail in Reference 2 [2]. 



 
2.0  EXAMPLES OF HIGH TEMPERATURE FAILURES 

Failure mechanisms at high temperatures include creep, thermal fatigue, corrosion, erosion, and hydrogen 
attack. In addition, embrittlement phenomena occurring at high temperatures, e.g. carbide coarsening, sigma 
phase formation, temper embrittlement, etc. can facilitate rapid brittle fracture at low temperatures during 
transient conditions. This section will describe issues associated with creep, thermal fatigue and 
embrittlement. Mechanisms affecting the integrity of fossil power plants may be found in Refs. 1and 2 [1,2]. 
 
2.1  Creep 
Creep damage can take several forms. Simple creep deformation can lead to dimensional changes that result 
in distortions, loss of clearance, wall thinning etc.  Examples are steam turbine casings, blades, and piping 
systems. Localised deformation can cause swelling and eventual leaks in headers, steam pipes and 
superheated reheater (SH/RH) tubes. Long term creep failures generally tend to be brittle failures involving 
cavitation and crack growth at interfaces and at highly stressed regions. The cavitation form of damage has 
been found in SH/RH tubes, rotor serrations, occasionally rotor bores, highly stressed areas in piping systems 
and at weldments. The most common weld failures have pertained to dissimilar welds in superheater/reheater 
tubing, welds in headers and in hot reheat and mainsteam piping. 
 
2.1.A  Failures in Headers at Girth Welds: 
A schematic illustration of a header is 
shown in Figure 1.  
 
Initial signs of creep-related distress in 
headers often appear at welds—welds at 
stub-tube inlets, long seams, header 
branch connections or girth butt joints. 
With the exception of some cases of long 
seam welds, and Type IV cracks in girth 
welds, creep damage in welds is invariably 
manifested on the outside surface as 
cavities, cracks, or, in extreme cases, 
steam leaks. Except in regard to long seam 
welds, concern about catastrophic bursts 
has been minimal. Although weld-related cracking is generally detectable and repairable, and although it 
does not have as great an impact on the over-all component life as does header-body base-metal 
deterioration, it is important from a life-assessment point of view for the following reasons: Because weld 
failures are often the forerunners of damage in the body, they can provide an index of creep damage and 
remaining life in the base metal. Failure of welds at crucial and multiple locations may constitute the end of 
the life of the header, regardless of the condition of the base metal. The need for frequent weld repair may 
prove uneconomical and justify retirement of a header. Due to these reasons, creep-damage assessment of 
welds has received considerable attention.  

 
Figure 1:  Schematic illustration of an elevated-temperature 
header (courtesy of B. W. Roberts, Combustion Engineering, Inc.) 

 
Four types of creep damage and cracking associated with weldments (for both headers or piping) have been 
cataloged by Chan et al. [3]. Each of the four creep damage types are identified below and shown 
schematically in Figure 2. 
Type I  — Damage which is longitudinal or transverse in the weld metal and remains entirely within the 

weld metal. 
Type II  — Damage that is longitudinal or transverse in the weld metal, but grows into the surround HAZ. 
Type III  — Damage in the coarse-grained region. 
Type IV  — Damage initiated or growing in the intercritical zone of the HAZ (the transition region between 

the fully-transformed, fine-grained HAZ, and the partially-transformed parent base metal). 



 
Both axial and circumferential cracks have been 
observed in damaged girth butt welds, with 
cracking being found in the weld metal and/or the 
HAZ. The axial cracking has been attributed to 
internal pressure loading and pipe swelling, 
whereas the circumferential cracking has been 
associated with combined pressure and piping 
system loads. Several instances of girth weld 
cracking has been reviewed [4]. In one instance, 
circumferential cracking along the coarse-grain 
HAZ was attributable to stress-relief cracking prior 
to service. Axial creep cracking across the weld 
metal has been attributed to a combination of pipe 
swelling and poor weld ductility. Circumferential 
cracking in the intercritical regions of the HAZ has 
also been observed in both Cr-Mo-V and Cr-Mo 
steels. This type of cracking, known as Type IV 
cracking, occurs at the end of the HAZ adjacent to 
the unaffected parent metal. Type IV cracking is 
generally attributed to localized creep deformation 
in a “soft” zone in the intercritical region under the 
action of bending stresses. Field experience 
suggests that Cr-Mo-V steels may be more 
susceptible to cracking than Cr-Mo steels and that 
operation at 565°C (1050°F) rather than at 540°C 
(1000°F) might further exacerbate the problem. 
Because most of the headers in the United States 
are made of Cr-Mo steels and operate at 540°C (10
significant degree. More recently, Type IV cracking is
 
 
2.1.B  Failures in Seam Welded High Energy Piping: 
Several categories of pipes carrying high temperature
Main steam pipes are pipes that carry steam at 538-56
in diameter and do not contain seam welds. Hence, o
are however, often connected to the steam header us
reheat pipes which carry steam at 538-565°C but at a 
IP turbine, and are frequently made of seal welded pip
as well as in header link piping has been of major c
high energy piping has been reviewed by Wells and
instances of seam welded pipe failures including 3 ca
major cracking. The failures are generally brittle with 
 
In the cases of HRH pipes, the welds generally have
subjected to a normalizing and tempering treatment. 
of the double V and then propagates along the fus
Figure 3. In the case of the thicker walled header le
subjected to subcritical PWHT. A variety of crackin
cracking have been observed. Failures of most of th
could not be predicted based on simple life-fract
combination of operating and metallurgical variables
Figure 2:  Four types of damage in girth welds in 
relation to microstructure [3]. 
00°F), the problem has not been encountered to any 
 emerging as a concern for P91 piping. 

  
/pressure steam contain welds that may be of concern. 
5°C to the high pressure turbine. These pipes are small 
nly girth welds are of concern. The mainstream pipes 
ing thick-walled seam welded piping. In addition, hot 
lower pressure (than the main steam pipe) to the reheat 
ing. Failure of seam welded pipes used in HRH piping 
oncern to industry. Failure experience with respect to 
 Viswanathan [5]. There have been at least 17 major 
ses of catastrophic rupture, 5 leaks and 9 incidents of 
a fish mouth appearance. 

 a double V configuration and the pipes are generally 
The cracking generally initiates subsurface at the cusp 
ion line towards the outside and inside, as shown in 
ak pipes, the weld generally has a U geometry and is 
g modes, including fusion line, Type I and Type IV 

e seam welded piping have occurred prematurely and 
ion rule calculations. Failures occur due to unique 
. Some of the contributing factors have been identified 



to be operating temperature, pressure, cycling system stresses, and weld geometric factors such as 
configuration, cusp angle and roof angle, and 
welding practice employed; inclusion content 
and creep strength mismatch, etc. Currently 
two failure scenarios have been postulated. In 
one scenario, failure is proposed to involve 
crack initiation and propagation stages. In the 
alternative scenario cavities form and grow and 
eventually link up into a larger crack. Which of 
these is operative can determine whether NDE 
based monitoring is viable. A comprehensive 
review of the subject may be found elsewhere 
[6-8].  
 
Since in many of the early instances of girth 
weld damage, the damage has consisted of 
evolution of creep cavities into cracks at the 
coarse grained heat affected zone (CGHAZ), 
assessment of damage consisted of simply 
classifying the damage and then recommending 
an appropriate action. Damage was classified as 
(A) isolated cavities, (B) oriented cavities, (C) 
linked cavities and (D) microcracking, as per 
the German practice. More quantitative 
correlations between the degree of cavitation 
and the creep life expended have been 
established based on EPRI research and have 
provided a clearcut basis for establishing re-
inspection intervals. This approach is however 
valid only for Type III cracking in the CGHAZ. 
The evolution of damage in the other cases 
have not been sufficiently investigated. 

Figure 3:  Macrograph of cross-section at location 6LS1, 
counter-clockwise side of weld sighting along flow; note ID-
connected-cracking, located and detected by UT, and extent 
of cusp damage. 

 
While replication is very useful for detecting surface damage, many types of failures such as long seam weld 
and Type IV damage in girth welds originate sub-surface. In these cases, replication alone is not a reliable 
method to detect damage. In long seam welds in hot reheat piping and header link piping, high sensitivity 
conventional or automated UT, focused beam UT or time-of-flight diffraction UT methods are needed to 
ensure safety of the piping. In the case of girth welds however, conventional UT seems to be adequate. 
 
Some forms of creep damage are more manageable than others. For example, if Type I, II or III creep 
damage is found, the subsequent action can range from record and monitor to some form of repair depending 
on the severity of damage. Advanced Type IV damage is characterized by profuse intergranular cavitation in 
the creep weak area of the HAZ. It has been suggested that the evolution of damage from the observation of 
cavitation (by replication) to macro-cracking can be swift and cannot be dealt with using the German system. 
In the absence of enough experimental evidence regarding damage evolution, the current approach is to 
replace completely the affected weldment, if any stage of Type IV damage is confirmed. 
 
3.2  Creep-Fatigue Failures 
Creep-fatigue damage induced by thermal stresses is of major concern with respect to the integrity of many 
high temperature components. The concern has been exacerbated in recent years due to cyclic operation of 
units originally designed for base load service. A sample list of fossil plant components in which creep-



fatigue has been a dominant failure mode has been published in Reference 2. A common form of cracking 
known as “Ligament Cracking” is described below. 
 
Ligament cracking encountered in CrMo steel header pipes illustrated in Figure 4. Cracks initiate in the tube 
bore holes and are oriented parallel to the axis of the tube bore hole. Linking up of cracks between holes on 
the inside surface of the header leads to propagation to form cross ligament cracks. Presence of ligament 
cracking has been observed in a very large number of superheater headers in the U.S. The cracking mode has 
been identified as creep fatigue. A computer code, Boiler Life Evaluation and Simulation System (BLESS) 
developed recently, incorporates two alternate approaches for predicting crack initiation; one involving an 
inelastic linear damage summation method, and a second approach involving repeated cracking of oxide 
scale and oxide notching[9]. For a variety of cycle histories, the Code predicts crack initiation occurring in 
about 20,000 h by the oxide cracking mechanism. The creep-fatigue damage summation approach on the 
other hand, is inconsistent with the early initiation of cracks observed in headers. Metallography of cracked 
headers has shown numerous oxide spikes, see Figure 5, indicating oxide cracking to be the crack initiation 
mechanism. This example clearly illustrates the need for using appropriate thermomechanical fatigue data 
simulative of actual component cycles in predicting crack initiation life of components. 
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Figure 5:  Oxide notching at ligament cracks. 
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e 4:  Ligament cracking at a tube bore hole viewed 
the ID of a header. 
 
MMARY AND CONCLUSIONS 

and creep-fatigue are the principal failure mechanisms affecting the integrity of components operating 
ated temperatures. Creep damage in weldments poses major challenges both in analytically calculating 
in experimentally reproducing it. Several alternative damage locations and mechanisms have been 
ed which are often difficult to reproduce in laboratory tests. Fusion line cracking and fine grain heat 
d zones (FGHAZ) cracking has led to catastrophic failure of high energy piping. Thermomechanical 
 (TMF or creep fatigue) affects many heavy section components as well as internally cooled 
nents such as combustion turbine blades. It is important that researchers focus on component specific 
 than generic) life prediction models with a full understanding of the applicable failure definition, 



failure scenario and relevant duty cycle. Future research needs to address advanced NDE techniques, on-line 
monitoring techniques, TMF mechanisms, and evolution of damage and growth of cracks in welds. 
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ABSTRACT 
 
A high-temperature (300°C), high-pressure (18 MPa), and high-leak rate (1500 L/min) 
facility, and a room temperature, high-pressure (52 MPa) test facility were used to test flawed 
steam generator tubes. Single and multiple rectangular flaws were fabricated by electro-
discharge machining on the outside surface of the tubes. This paper briefly reviews analytical 
methods for predicting ligament rupture and unstable burst of tubes with single and multiple 
rectangular flaws. Test data are presented to validate the failure models. The ligament rupture 
pressures of specimens with mutiple flaws predicted by an "equivalent rectangular crack" 
method agree fairly well with measured data. 
 
 
KEYWORDS 
 
Steam generator tubes, axial flaw, ligament rupture, unstable burst 
 
 
INTRODUCTION 
 
Although steam generator (SG) tubes of pressurized water reactors (PWRs) are designed 
conservatively by following the ASME Boiler and Pressure Vessels Code and are made of 
highly ductile alloys such as Alloy 600, stress corrosion cracks (SCCs) have been detected in 
the SG tubes of several PWRs. Since SG tubes form part of the primary pressure boundary, it 
is important to be able to predict crack growth, tube failure or rupture, and subsequent leak 
rates of SG tubes from crack morphology, as measured nondestructively during in-service 
inspection. This paper is concerned with tests and analytical prediction of ligament rupture 
pressure and unstable burst pressure of SG tubes with initially part-throughwall axial flaws. 
 
 
BACKGROUND 
 
Significant literature [1- 12] is available on testing and analytical models for ligament failure 
and unstable burst of tubes with part-throughwall and throughwall rectangular flaws.  Well-
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established criteria exist for predicting ligament rupture and unstable burst pressures of tubes 
with relatively long rectangular flaws. Some modifications of these criteria have been made 
for short and deep flaws based on recent tests at ANL [7]. 
 
The critical pressures and crack sizes for the unstable failure (burst) of a thin-wall internally 
pressurized cylindrical shell with a single rectangular throughwall axial crack can be 
estimated with an equation originally proposed by Hahn et al. [1] and later modified by 
Erdogan [2]: 

pcr =
pb
m

=
σh

mR
, (1)

 

where pb is unstable burst pressure of unflawed tube, σ  is the flow stress, and m is a bulging 
factor that depends on crack length, tube radius (R), wall thickness (h), and Poisson’s ratio 
(e.g., see Ref. 7). 
 
A general failure criterion for predicting rupture of the through-thickness crack tip ligament 
in a pressurized tube with a single rectangular part-throughwall axial crack can be expressed 
as follows: 

σlig = m pσ = σ , (2) 
where σlig is the average ligament stress, σ is the nominal hoop stress, and mp is a ligament 
stress magnification factor that depends on axial crack length and depth [7]. 
 
Although we can currently predict with some confidence failure pressures of tubes with 
rectangular flaws, such a morphology is not characteristic of much of the cracking currently 
observed in SGs.  Stress corrosion cracks (SCCs) in SG tubes are generally nonplanar, 
ligamented, and have highly complex geometry.  
 
 
TESTS WITH MUTIPLE FLAWS 
 
As a first step toward understanding the behavior of more complex cracks, tests were 
conducted on 22-mm (0.875 in.)-dia, 1.27-mm (0.05 in.)-wall thickness Alloy 600 tubes with 
two part-throughwall axial rectangular notches.  The yield and ultimate tensile strengths of 
the tube material at room temperature are 300 MPa (43 ksi) and 675 MPa (98 ksi), 
respectively. Two different configurations of axial notches were tested (Figure 1). Each notch 
was either 6 mm (0.25 in.) or 13 mm (0.5 in.) long and 80% deep with a ligament width of 
either 0.25, 1.27, or 2.54 mm (0.01, 0.05, or 0.1 in.).  Pressure tests were conducted at room 
temperature in two stages.  In stage 1, the specimens were tested without a bladder until 
ligament rupture occurred and the pump could not keep up with the leak rate. In stage 2, a 
bladder and brass foil were inserted in a few of the specimens to cover the notches, and the 
specimens were pressurized until unstable burst occurred.  The effect of the bladder and foil 
on the burst pressures has been found to be minimal.  Two tests with initially 100% deep 
notches (without bladder) were conducted in a high-flow-rate blowdown test facility.  During 
stage 1 testing, the pressure was increased to the maximum limit of the facility. One of the 
two tests was conducted at 282°C with high-temperature pressurized water.  A summary of 
the test results is given in Table 1 where, unless otherwise noted, all notches are 80% deep 
and tested at room temperature.  After stage 1 testing, all of the axial ligaments in type 2 
specimens were ruptured while all of the 2.54 mm (0.1 in.) ligaments in type 4 specimens 
survived.  On the other hand, the 1.27 mm (0.05 in.) circumferential ligament of type 4 
specimens ruptured during stage 1 testing with notch lengths of 12.7 mm (0.5 in.) but 
survived with notch lengths of 6 mm (0.25 in.).  The axial ligament in the specimen with 
100% deep notches survived stage 1 testing at room temperature (T24), but failed at 282°C 
(T25). 



 

ANALYSIS OF TESTS 
 
Part-Throughwall Notches 
 
A simple empirical method for predicting rupture pressure of a through-thickness notch tip 
ligament is based on defining an equivalent rectangular crack whose depth is obtained by 
equating the total area of the two notches to that of a single rectangular notch of the same 
total length.  Predicted vs. observed ligament rupture pressures for type 2 and type 4 
specimens tested at room temperature are shown in Figures 2a-b.  Except for a single type 2 
specimen with two 13-mm (0.5 in.)-long notches, the observed rupture pressures of through-
thickness notch tip ligaments are close to those predicted by the equivalent rectangular crack 
method.  Note that the method predicts a minimum ligament width beyond which the two 
notches behave as two independent notches.  However, the method cannot predict the rupture 
pressure of the axial or circumferential ligament separating the two notches.  The tests 
showed that although the axial ligaments for all type 2 specimens ruptured at the final 
pressure in stage 1, some of the circumferential ligaments of type 4 specimens survived.  In 
cases where the ligament between the notches ruptured after stage 1 testing (e.g., Figure 3a), 
the final stage 2 unstable burst pressure can generally be predicted quite well by Eq. 1 for 
single cracks.  In other cases (e.g., Figure 3b), the specimen is left with two throughwall 
notches with a ligament after stage 1 loading. 
 
Throughwall Notches 
 
Nonlinear finite-element analyses with shell elements (ABAQUS) were performed for a type 
2 specimen with two 100% deep, 6-mm (0.25 in.)-long notches separated by an axial 
ligament of varying width.  A plot of the variation of average ligament thickness with 
pressure for a 0.25-mm (0.01 in.)-wide ligament is shown in Figure 4a. The accelerated 
decrease in thickness at a pressure of 17 MPa (2.5 ksi) indicates a necking-like behavior. A 
corresponding test (T24) conducted at room temperature did not experience ligament rupture.  
However, the ligament of an identical specimen (T25) tested at 282°C did rupture at 15.5 
MPa (2.25 ksi), indicating that the room-temperature test was close to ligament rupture (flow 
stress at 282°C is 10% lower than at room temperature). Variation of the calculated ligament 
rupture pressure with ligament width is shown in Figure 4b, which also includes ligament 
rupture pressures calculated by Lee et al. [13] with a flow stress criterion (i.e., average 
ligament stress = flow stress = average of yield and ultimate tensile strengths). It is evident 
that a rupture criterion based on flow stress significantly underestimates the ligament rupture 
pressure because failure of the ligament occurs by necking.  A failure criterion based on 
ultimate tensile strength would be more appropriate. 
 
Results from a similar analysis for a type 4 specimen (Figure 5a) shows a similar reduction in 
average ligament thickness with pressure as in Figure 4a for a type 2 specimen.  Because the 
calculated ligament rupture pressure (45 MPa) is greater than the unstable burst pressure of 
the resulting 13-mm (0.5 in.)-long throughwall crack, the specimen is predicted to burst 
unstably at 45 MPa, which is reasonably close to the reported stage 2 burst pressure of 
specimen OM159 (Table 1). Note that in contrast to type 2 specimen, the ligament in the type 
4 specimen is subjected to high shearing deformation (Figure 5b). 
 
 
CONCLUSIONS 
 
Tests were conducted on steam generator tubes with two part-throughwall axial flaws 
arranged in two different configurations. Rupture pressure of a through-thickness notch tip 



 

ligament can be predicted by an equivalent rectangular approach. Nonlinear finite-element 
analyses show that both the axial (type 2) and circumferential (type 4) ligaments between two 
axial throughwall notches fail by tensile necking.  However, the type 4 ligament also 
experiences large shearing deformation.  The calculated ligament rupture pressures are 
reasonably close to observed stage 2 burst pressures. 
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TABLE 1 
SUMMARY OF TEST RESULTS  

 
Tube ID Notch 

type 
Notch 

length (mm) 
Ligament width 

(mm) 
Stage 1 pressure 

(MPa) 
Stage 2 pressure 

(MPa) 
OM161 4 6 0.25 28.3 - 
OM162 4 6 1.27 31.4 32.5 
OM159 4 6 2.54 34.8 38.3 
OM150 4 13 0.25 19.0 - 
OM151 4 13 1.27 23.0 - 
OM152 4 13 2.54 23.5 18.9 
OM1531 2 6 0.25 34.8 - 
T242, 3 2 6 0.25 17.2 - 
T252, 4 2 6 0.25 15.5 - 
OM160 2 6 1.27 32.3 - 
OM149 2 13 2.54 27.0 - 

1Notches in this specimen were 70% deep. 
2Notches in this specimen were 100% deep. 
3Axial ligament did not rupture in this test. 
4This test was conducted at 282°C. 
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Figure 1: Type 2 and type 4 configurations of notches tested at ANL. 
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   (a)         (b) 
 
Figure 2: Predicted (lines) vs. observed (symbols) rupture pressures for through-thickness 

notch tip ligaments for type 2 (axial ligament) and type 4 (circumferential. 
ligament) specimens with (a) two 6 mm notches and (b) two 13 mm notches. 

 
 

(a) (b) 
Figure 3:  Post-test (stage 1) photos of flawed tubes with two 80% deep, 13-mm (0.5 in.)-

long notches separated by a (a) 1.27-mm (0.05 in.)-wide and a (b) 2.54-mm (0.1 
in.)-wide ligament. 
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Figure 4:  Results from FEA showing (a) variation of average axial ligament thickness with 

pressure for type 2 specimen with two 6-mm-long throughwall cracks separated 
by 0.25-mm-wide ligament, and (b) variation of ligament rupture pressure with 
axial ligament width for specimen with two 6-mm-long throughwall cracks.  
Symbols represent results from tests, with up arrow indicating no rupture of 
ligament.  Dashed line is obtained from Ref. 13. 
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(a) (b) 
Figure 5:  Results from FEA showing (a) variation of average axial ligament thickness with 

pressure  and (b) deformed shape of type 4 specimen with two 6-mm-long 
throughwall cracks separated by 2.54-mm-wide ligament. 
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ABSTRACT 
 
 
The present work analytically studies an ellipsoidal cavity and then a penny-shaped crack in a transversely 
isotropic piezoelectric medium under uniform remote mechanical and electrical loading. Three-dimensional 
(3D) analytic solutions are derived for the mechanical and electrical fields in the piezoelectric medium and 
for the electric field within the cavity. An effective dielectric constant of the material is introduced here, 
which involves the material dielectric, piezoelectric and elastic constants. The results indicate that the 
electric field within the cavity is uniform and its magnitude increases with decreasing the ratio β* of the 
dielectric constant of the cavity to the 3D effective dielectric constant of the material. When the cavity is 
reduced into a penny-shaped crack, the crack mechanical and electrical fields depend on the ratio of α/β*, 
where α is the ratio of the minor semi-axis to the major semi-axis of the ellipsoidal cavity. The electrically 
impermeable and permeable penny-shaped cracks are just two extreme cases of the present solutions, 
corresponding to α/β*→∞ and α/β*→0, respectively.  
 
 
KEYWORDS 
 
piezoelectric medium, penny-shaped crack, intensity factor, analytic solution 
 
 
INTRODUCTION 
 
In purely elastic fracture mechanics, a crack is usually treated as a mathematical slit without any thickness. 
To utilize this simplification for electrically insulating cracks in piezoelectric materials, one has to assume 
an electrically insulating crack to be electrically impermeable [1-10] or permeable [11, 12]. However, a real 
crack has a finite nonzero width and the crack geometry has a great influence on the fracture behavior of the 
materials [13]. Furthermore, the two-dimensional (2D) results show that the crack fields depend on the ratio 
of α/β [14, 15], where β is the ratio of the dielectric constant of the cavity (or crack) to the 2D effective 
dielectric constant of the material. The electrically impermeable and permeable boundary conditions along 
the crack faces are only two extreme cases, corresponding to α/β→∞ and α/β→0, respectively. In this paper, 
we will demonstrate the similar results for penny-shaped cracks.   
 
 
BASIC EQUATIONS 
 



In three-dimensional piezoelectric elasticity, the equilibrium equations, in terms of stress ijσ  and electric 
displacement Di, are given by 
 

0,0 ,, == iijij Dσ ,        i, j=1, 2, 3.                                               (1) 
 
The kinematic equations read 

 

iiijjiij Euu ,,,2
1 ),( φε −=+= ,      i, j=1, 2, 3,                                                 (2) 

 
where ii Eu ,,φ and ijε  denote the electric potential, displacement vector, electric field vector and the strain 
tensor, respectively. The constitutive equations take the form 

 
lklijkijkkkijklijklij EeDEec κεεσ +=−= , ,   i, j, k, l=1, 2, 3,                              (3) 

 
where cijkl, ekij and κkl are the elastic, piezoelectric and dielectric constants, respectively.  
Let the rθ - plane of the cylindrical coordinate system (r, θ, z) coincide with the isotropic plane of the 
transversely isotropic medium and the poling direction be along the z-axis. The displacements and the 
electric potential may be expressed by the four potential functions Ui (i=1, 2, 3, 4) [7, 11, 16, 17] 
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where k1 and k2 are constants to be determined. Putting Eq. (4) into Eqs. (2), (3), and then (1) yields 
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and the other three roots λi (i=1, 2 3) are determined from the characteristic equation 
 

023 =+++ DCBA λλλ .                                                                (7) 
 
In Eq. (7), the constants A, B, C, and D are combinations of material constants and given by 
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In Eq. (4) k1i and k2i (i=1, 2, 3) are constants related to λi by 
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Finally, we express the stresses and the electric displacements in terms of the potential functions  
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A ELLIPSOIDAL CAVITY UNDER 
REMOTE LOADING 

x2

 

                         (12)    

 
Boundary conditions on the cavity surface  

 
Figure 1 shows an ellipsoidal cavity in an 
infinite transversely isotropic piezoelectric 
medium under remote loading. The center of 
the cavity is located at the origin of the 
coordinate system. The ellipsoidal surface is 
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The boundary conditions along the cavity surface 
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where the superscript “c” denotes a quantity inside the cavity. 
 
Applied loads 
 
For simplicity, we consider only the axisymmetric loading in the present work. Under the remotely uniform 
loads of  and electric displacement , the corresponding displacements and electric potential are ∞∞

zzrr σσ , ∞
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where 0ϕ  is a reference electric potential, and 
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Solution 
 
Assume that the electric field strength inside the cavity is uniform with the electric potential,  

 
cc zB 0
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where  is another reference electric potential and c

0ϕ B̂  is a constant. 
 
In this case,  
 

                         U4 =0,                                                                                  (19) 
 
and the other three harmonic potential function Ui are given by [11] 
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where Ai, i=1, 2, 3, are constants and the independent variables , i=1, 2, 3, are defined implicitly by ),( ii zrq
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Denoting , we have q)/( 2222 abbp ii λ−= i = pi for points (r, z) lying on the surface of the spheroid. 
Substituting the above expressions into the boundary conditions, i.e., Eq. (15), yields the equations to 
determine the constants Ai and B̂  
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where κc is the electric permeability of the cavity. After the coefficients have been determined, the stress and 
the electric displacement field everywhere can be calculated from Eqs. (10) and (11). 
 
If b approaches zero, i.e., 0/ →= abα , the cavity is shrunk to a penny-shaped crack. Using the kinematic 
and constitutive equations of Eqs. (2) and (3), the stress and the electric displacement in the crack plane can 
be obtained 
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where                                                                   
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Equation (27a) gives the effective dielectric constant of the material for the three-dimensional problems. The 
results indicate that the mechanical and electric fields are strongly dependent on the ratio of α/β*, like the 
two-dimensional case in which the solution depends strongly on the ratio of α/β. The two extremes given by 
Eqs. (26a) and (26c) correspond, respectively, to the electrically permeable and impermeable boundary 
conditions along the crack faces.  
 
Defining the Mode I intensity factors  D

II KK andσ
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one can obtain 
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These results show that, as in the two-dimensional problems [14], the mode I stress intensity factor is the 
same as that in purely elastic media and independent of the applied electric displacement. The electric 
displacement intensity factor depends not only on the applied fields, but also on the material properties in 
terms of d*. For the two limiting cases, we have 
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for electrically permeable cracks and 
 

π
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for electrically impermeable cracks. Using the electrically permeable or impermeable boundary conditions, 
Kogan et al. [11] and Huang [12] obtained the intensity factors for electrically permeable cracks, while 
Wang [4], Zhao et al. [7, 8] and Chen et al. [9, 10] obtained the intensity factors for electrically impermeable 
cracks. 
 
 
ACKNOWLEDGEMENTS: This work is supported by a grant from the Research Grant Council of the 
Hong Kong Special Administrative Region, China. MHZ thanks HKUST for the Post-Doctoral Fellowship 
Matching Fund.  
 
 
REFERENCES 
 
1. Deeg, W. F. J. (1980). Ph. D. Thesis, Stanford University.  
2. Sosa, H. A. and Pak, Y. E. (1990) Int. J. Solids Struct. 26, 1. 
3. Wang, B. (1992) Int. J. Solids Struct. 29, 293. 
4. Wang, B. (1992) Int. J. Engng. Sci. 30, 781. 
5. Dunn, M. L. (1994) Int. J. Engng. Sci. 32, 119. 
6. Wang, Z. K. and Huang, S. H. (1995) Theor. Appl.Fract. Mech. 22, 229. 
7. Zhao, M. H., Shen, Y. P., Liu, Y. J. and Liu, G. N. (1997) Theor. Appl. Fract. Mech. 26, 129. 
8. Zhao, M. H., Shen, Y. P., Liu, Y. J. and Liu, G. N. (1997) Theor. Appl. Fract. Mech. 26, 141. 
9. Chen, W. Q. and Shioya, T. (1999) J. Mech. Phys. Solids 47,1459. 
10. Chen, W. Q. and Shioya, T. (2000) Int. J. Solids Struct. 37, 2603. 
11. Kogan, L., Hui, C. Y. and Molkov V. (1996) Int. J. Solids Struct. 33, 2719. 
12. Huang, J. H. (1997) Int. J. Solids Struct. 34, 2631.  
13. Zhang, T.-Y. (1994) Int. J. Fracture 66, R33. 
14. Zhang, T.-Y., and Tong, P. (1996) Int. J. Solids. Struct. 33, 343. 
15. Zhang, T.-Y., Qian, C.-F., and Tong, P. (1998) Int. J. Solids Struct. 35, 2121. 
16. Wang, Z. K. and Zheng, B. L. (1995) Int. J. Solids Struct. 32, 105. 
17. Ding, H. J., Chen, B. and Liang J. (1996) Int. J. Solids Struct. 33, 2283. 



ORAL REFERENCE: 0537 
 
 
 
 
 
 

ANALYSIS OF BALLISTIC PROPERTIES OF MULTILAYERED 
SHIELDS USING APPROXIMATE MODELS 

 
 

G. Ben-Dor,  A. Dubinsky  and T. Elperin 
 

The Pearlstone Center for Aeronautical Engineering Studies, Department of Mechanical  Engineering, Ben-
Gurion University of the Negev, Beer-Sheva, 84105, P. O. Box 653, Israel 

 
 
 
ABSTRACT 
  
Recent results of analytical investigation of multilayered spaced and non-spaced shields using simplified 
models describing impactor-shield interaction are discussed. For targets consisting of plates manufactured 
from ductile materials the influence of the order of the plates and air gaps on ballistic limit velocity is 
investigated, and some problems of optimal arrangement of the plates in a layered shield are solved. Design 
of two-component ceramic-faced lightweight armors against ballistic impact is investigated, and 
approximate analytical formulas are derived for areal density and thicknesses of the plates in the optimal 
armor as functions of parameters determining the properties of the materials of the armor components, cross-
section and mass of an impactor, and of the expected impact velocity. 
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INTRODUCTION 
 
Sub-ordnance penetration and perforation of multilayered plates has been a subject of intensive research 
during recent years since non-monolithic configurations are considered feasible for the designing shields or 
elements of the shields. Simplified analytical models were derived and used for the analysis and 
optimization of the shields consisting of the layers manufactured from different materials, e.g., ductile multi-
layered shields [1, 2-12], aluminum/Lexan combinations [11], ceramic-faced armors [12-17]. Qualitative 
laws that are obtained from approximate models can be very useful for further theoretical and experimental 
investigations. In order to obtain such laws the most appropriate are those models that allow to derive 
formulas determining the dependence of the ballistic limit velocity (hereafter BLV) on various factors 
affecting perforation, e.g., a shape of the impactor, simultaneous interaction between the impactor and 
different layers of the shield during motion of the impactor in a multilayered armor, properties of the 
materials of the layers, etc. In this respect localized-interaction models [18-19], cavity expansion 
approximations [20-21], Florence’s model [13] appear to be very useful.  
     In this paper we discuss some our results on the multi-layered shields, and additional information can be 
found in Ben-Dor et al. [2-10, 12]. All the results for non-ceramic armor described here were derived 
rigorously using the adopted models for impactor-shield interaction. The obtained results (if not indicated 
differently) correspond to conical impactors with arbitrary shape of the cross-section. The determined 
ballistic properties of the shields are valid for any impactor in the considered class. Although validation of 



the obtained results using the available experimental data in the literature is encouraging, specially designed 
experiments are required in order to determine the range of the validity of the obtained results. 
 
BALLISTIC PROPETIES OF MULTILAYERED SHIELDS DETERMONED WITH THE AID OF 
THE LOCALIZED INTERACTION MODELS 
 
Impactor-shield localized interaction model 
Consider a high speed normal penetration of a 3-D rigid sharp impactor into an armor with a finite thickness 
and assume that the localized interaction model is valid, i.e., the impactor-armor interaction at a given 
location at the surface of the impactor which is in a contact with the armor can be described by the following 
equation:  
 

                                        
d
 

F = ρΩ u( )v2 + σ[ ]  n 0dS,    u = −
 

v 0 ⋅
 

n 0                                                    (1) 
 
where   dF  is the force acting at the surface element dS of the impactor along the inner normal unit vector 
  
 

n 0  at a given location at the surface of the impactor,   
 

v 0  is the unit local velocity vector, Ω  is function 
determining the particular model for the impactor-shield interaction. Equation (1) with constant parameters 

 comprises the most widely used phenomenological models for homogenous targets (see, e.g., [18,19]). 
Usually parameters ρ  are density and distortion pressure of the armor, respectively, and Ω
ρ,σ

,σ u( ) = u2 .  We 
consider the armor consisting of  N  plates, the material of i -th plate is characterized by values ρi,σi . Often 
these parameters appear in our results as a combination χi = σi ρi . Thus the parameters ρ,σ  in eqn (1) 
depend on the distance of the surface element from the front plane of the target. We assume that the adjacent 
plates are in contact and do not interact. If  the “plate” with the number i  is an air gap then ρi = σi = 0.   
 The total force  F  is determined by integrating the local force given by eqn (1) over the impactor-armor 
contact surface that depends on the position of the impactor inside the shield. This allows us to write 
equation of motion of the impactor in the normal direction and to determine the BLV that is defined as the 
initial velocity of the impactor required for its nose to emerge from the target with a zero velocity. 
Corresponding cumbersome expressions we do not write here (see, e.g., [2,8]). 
 
Optimum multilayered shield. Plates with the same density and given thicknesses  
For the shield consisting of several plates with the same density but having different values of distortion 
pressure perforated, generally, by a non-conical impactor the following properties are valid. If two adjacent 
plates in a multilayered armor are such that the value of the distortion pressure for the first plate is larger 
than that for the second plate, the BLV of the armor can be increased by interchanging these plates. The 
maximum BLV of the armor is achieved when the plates are arranged in the order of increasing values of the 
distortion pressure of the material of the plates; the minimum BLV is achieved when the plates are arranged 
in the armor in an inverse order.  
 
Optimum two-layered shield. Plates of different densities and with given thicknesses  
The maximum BLV for two-layered armor is attained when the plates are arranged according to the increase 
of the magnitude of the parameter  χ = σ ρ .  
 
Optimum multilayered shield. Plates manufactured from one of the two possible materials  
Ballistic properties of multilayered shields are studied when the shield consists of the adjacent plates made 
from one of two possible materials and the total thickness of the plates manufactured from every material is 
fixed. The following ballistic properties of the shield are proved. The displacement of any plate inside the 
target in direction of penetration  yields monotone change of the BLV of the shield and the criterion of 
increasing or decreasing of the BLV depends of the properties of the materials of the plates, namely, 
relocation of a plate with a larger (smaller) value of the parameter χ  yields an increase (decrease) of the 
BLV. The maximum BLV is obtained for the two-layered shield without alternating the plates manufactured 
from different materials; the front plate in the optimum shield must be the plate manufactured from the 
material with the smaller value of the parameter χ .  
 



Optimum multilayered shield with a given areal density and thickness. Plates manufactured from 
different materials  
The problem is formulated as follows. There are several materials with different properties which can be 
used for manufacturing the plates in a mshield. The areal density of the shield (its mass per surface unit) and 
its thickness are given. The goal is to determine the structure of the shield (the order and the thicknesses of 
the plates from different materials) that provides the maximum BLV of the shield. It is proved that the shield 
with maximum BLV must consist of one or several adjacent plates (these cases are equivalent is point of 
view of the model) manufactured from the material with the maximum χ . The shield with minimum BLV 
consist of one or several adjacent plates manufactured from the material with the minimum χ . The values of 
BLV of different shields with given areal density and thickness are between these limiting values. 
 
Optimum multilayered shield with large air gaps  
It is assumed that the impactor perforates the plates in a multi-layered  shield sequentially, i.e., it does not 
interact with two or several plates simultaneously. One would expect that this assumption is approximately 
valid if the length of the impactor is much less than the thickness of every plate. In the framework of the 
adopted penetration model this assumption corresponds to the spaced armor when the widths of the air gaps 
are greater than the length of the impactor. The set of plates is given. We proved that the maximum BLV is 
attained when the plates are arranged in the order of increasing values of χ . 
 
Influence of air gap on the ballistic resistance of the two-layered shield  
The following property is proved. If χ1 > χ2 χ1 < χ2( )

1 =

 then the BLV decreases (increases) with increasing 
the air gap thickness from zero to the length of the impactor (BLV becomes constant with the further 
increase of the air gap thickness). If χ χ2, i. e., the properties of the material of both plates are the same, 
the ballistic limit velocity does not depend on the thickness of the air gap. Numerical calculations performed 
for armors consisting of plates manufactured from different materials show that the developed model 
predicts a very negligible effect of an air gap upon the ballistic resistance. 
 
Influence of the order of the plates on the ballistic resistance of a  two-layered spaced shield  
The maximum BLV of the armor with a fixed width of an air gap is attained when the plates are arranged in 
the order of the increasing values of parameter χ . 
 
Influence of air gap on a ballistic resistance of a multilayered shield consisting of the plates are 
manufactured from the same material.  
The BLV of the spaced shield is determined by the total thickness of the plates, i.e., it  is independent of the 
air gap sizes between the layers, of the sequence of the plates in the shield and of the distribution of the total 
thickness among the plates. Monolithic and spaced shields are equivalent in the framework of the considered 
model. 
 
Optimal shapes of 3D impactors. 
We studied optimization of 3D impactors with a given longitudinal contour, length and volume. We 
determined the existence of the "universal" optimal impactor among the 3D conical and non conical slender 
impactors penetrating normally into non-homogeneous (layered) semi-infinite shield or into a shield with a 
finite thickness. The impactor having the minimum drag moving inside a homogeneous medium with a 
constant velocity penetrates to the maximum depth into a semi-infinite shield and has the maximum BLV 
when it penetrates into a shield with a finite thickness, regardless of the distribution of the properties of the 
material in the shield along the penetration path. Using the analogy with the hypersonic flow over the flying 
projectiles (Ω =  in eqn (1)) it is predicted that the optimal impactors have a star-shaped cross-section. u2

 
 
INFLUENCE OF AIR GAPS ON THE BALLISTIC PROPERTIES OF MULTILAYERED SHIELDS 
DETERMINED USING CAVITY EXPANSION MODEL  

 
Cylindrical cavity expansion model (CCEM) 
The model is based on the assumptions that the impactor (a body of revolution) moving in a shield causes 
hole expansion in every plane which is normal to the direction of its motion when it reaches this plane and 



these layers do not interact. Expression for hole expansion vs. the time ( t = 0 is the beginning of the hole 
expansion)  at every plane reads (for details see, e.g., [20-21]): 
 

                                                    p = α Ý R 2 +βRÝ Ý R + γ                                                                  (2) 
 
where R  is radius of the hole,  is a pressure applied in the normal direction at the part of the impactor’s 
surface, coefficients α

p
, β, γ  depend on the properties of the material of the corresponding plate in the 

multilayered shield. Taking into account kinematic relation between the location of the impactor in the 
shield, its shape and the radius of the hole at every plane, the equation of motion of the impactor allows us to 
determine the BLV. Corresponding formulas can be found in [4]. It is important to emphasize that, even for 
conical impactor, in eqn (2) Ý Ý ≠ 0R  and cavity expansion model does not reduce to the localized interaction 
model. Such special models for homogeneous metal shields can be found, e.g., in [21]. Thus, BLV depends, 
generally, of the parameters αi , ,βi γ i  where the subscript i  denotes the number of the plate in the shield.     
 
Optimum multilayered shield consists of given plates. Large air gaps.  
The following properties are proved. If two adjacent plates in a shield with large air gaps are such that the 
value of the parameter χ ˜ = γ α  for the first plate is larger than that for the second plate, the BLV of the 
shield can be increased by interchanging these plates. The maximum (minimum) BLV of the shield is 
attained when the plates are arranged in the order of increasing (decreasing) values of the parameter ˜ χ . The 
values β  do not effect the optimal order of the plates. i
 
Comparison of ballistic properties of monolithic and spaced shields  
The simplified models that we use imply that monolithic target and the target consisting of several adjacent 
plates are equivalent if the total thickness of the plates and their material are the same. However, in contrast 
to localized interaction model,  CCEM predicts the difference in BLV for monolithic and spaced shields. It 
was shown analytically (for large air gaps) that the BLV of a spaced shield is larger than that of a monolithic 
shield, and the BLV of the shield increases with the increase of the number of the plates with the same 
thickness while the total thickness of the plates is kept constant. Numerical simulation using the model [21] 
showed that the influence of air gaps on BLV of the shield is weak for slender conical impactors and can be 
more pronounced with the increase of the apex half angle of its nose and the density of the material of the 
shield. 
 
OPTIMUM TWO COMPONENT CERAMIC ARMOR 
 
Model description 
Consider a normal impact by a rigid projectile on a two-layer composite armor consisting of a ceramic front 
plate and a ductile back plate. We employ the  following model v∗

2 = αε2σ2h2z Az + m( )/ 0.91m2( ) where 
 is the BLV, v∗ m  is a projectile's mass, R  is a projectile's radius, h  are the plate's thicknesses, 1, h2 σ  is the 

ultimate tensile strength, ε  is the breaking strain, ρ  is density, A = ρ1h1 + ρ2h2  is the areal density, 
; subscripts 1 and 2 refer to a ceramic plate and a back plate, respectively. For  z = π R + 2h1( 2) α =1 this 

model was suggested by Florence [13] and re-worked by Hetherington [14]. We generalized slightly this 
model introducing a coefficient α  which can be determined using the available experimental data in order to 
increase the accuracy of the predictions.     
     The objective of our study is to find the thicknesses of the plates h  which provide the minimum areal 
density of the armor for a given BLV v .   

1, h2
∗

Optimum two component armor 
We found that using the dimensionless variables 
 

h i =
hi
R

, ρ i =
πR3ρi

m
, i = 1,2, w = v∗

0.91ρ2
αε2σ2

, A =
πR2A

m
 

 



the problem is reduced to finding a positive h 1 that provides the minimum A = A h 1,ρ 1,w ( ). The 
dimensionless areal density A  is a function of one variable h 1 and depends on only two parameters, ρ 1 and 
w . Therefore, although the exact analytical solution of the problem does not exist, the latter property allows 
us to find the simple approximations for characteristics of optimum shield in a general case, namely, for 
arbitrary combination of materials of the plates. Such approximations  (with the average accuracy of 3% in 
the range 0.04 ≤ ρ 1 ≤ 0.1,1 ≤ w ≤10 ) for the thickness of the ceramic plate and the areal density of the 
optimum armor are given by the the following expressions: 
 

h 1
opt =

0.04 +1.12ρ 1( )w 1.895

ρ 1 ρ 1 +1.29w 1.47 + 0.1( ), A opt = 0.04 + 1.12ρ 1( )w 0.425 

 
The optimal thickness of metallic plate is h 2

opt = A opt − ρ 1h 1
opt( ) ρ 2 . 
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ABSTRACT 
 
 
According to the Unified Approach for Fatigue Crack Growth developed by the authors. Kmax 
and ∆K are two intrinsic parameters simultaneously required for quantifying fatigue crack 
growth data.  The two parameters lead to two intrinsic thresholds that must be simultaneously 
exceeded for a fatigue crack to grow.  Environmental interactions being time and stress-
dependent processes affect fatigue crack growth through Kmax parameter.  Based on an 
extensive analysis of literature data, we have classified environmental effects into four basic 
types.  The Unified Approach provides also a true reference state to define an inert fatigue 
behavior based on which one can quantify the environmental effects.  
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Fatigue crack growth, Environmental effects, Unified Approach, Classification of 
environmental effects  
 
 
INTRODUCTION 
 
In our Unified Approach to Fatigue [1-5], ∆K and Kmax provide two crack tip driving forces 
simultaneously required for crack growth to occur.  There are two corresponding thresholds 
that must be exceeded for a crack to grow.  Crack growth data in terms of a ∆K vs Kmax curve, 
show an L-shaped curve with two limiting values corresponding to two thresholds.  At any 
other crack growth rates, the L-shaped curve shifts with the asymptotic limiting values, ∆K* 

and Kmax
* increasing with crack growth rate, as shown in Fig. 1a.   

 



CRACK GROWTH TRAJECTORY 
 
In the Paris regime, when crack growth is governed typically by striation mechanisms, R-ratio 

effects are minimal.  Crack growth in this case is controlled purely by cyclic amplitude and        
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∆K* is nearly equal to Kmax

*.  Hence a plot of ∆K* and Kmax
* for different crack growth rates 

will be a straight line with ∆K* = Kmax
*, as shown in Fig. 1b.  The curve in Fig. 1b can be 

considered as a trajectory corresponding to crack growth mechanisms; the ∆K* = Kmax
* path 

characteristic of the pure-cycle controlled fatigue crack growth phenomenon.  We refer to this 
as ideal fatigue behavior to separate it from other processes to be described below.  Deviation 
from this line occurs if the crack growth mechanism changes.   Empirically all deviations 
from ideal fatigue behavior occur with Kmax

* being larger than ∆K*, that is, all non-ideal 
behaviors fall below the line ∆K* = Kmax

*.   As the mechanisms become increasingly Kmax
 

controlled, the behavior swings more and more towards the Kmax-axis.   
 
 
CLASSIFICATION OF ENVIRONMENTAL EFFECTS 
 
We have examined the available data in the literature for many different materials and 
environments, and arrived at some basic general classifications of the types of environmental 
interactions that are encountered during fatigue crack growth.  We use the ∆K*-Kmax

* plot as a 
basis for the classification scheme.   The plot represents the trajectory of crack growth 
behavior starting from threshold to unstable fracture as crack growth occurs, as suggested in 
Fig. 1a.  For a given crack growth rate, the two values, ∆K* and Kmax

* represent the two 
limiting values in terms of the two parameters, ∆K and Kmax, required for fatigue crack 
growth as defined in Fig. 1.  The ∆K* = Kmax

* line represents the pure or ideal fatigue crack 
growth, Fig. 1b.  This forms a reference line for the ideal inert behavior, which becomes a 
basis to classify the environmental contributions.  This ideal behavior manifests only if the 
vacuum is very high or impurities in the so-called inert environments are very low and/or the 
materials are non-reactive to a given environment.     
 



Fig 2 shows four types of basic behavior that are encountered.  Type I behavior is typical of 
the true corrosion fatigue, wherein the environmental effects are maximum at low crack 
growth rates near threshold and decreases with increasing crack growth rate.  At high crack 
growth rates, the reaction time is too short to have any significant environmental effect, and 
hence the behavior merges with that of ideal ∆K*=Kmax

* line.  In a gas-metal system, four  
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Fig. 2 Classification of Environmental Effects 
           Using Two-parameter aproach 

 
sequential steps are considered[6]; transportation of aggressive species to the crack tip, 
reaction at the crack tip, transportation of the resulting hydrogen into the metal and finally the 
embrittlement of metal.  In either case, with increasing crack growth rate, the Type I behavior 
is expected due to decreasing reaction time at the crack tip.  Such a Type I behavior has 
indeed been observed.  

 
The Type II behavior is indicated by the ∆K*-Kmax

* line parallel to the ideal behavior without 
merging with it.  In this case, the environmental effects remain constant independent of crack 
growth rate or applied driving force, say Kmax.  Type II behavior is characterized by 
environmental effect that saturates extremely rapidly in relation to the transient crack advance 
times, and hence provides a constant contribution.   
 
Type III behavior is opposite to Type I, wherein with increasing crack growth rate or Kmax, 
the environmental contribution increases.  Correspondingly the ∆K*-Kmax

* line swings 
towards Kmax-axis.  Here, transient time is not controlling, since with increasing crack growth 
rate or reduced time, the environmental contribution to fatigue crack growth actually increases 
rather than decreases.   Since the deviation from ideal behavior of Type III increases with 
increasing stresses, it is associated with stress-enhanced or stress-driven environmental 
effects.  Hence Type III may be more characteristic of stress corrosion fatigue process, Fig. 
2b, in contrast to Type I and II.  Increased effects of strain rates with increasing ∆K could also 
contribute to Type III. 
 
Type IV is an extreme case of Type III behavior wherein the slope ∆K*-Kmax

* line approaches 
zero with ∆K*-Kmax

* trajectory running parallel to the Kmax-axis, indicative of stress corrosion 



crack growth rather than stress corrosion fatigue.  The process is similar to static fatigue 
normally discussed with reference to ceramic materials.  The role of cyclic stress in Type IV 
behavior may be to sharpen the crack tip, accentuating the stress-corrosion effect.  
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Fig. 3. A) Crack growth behavior in low alloy steel in ambient air, hydrogen and vacuum b) 
The analysis of the behavior in terms of ∆K*-Kmax* - trajectory map.  
 
 
EXPERIMENTAL RESULTS  
 
We show an example from the literature that illustrates a few of the types discussed above.  
To create the crack growth trajectory map similar to Fig. 2, both ∆K*and Kmax

* as a function 
of crack growth rate are needed.  To determine these two values, crack growth rate data of a 
given material as a function of load ratio are needed.  At the bare minimum, it is necessary to 
have data at R≈0 (e.g. R=0.05) from which we can estimate Kmax

*, and the data at R ≈ 1 (e.g. 
R=0.9) from which we can estimate ∆K*, since these are two asymptotic values at low and 
high R-values.  
 
Fig. 3a shows the raw crack growth data in an ambient air, dry hydrogen and vacuum in low 
alloy steel (2-3.5Ni-Cr-Mo-V steel) measured by Stewart[7] at two R-ratios.  The data may 
appear to be quite complex.  However, since the data correspond to two extreme R-ratios, we 
can estimate the ∆K* and Kmax* values as a function of crack growth rate.  These are plotted 
in the trajectory plot in Fig. 3b.  
 
Considering first the data in vacuum, Fig. 3b shows that at low crack growth rates, the data 
deviate from the ideal fatigue behavior.  But with increase in crack growth rates, the transient 
time decreases and the data slowly merge with that of the ideal fatigue behavior.  The results 
demonstrate two important aspects.  (a) The ideal fatigue behavior governed by the 
∆K*=Kmax

* line can be observed in a material representing environment-free crack growth if 
the conditions are suitable.  (b) The so-called vacuum tests do not ensure completely pure 



inert environmental conditions since even very low partial pressures can have significant 
effect for some materials.  This implies that care should be exercised in evaluating the 
environmental contributions using the vacuum tests as a reference. The vacuum data in Fig. 
3b are consistent with the Type I behavior, that is decreasing environmental contribution with 
increasing crack growth rate until the data merge with the ideal fatigue behavior.  The data are 
also consistent with Knudson flow[6] behavior where transportation of damaging species or 
the degree of crack-tip reaction reduces with the reduction in transient time due to increased 
da/dN and frequency or reduced partial pressure.  
 
Examination of the laboratory air data of the same material shows somewhat different 
behavior from that of vacuum.  It also shows initially a Type I behavior, but with increasing 
crack growth rate it converges to Type II behavior with data running parallel to the ideal line.  
Thus there is a definite change in the mechanism with increasing crack growth rate, stress or 
both.  Here Type I leads to Type II behavior driven by applied stress, that is the mechanism in 
Type I should be such that it leads to a saturation stage at higher stresses or crack growth 
rates.  One would expect that if the environmental effects are transportation control or 
reaction control then environmental contribution should decrease with increase in crack 
growth rate as in Type I.  That is, one can have saturation effects at low crack growth rates 
due to larger reaction times available.  From Fig. 2, saturation leading to unsaturation should 
result a Type II converging to Type I at high crack growth rates.  One does not however 
expect an unsaturation leading to saturation that is a Type I behavior becoming Type II as the 
kinetics of the process are primarily time-dependent.  On the other hand, if the process 
involves some complex roles of both time as well as stress, one can expect that it decreases 
due to decreasing time and stabilizing due to stress at some minimum value, causing a 
transition from Type I to Type II behavior.   In order to establish the exact nature of the 
mechanism involved further analysis is required.  Fig. 3, however, points out that controlling 
processes differ at ambient pressures from that observed in low vacuum.    
 
The behavior in hydrogen environment differs from the previous two.  At low crack growth 
rates the effect is comparable with that of partial vacuum and with increasing stress or growth 
rate the behavior converges to a constant effect similar to that of moist air.  There is a small 
increase in environmental effect with crack growth typical of Type III, but that effect is very 
small.  There is no Type I behavior observed at low crack growth rates in Hydrogen.   Thus 
for the same material, three different environments show three different behaviors.  Fig. 3 
indicates that care should be exercised in interpretation of the data, particularly when there is 
change in the types of behavior in the same material and environment.  
 
To understand the rate controlling process one has to examine in detail using above trajectory 
maps, the effect of frequency, composition and temperature (to evaluate the thermal activation 
process in each regime) supported by detailed fractographic analysis.  Fig. 3, however, points 
to the fact one has to examine such trajectory map involving two crack tip driving forces, ∆K 
and Kmax, to sort out the true contribution from environment in relation to the pure fatigue 
process.   The micromechanism basis for each of the process has to be examined to have a 
better understanding of the mechanisms involved and how one mechanism can lead to the 
other with increasing crack growth rate.  The analysis, however, points to the fact that 
environmental effects at the crack tip cannot be explained by a single mechanism for all crack 
growth rates, since they  depend on both time and stress, as most of the corrosion process are.  
The reaction or transient time and the stress intensity at the crack tip have inverse relation 



since the times are longer at low stresses and shorter at high stresses.  Hence whether the 
process is dominated predominately by time or by stress will have significant effect on the 
resulting process and material response in the ∆K-Kmax* trajectory map.  The Unified 
Approach points to the fact that ∆K-Kmax basis is fundamental for all fatigue crack growth 
process and the environmental effects have also to be examined from this perspective.   Kmax 
parameter becomes a vehicle through which environmental effects get manifested, just as in 
the case of stress corrosion or sustained load crack growth processes.   Analysis also provides 
a perspective in terms of the types  of material behavior that one can expect, in addition to 
providing an environmentally pure fatigue behavior as a reference state.   
 
 
SUMMARY AND CONCLUSIONS  
 
We have extended the application of the Unified Approach to Fatigue Crack Growth to the 
analysis of environmental effects.  It is shown that the two parameter approach is naturally 
amenable to the analysis since one of the governing driving force Kmax is the characterizing 
parameter for the time-dependent environmental contributions.  Based on this two-parameter 
approach we have developed a classification protocol for environmental contributions 
defining four types.   This is discussed with reference to Fig. 3.  Examples from the literature 
that exhibit the four types were shown.  
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Analysis of Fracture Mechanics and Fatigue Behavior for EC(T) Specimen 
J.Z.LIU, X.R.WU, B.R.Hu and L.F.WANG 

(Beijing Institute of Aeronautical Materials, Beijing 100095, China) 
 
 
Abstract- In this paper, an approximate weight function (WF) for EC(T) specimen was given and verified. 
Using the WF, stress intensity factor and crack opening-displacement solutions for the specimen under pin 
loading and uniform pressure acting on the crack surface were obtained. The plastic-zone sizes from Dugdale 
model were calculated. Moreover, based on Dugdale model, a plasticity-induced crack-closure model for the 
specimen under fatigue loads was developed. Using the closure model, fatigue crack-closure behavior of the 
specimen was studied. 
 
 

1. Introduction 
Recently, an extended compact tension, EC(T), specimen, shown in Fig.1 has been developed for studying 

fatigue and fracture behavior of materials. The EC(T) specimen is considered an optimum design for 
laboratory fatigue-crack growth and fracture studies because of its distinct advantages compared to other 
cracked configurations, i.e. , standard compact tension, single-edge crack, and middle-crack tension 
specimens. These advantages are giving the experimenter additional working room, requiring low applied 
loads for an equivalent crack tip stress intensity factor, reducing the T-stress and crack fracture paths being 
self-similar, etc. [1]. The stress-intensity factor (SIF) solution and crack-surface opening displacements 
(CODs) at the crack mouth (x/c=0) and near the crack mouth (x/c=0.05) for the specimen under pin loading 
were derived by using the boundary-force method (BFM)[1,2]. Using an approximate method, the SIF 
solution for the specimen under pin loading was also obtained by Smith [3]. In this paper, following Smith's 
idea, an approximate crack surface weight function (WF) for the specimen is given. Using the weight function, 
SIF solution and CODs for the specimen under pin loading and uniform pressure acting on the crack surface 
are obtained. The plastic-zone sizes from Dugdale model are calculated. Moreover, based on Dugdale model, a 
plasticity-induced crack-closure model for the specimen under fatigue loads is developed. Using the closure 
model, fatigue crack-closure behavior of the specimen is studied.  
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Fig.1 Extended compact tension specimen (a). Pin loading and notch details, (b) Uniform segment pressure 
acting on the crack surface 

 
2. Weight Function For EC(T) Specimen 

The site of the load application is far enough away from the site of interest for the EC(T) specimen, the 
details of the method of load application are unimportant (colloquially, the principle of St. Venant). 



Considering this and using the principle of superposition, Smith represented the EC(T) specimen with an 
edge-cracked long strip loaded by a direct remote end tension load, P, and end bending moment, M (where P is 
pin load and M=0.3PW) [3]. The SIF solutions by this method agree well with the results from Piasick, et al's 
BFM. Following this method, crack surface weight function of the EC(T) specimen is assumed to be equal to 
that of the edge-cracked long strip. That is [4],          
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where the βi(α)-function were given in [4,5]. 

 
3. SIFs and CODs under pin loading 

3.1 SIF solutions 
According to two-dimensional weight function theory, the stress intensity factor due to an arbitrary set of 

applied loads can be obtained by integrating over crack length a product of these loads with the weight 
function m(α,x) of the cracked body [4]: 
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0

dxxmxWK ασ
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∫=

where the term σ(x) represents the stress distribution at the prospective crack site in the crack-free body.    
Under pin loading,  

( ) ( ) 36.38.2 x
BW
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Where P is pin loading, B and W are thickness and width of specimen, respectively. x=X/W. By 
substituting eqs(1) and (3) into eq(2), SIF solution can be gotten as follow: 
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  Results from eq(4) and Piascik, et al's BFM[1,2] are given in Table 1, respectively, for comparison. 
Differences between the results are within 0.8%, very small. By fitting the their numerical solutions, 
Piasick ,et al got the following SIF expression: 
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Where d is the distance from specimen edge to load line, d=0.2W here. For 0.1≤c/W≤0.9, eq(5) is within 

±1.0 % of WF solutions. 
 



3.2 COD solutions 
The crack opening displacement between two crack surfaces can be computed by the following equation: 
 Where f(s) is the same as that of eq(4). E'=E for plane stress and E'=E/(1-ν2) for plane strain ( E is 

Young's modulus and ν is Possion's ratio). α0 =X/W.  
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Table 1 A comparison of normalized SIFs and crack-opening displacements under pin loading 

C/W   KBW1/2/P 
   (BFM) 

KBW1/2/P 
 (WF) 

E’BV0/P 
(BFM) 

  E’BV0/P 
(WF) 

   E’BV1/P 
(BFM) 

E’BV1/P 
(WF) 

0.1 
0.2 
0.3 
0.4 
0.5 
0.6 
0.7 
0.8 
0.84 

1.721 
2.586 
3.571 
4.904 
6.907 
10.25 
16.67 
32.21 
45.90 

1.723 
2.590 
3.578 
4.913 
6.919 
10.28 
16.73 
32.39 
46.25 

1.664 
3.750 
6.853 
11.99 
21.33 
40.30 
85.51 
227.6 
379.4 

1.668 
3.756 
6.865 
12.01 
21.34 
40.20 
84.76 
222.3 
367.3 

1.180 
3.194 
6.126 
10 .96 
19.74 
37.59 
80.21 
214.5 
358.2 

1.586 
3.593 
6.622 
11.68 
20.93 
39.71 
84.20 
221.7 
366.6 

 
Normalized displacements (E'BV/P) at crack mouth V0(X/W=0.) and near the crack mouth V1(X/c=0.05) 

from WF and BFM[1,2] , respectively, are also summarized in Table 1 as a function of c/W for comparison. 
For V0, WF solutions are within 3.2% of the BFM's results. For V1, WF solutions agree with those of BFM at 
0.2<c/W≤0.84 (Error is within 8%). However, at c/W=0.1, WF solution is obviously different from that of 
BFM.  

By fitting WF solutions, crack-surface-opening displacement expression under pin loading is obtained as 
follows: 
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Where FEC(T) is the same as that in eq(5) 
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When 0.2≤c/W≤0.7, eq(7) is within ±0.4% of WF solutions. At c/W=0.8, the errors are within 13.2%.   
The compliance method, that is, by means of measuring crack-mouth-opening displacement to monitor 

crack length, can be used during EC(T) fatigue crack growth testing. By fitting BFM's solutions, Compliance, 
in terms of crack length, is given by Piascik, et al [3] as follows: 

)8()1/(]44.1474.407.4938.2652.15[' 25432
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     Where α=c/W. Equation (8) is within 0.3% of the same BFM numerical results, within 3% of the 
corresponding WF solutions aty 0<c/W≤0.9. By fitting WF numerical results, the following expression with 
high accuracy is given: 
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Equation (9) is within 0.6% of the same WF solutions for 0.1≤c/W≤0.9.   
   

4. SIFs and CODs under a segment of uniform pressure in the wake of crack tip 



4.1 SIF Solutions 
 According to eq.(2), let σ(x)=σ, SIF expression for the specimen under a segment of uniform pressure in 

the wake of crack tip, as shown in Fig.1 (b), is derived as follows: 
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Equation (10) is within 0.06% of the corresponding WF numerical results at 0.1≤c/W≤0.8 and 0<d1/c<1. 
d1 is the distance from crack mouth to initiating load position.    

 
4.2. COD solutions 

  The crack opening displacement between two crack surfaces for the specimen under a segment of 
uniform pressure in the wake of crack tip, as shown in Fig.1 (b), can be also computed by substituting f(s) in 
eq(10) into eq(6) and letting a0=d1/W in eq.(6). The WF solutions of normalized COD for the specimen with 
several d1/c at c/W=0.2 and 0.8, are shown in Fig.2. Unfortunately, it is very difficult to get a COD expression 
with high accuracy by fitting the corresponding WF numerical solutions under this loading case.  
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Fig.2 Normalized crack-surface-opening displacement for EC(T) specimen with uniform pressure applied to 

crack wake for various d1/c. (a) c/w=0.2, (b) c/W=0.8 
 

5. Plastic-zone from Dugdale model for EC(T) specimen 



The Dugdale model for EC(T) specimen requires that the "finiteness" condition of Dugdale be satisfied. 
This condition state that K at the tip of the plastic zone (at c+ρ) is zero. Thus, 
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Where α=(c+ρ)/W, α0=c/W, σ0 is flow stress, which is taken to be an average of the yield and ultimate 
strength. By eq.(11), the plastic-zone size (ρ) is calculated for various c/W and P/(BWσ0) ratios. An equation 
is then fitted to these results and is 
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 and A0=1.2231, A1 =-23.3888, A2 =226.401, A3 =-942.615, A4 =2080.0, A5 =-2301.44, A6 =1036.04. 
Equation (12) is within 3% of the corresponding numerical results at 0.1≤c/W≤0.8 and ρ/(W-c) ≤0.55. 

 
6. Fatigue crack closure behavior 

Based on two dimensional weight function method, a new crack closure analytical model was developed 
by two of the present authors, Liu and Wu[4,5] in order to extend the Newman model to various cracked 
geometries. Following the method, using the weight function method as explained above, a crack closure 
model for EC(T) specimen was established. In the model, the applied stress level Po/(BW), at which the crack 
surfaces are fully open, is obtained on crack surface-opening displacement. To find the applied stress level 
needed to open the crack surface at any point, the displacement at that point due to an applied stress increment 
(Po-Pmin)/(BW) is set to equal to the displacement at that point due to the contact stresses at Pmin/(BW). 
Thus, 
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 Where f(xi) is the crack surface-opening displacement at the point xi due to unit pin load P per unit 

thickness (B) and unit width (W). g(xi,xj) is the displacement at the point xj due to unit uniform stress acting on 
a segment of the crack surface with the center at xi. n is the total number of elements modeling crack-tip 
plastic-zone and residual plastic deformation along the crack surface. The maximum value of (Po)i gives the 
crack open load, Po. 

In this paper, EC(T) specimen is assumed to be made of 2024-T351 aluminum alloy. The mechanical 
properties of the material are UTS σu=457 MPa, yield stress σy=364Mpa, Young's modulus of elasticity 
E=69Gpa. Constraint factor, alf, ahead of crack tip is assumed to be equal to 1 and 1.73, respectively. 

Normalized crack opening loads under different stress ratios and constraint factors were obtained by the 
model above, and are given in Fig.3. From the figure, it is found that obvious effect of both stress ratio and 
maximum stress on crack closure exists. Crack closure is more distinct under lower stress ratio. The effect of 
maximum stress on crack closure is significant at low stress ratio and small crack-tip constraint factor. These 
results can be used to explain fatigue crack growth behavior of EC(T) specimen at different stress ratio and 
specimen thickness.   
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Fig.3. Normalized crack opening loads for EC(T) specimen made of 2024-T351 aluminum alloy under 
different stress ratios and constraint factors 

 
7. Conclusions 

(1) According to the principle of St. Venant, a crack-surface weight function of EC(T) specimen was 
assumed to be same as that of an edge-cracked long strip. Stress intensity factor and crack mouth 
opening-displacement solutions, obtained by using the WF, agreed well with the corresponding BFM’s 
solutions. Thus, the WF is verified to be with high accuracy, can be used for EC(T) specimen. 

(2) Using the WF, SIF and COD solutions of EC(T) specimen under pin loading and uniform pressure 
acting on the crack surface were obtained. The plastic-zone sizes based on Dugdale model were 
calculated. By fitting the numerical results, simple expressions with high accuracy were obtained for 
COD under pin loading, SIF under a segment of uniform pressure in the wake of crack tip, and the 
Dugdale plastic-zone size. 

(3) A plasticity-induced crack-closure model for the specimen was developed. Using the model, fatigue 
crack closure behavior of the specimen was analyzed. The results showed that an obvious effect of 
both stress ratio and maximum stress on crack closure exists. Crack closure is more distinct at lower 
stress ratio. The effect of maximum stress on crack closure is significant at low stress ratio and small 
crack-tip constraint factor. These results can be used to explain fatigue crack growth behavior of EC(T) 
specimen at different stress ratio and specimen thickness.    
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ABSTRACT 
 
The computer simulation of physical processes is one of the current directions of research development 
of body structures behaviour. The method, which was worked out (experimentally confirmed), gives 
an opportunity to analyse the same problems numerically, without expensive experiment. Recently the 
finite element method (FEM) has been used to investigate the above problems [1÷4]. The authors of 
this paper consider crack-face bridging, the stress field and the stress intensity factor ahead of the 
crack tip in the single-edge notched bend (SENB) ceramics specimen using FEM. In the FEM 
calculations the cohesive forces caused by the bridging effect were modelled using non-linear elastic 
springs. To solve this non-linear problem the incremental procedure was used. The results of this 
analysis are the stresses and displacements on the bridging crack and external load, which allow to 
compute the stress intensity factor and fracture energy. 
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INTRODUCTION 
 
Ceramic materials exhibit several favourable properties (chemical inertness, high temperature 
capability, hardness stiffness and compressive strength, which make them products to be potentially 
employed in many different engineering applications. During the crack propagation in alumina 
ceramics a crack-border interaction zone develops directly behind the crack tip. In this zone, the two 
crack surfaces are not completely separated, and therefore, crack-surface interactions occur. The origin 
of this behaviour is well documented by authors [5,6] from the experimental point of view (see Figure 
1): the microscopic observations of the crack path showed the existence of crack surface interactions 
and crack bridging due to serrated grains and unbroken ligaments. There is a compelling evidence of 
crack surface interaction by frictional tractions around bridging grains, which produces a strong 
toughening effect. To describe this kind of behaviour (two steps mechanism, see Figure 2) it is 
possible to use the bilinear softening curve. The curve responds to different mechanisms of energy 



dissipation and takes into account the bridging effect of the fibres just behind the crack tip and refers to 
decohesion and pull out between fibres and matrix. 

                        

 
a) b)

 

 

c) 

 
Figure 1: a) crack surface interactions process [5], b) crack bridging due to serrated grains [5] 

and c) view of the surface after fracture in Al2O3 ceramic  
 

grain grain

Bridge  
 

Figure 2: Two steps bridging process in ceramics: 
a) break of a link between grain and matrix, b) pull out between grain and matrix 

 
 
THEORETICAL FUNDAMENTALS 
 
The theoretical analysis of crack growth process in alumina ceramic is described by authors [7÷11]. 
The algorithm of the analysis looks as follows. The existing interaction zone behind crack tip has 
capability to transmit stresses, which are called bridging stresses. The stresses transmitted due to the 
crack surface interactions are denoted by σbr(x), and they are superimposed by the external applied 
stresses resulting in: 



 ( ) ( ) ( )x  - x = x br appl σσσ  (1) 
 

Authors of papers [7,10] indicated, that the stress intensity factor KI for SENB loaded by stress 
distribution σ(x) can be calculated using the fracture mechanical weight function method: 
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where h is the weight function depending on the geometry of the crack-component configuration. 
Integration of the equation proposed by Rice [12], which is presented as follows  
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yields the crack opening displacements (COD) δ caused by stress σ. A detailed description was 
gathered from the handbook [13]. Taking into consideration the total stress (Eqn. 1) acting at the crack 
tip the obtained equation is as follows: 
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where H = E (Young’s modulus) for plane stress and H = E/(1-ν 2) (ν -Poisson’s ratio) for plane strain, 
x is the coordinate of the displacement computed, x' is the location where the stress σ acts, δ00 and σ0 
are the fracture parameters [7,10]. The solution of the integral Eqn. 4 provides the distribution of the 
bridging stresses as the function of the stresses applied, and allows obtaining the stress intensity factor 
basing on the next equation: 
 
 br Iappl Itip I KKK −=  (5) 
 
The evaluation of Eqn. 4 using successive approximation requires plenty of computer time. Authors of 
report [10] have prepared special strategies to limit the number of the computation.  
The following procedure was applied to analyse the stress state and displacement of crack surface 
(COD) behind the crack tip in the single-edge notched bend (SENB) alumina ceramic specimen. The 
average grain size in analysed ceramic was 13 µm. The performed calculations provided the 
distribution of bridging stress as a function of crack opening displacement, see Figure 4a. The bridging 
crack intensity factor KIbr was obtained, see Figure 4b. 
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Figure 3: Crack starting from a notch in a bending test [7,10] 
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Figure 4: a) Distribution of bridging stress  
and b) bridging stress intensity factor as a function of crack extension  

 
 

NUMERICAL METHOD 
 
The Finite Element Method was applied to crack growth process simulation in alumina ceramic.  
The structure’s deformation under consideration is localised within the crack. The relationship 
between the crack opening displacement (COD) δ and the transferred stresses σ by bridging effect was 
described using the softening curve (see Figure 5). The authors of papers [9,11] indicated, that the 
curve must always fit some conditions. Firstly, when δ = 0, the stresses transferred through the crack 
have to be equal to σc. Secondly, there is a critical value of δ, named δc, defined as follows if δ ≥ δc 
then σ = 0. Finally, the area under the softening curve is the fracture energy GF, that is the energy 
needed by the unit area to create a new separated surface. The parameter σc was obtained from the 
three point bending test for the bars without the notch, and performed from the alumina ceramics being 
analysed. The value of the parameter σc is given in the Table 1. The critical value of the crack opening 
displacement δc was measured by the authors [9] for different grain size polycrystalline alumina. The 
authors have found out that it is equal to one quarter of the mean a grain size. 

 

 
Figure 5: Strain softening curve ( bilinear, ---- exponential) [11] 

 
The behaviour of the material behind the crack tip (influence between the newly separated surfaces 
due to the existing cohesive forces) was modelled using non-linear elastic springs. The profile of the 



curve (relation force-displacement) was obtained basing on formula presented in papers [4,11]. 
Numerical model of the three-point bending bar was performed from 8-nodes plain stress elements. 
Due to the body symmetry (see Figure 6) one-half of the bar was analysed only.  
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Figure 6: Finite element model with crack-face bridging during modelling crack growth process 
 

TABLE 1  
SOFTENING CURVE PARAMETERS FOR ALUMINA CERAMICS 

 
Mean grain size 

(µm) 
σc 

(MPa) 
δc 

(µm) 
σ1 

(MPa) 
δ1 

(µm) 
13 200 3.25 18.06 0.4 

 
A finite element model for crack bridging systems has been proposed and performed in this work on 
the basis of the results from single-edge notch bend experiment. Existing in the process of the crack 
propagation bridging effect was modelled using non-linear springs elements (see Figure 6). It was used 
the incremental procedure to solving this problem. The results of this analysis are stresses and 
displacements on the bridging crack and external load. A numerical simulation of crack growth shows 
that the stress bridging zone movies along the crack, behind the crack tip.  
Basing on obtained results the stress intensity factor was calculated and than R-curve was created. 
Typical profile of R-curve with existing toughening effect is presented on Figure 7. Bridging zone 
causes the increase of stress intensity factor ∆KIbr.  
Initial value of stress intensity factor for analysed ceramics equals KI ≈ 2,95 MPa×m1/2 (see Figure 8). 
From the performed calculations for alumina ceramics with different grain sizes it was apparent, that 
the value of KI is strongly depended on grain size in analysed material. The values obtained from 
numerical analysis are in a good agreement with results, which were described by the authors [1,7,10]. 
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Figure 7: A profile of R-curve for materials with existing toughening effect  
(for instance bridging zone behind crack tip) [1] 
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Figure 8: R-curve for alumina ceramics 

 
SUBMISSION 
 
The method of numerical analysis with the use of FEM proposed in this paper allows for reduction of 
analytical computation, which was presented in this paper. From the macroscopic point of view we 
have possibility take into consideration the effect, which appeared in the microstructure of alumina 
ceramics during the crack growth (bridging effect). This numerical method permits to analyse much 
more complex structures with real loading. There is also a possibility to obtain R-curve for alumina 
ceramic (see Figure 8).  
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ABSTRACT 
 
An experimental study has been conducted in which strain fields were used to investigate the behavior of 
subsonic crack propagation along the interface of an isotropic-orthotropic bimaterial system.  Strain field 
equations were developed from available field equations and critically evaluated in a parametric study to 
identify optimum strain gage location and orientation.  Bimaterial specimens were prepared with PSM-1 
polycarbonate and Scotchply® 1002 unidirectional, glass-fiber-reinforced, epoxy composite. Dynamic 
experiments were conducted using these specimens with strain gages mounted on the composite half to 
obtain values of the dynamic complex stress intensity factor (CSIF), Kd = K1

d + iK2
d, in the region of the 

crack tip while photoelasticity was used on the PSM-1 half.  Results show that the trend and magnitude of 
Kd obtained using strain gages compare favorably with those obtained using photoelasticity.  Therefore, it is 
feasible to use strain gages to investigate interfacial crack propagation in isotropic-orthotropic bimaterials. 
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INTRODUCTION 
 
Because of their low cost and ease of use, the strain gage remains the predominant measuring device in 
industry.  Thus, the development of strain gage techniques in bimaterial problems would greatly facilitate 
the analysis of such problems for practical application.  Strain gage methods have been used in fracture 
research conducted on isotropic materials [1,2] and in orthotropic materials [3,4].  Substantial progress has 
been made in the study of dynamic interfacial fracture.  Yang et al. [5] provided the asymptotic structure of 
the most singular term of the steady-state elastodynamic interfacial crack-tip fields. Deng [6,7] obtained a 
complete series solution for the stress field around a crack-tip for steady-state interface crack propagation. 
Liu et al. [8] provided a more general higher-order asymptotic analysis for unsteady interface crack 
propagation that accounted for transient effects. They also conducted experiments to support the need of 
such an analysis.  Tippur and Rosakis [9] performed the earliest experimental study on dynamic crack 
initiation and growth in bimaterials.  Lee et al. [10] developed the field equations for an orthotropic 
bimaterial.  Lee [11] subsequently developed the field equations for an isotropic-orthotropic bimaterial. 



 
To date, work on isotropic-orthotropic bimaterials and interface fracture using strain gages is limited at best. 
Ricci et al. [12] used strain gages and photoelastic techniques to evaluate interface fracture parameters in 
bimaterials under quasi-static loads.  Thus, this study focuses on developing strain field equations and 
critically examining them via experimentation to demonstrate the feasibility of the strain gage method. 
 
 
STRAIN FIELDS AROUND AN INTERFACIALLY PROPAGATING CRACK TIP  
 
Crack growth along a bimaterial interface is generally referenced with respect to the material properties of 
the more compliant material, Material 1. (Material 2 is the stiffer material.)  Crack propagation is considered 
subsonic for crack-tip velocities, v, below the shear wave velocity, cs, of the more compliant material.  From 
the governing equations for subsonic crack growth [5], the crack-tip stress field was found to be a coupled 
oscillatory field scaled by the dynamic complex stress intensity factor (CSIF), Kd: 
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where r, θ are polar coordinates of a coordinate system translating with the crack tip at speed v, Kd = K1
d + 

iK2
d is the dynamic CSIF, and σ~1

ij  and σ~2
ij  are real, dimensionless angular functions [5].  The oscillatory 

index ε, which is the dynamic material mismatch parameter, is a function of crack tip speed (ε = ε (ν)): 
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where, β is the generalized Dundurs' parameter [7,8].  
 
Using existing field equations for subsonic crack propagation in an isotropic-orthotropic bimaterial [11], the 
strain field equations were developed.  For the orthotropic material (Material 2): 
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where the coefficients, defined by Lee [11], are given as 
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Eqn. 3 completely describes the two-dimensional strain field for the orthotropic half and were used in a 
parametric study of the strains near the interfacial crack tip.  To determine the strain at a gage rotated θg 
degrees from the x-axis, a coordinate transformation is done accordingly: 
  (4) ggxygyygxxxx θθγθεθεε sincossincos 22 ++=′′

 



Eqn. 4 may be rewritten in terms of K1
d and K2

d. Then, substituting for the coefficients of K1
d and K2

d as C1 
and C2, respectively, yields 
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The strain equations have three unknowns: K1

d, K2
d, and velocity v.  The velocity is obtained experimentally 

by taking crack-tip position with respect to time; this is discussed below in the experiment section of this 
paper.  The remaining two unknowns then require two strain measurements taken at the same time.  Then, 
Eqn. 5 can be solved for K1

d and K2
d from two measured strains,  and ; the superscript indicates the 

gage.  Thus, the components of the complex stress intensity factor, K
)1(ε )2(ε
1

d and K2
d, are given as 
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PARAMETRIC INVESTIGATION 
 
A parametric study was conducted to understand the development of the strain field close to the crack tip.  
Subsequently, this information was used to optimize the location and orientation of the strain gages for the 
development of strain gage techniques used in this study to obtain the dynamic complex stress intensity 
factor Kd from a propagating interfacial crack. 
 
Strain Gage Location 
The effect of the dynamic CSIF, Kd, on the strain fields was examined to determine the optimum locations 
for the strain gages.  The bimaterial system chosen for this parametric study was PSM-1 polycarbonate and 
Scotchply 1002 unidirectional, glass-fiber-reinforced, epoxy composite. This bimaterial has a relatively high 
material mismatch, ε, on the order of 0.12. The material properties are given in Table 1.  Also, it is noted 
that the fiber orientation angle, α, is the angle between the fiber direction and the x-axis (i.e. the interface).  
 

TABLE 1 
MECHANICAL PROPERTIES USED IN BIMATERIAL SPECIMENS 

Property PSM-1* Scotchply® 1002** 

Young’s Modulus, E (GPa) 2.76 EL = 30 
ET = 7.0 

Poisson’s Ratio, ν 0.38 νLT = 0.25 

Density, ρ (kg/m3) 1200 1860 

Material Fringe Value, fσ (kN/m/fringe) 7.0  
*   Manufactured by Measurements Group, Raleigh, NC, USA 
** 3M® unidirectional, glass-fiber-reinforced epoxy 

 
Since the crack travels along the interface, the position of the gages would be set at a distance of one half 
the plate thickness (y ≥ 0.5B) from the interface.  This satisfies the plane stress condition as well as avoids 
difficulties introduced by the plastic zone at the crack tip.  This would also ensure that the gages would be 
within the singularity-dominated region such that the singular strain field solutions are valid. 
 
Effects of Mixity and Velocity on the Strain Gage Orientation 
Eqn. 4 above was used to study the strain fields around a propagating interfacial crack. To determine the 
optimal strain gage orientation angle, θg, a method was developed to examine the theoretical strain profiles 
of an interfacially propagating crack as sensed by a nearby strain gage.   The strain gage profiles would be 
compared for various gage angles over suitable mixity, φ, and velocity, v, domains. (Mixity is the relative 



strength K2
d to K1

d.)  For given values of mixity and velocity, it was noted that, as θg was changed, the peak 
of the strain profile relative to the gage would shift along the interface (i.e. the x-axis).  In this case, the 
coordinate system is fixed with respect to the gage with the y-axis passing through the center of the gage 
(i.e. x = 0 is on the interface directly below the gage − referred to hereafter as the gage datum).  The crack 
tip propagates along the interface in the positive x-direction.  Thus, θg could be selected such that the peak 
strain occurs when the crack tip is at or very near gage datum.  Figure 1 illustrates the crack-tip position at 
peak strain as a function of mixity for varying velocity for θg = 55o and α = 0o.  
 

Mixity, φ (deg)

0 5 10 15 20 25 30 35 40

D
is

ta
nc

e 
of

 th
e 

cr
ac

k 
tip

 to
 th

e 
ga

ge
 d

at
um

 a
t p

ea
k 

st
ra

in
 (m

m
)

-0.4

-0.3

-0.2

-0.1

0.0

0.1

0.2

0.3

0.4
v = 400m/s 
v = 500m/s 
v = 600m/s 

 
Figure 1. Location of crack tip relative to gage datum for varying mixity and velocity (θg = 55o; α = 0o). 

 
For a given velocity, the crack tip position varies just 0.3 mm over the range of mixities.  From preliminary 
model experiments, values for mixity were expected in the range of 10 to 30 degrees and velocity in the 
range of 500 to 600 m/s.  That means the expected crack tip position would vary just 0.2 mm. It was further 
found that changes in θg result in the curves shifting significantly relative to gage datum.  Thus, it is clear 
that the crack tip position is relatively insensitive to mixity and velocity and greatly influenced by θg.  For 
fiber orientation angle, α, = 0o, θg is 55o, and for α, = 90o, θg is 100o. 
 
Crack-Tip Position Uncertainty and Strain Error 
The error in the complex stress intensity components, K1

d and K2
d, induced by an error in crack-tip position 

was investigated.  By varying the crack-tip position from –1.0 to 1.0 mm around the gage datum, it was 
found that the variation in K1

d is less than two percent and for K2
d less than three percent.  Ricci et al. [12] 

examined averaging error in the case of quasi-static loading as a function of radius and gage angle for 
various values of K1

d and K2
d for a Micromeasurements, Inc., USA, model CEA-06-015UW-120 strain 

gage, the same gage to be used in this study.  It was found that for r ≥ 0.4B, the averaging error was less 
than 0.2%.  Similar error is assumed in the experiments herein. 
 
 
EXPERIMENTAL PROCEDURE 
 
The parametric study was followed by experimentation, in which strain gage techniques were used to obtain 
values of Kd from a propagating crack as it passed a series of strain gages.  Results from the strain gage data 
were then compared to results obtained from photoelastic data conducted as part of these experiments. 
 
Setup and Procedure 
Experiments were designed and conducted using a PSM-1/Scotchply single edge notch tension (SENT) 
bimaterial specimen, shown in Figure 2.  Four strain gages were mounted on the Scotchply half at an angle 
of 55o (α = 0o) or 100o (α = 90o) and 5 mm above the interface. The gages were hooked up to a Lecroy high-



frequency digitizer, which recorded the interface fracture data at a rate of 1 MHz. The specimen was placed 
into a Vishay loading frame and loaded until fracture. 
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Figure 2. Single edge notch tension (SENT) bimaterial specimen: a) α = 0o b) α = 90o. 
 
 
RESULTS AND DISCUSSION 
 
Experiments were conducted on the PSM-1/Scotchply bimaterial specimen described above.  Figure 3 
shows the experimental data obtained from an α = 0o experiment.  Figure 3a shows the strain gage data: four 
pulses that correspond to the four gages as the crack passed by.  Assuming that the peak strain occurs when 
the crack is at gage datum, the crack-tip velocity, v, was determined to be 600 m/s, leaving just two 
unknowns: K1

d and K2
d.  Figure 3b shows a frame of photoelastic data from the same experiment.   
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Figure 3. Experimental data from a propagating interfacial crack for θg = 55o and α = 0o: 
a) Gage data showing strain pulses and b) Isochromatic fringes. 

 
Using Eqn. 5, the strain gage data were analyzed to determine the magnitude of the CSIF.  These values for 
Kd were compared to values obtained from photoelastic data for α = 0o and α = 90o, shown in Figure 4a and 
4b, respectively.  There is reasonable correlation in the magnitude (|Kd| = √{(K1

d)2 + (K2
d)2})and trend of Kd 

for the strain gage results as compared to the photoelastic results.  The strain gage analysis is a first-order 



analysis based on the singular most term compared to a second-order photoelastic analysis.  Thus, some 
error between the strain gage and the photoelasticity results is attributable to differences in the analyses.   
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Figure 4.  Dynamic Complex Stress Intensity Factor: a) α = 0o b) α = 90o. 
 
 
CONCLUSION 
 
An experimental study was conducted in which strain fields were developed and used to investigate the 
behavior of cracks propagating along the interface of an isotropic-orthotropic bimaterial. Analytical work 
focused on the influence of the dynamic CSIF, Kd, on the strain field surrounding a crack tip, which yielded 
the optimum strain gage orientation. In the experimentation that followed, Kd for a PSM-1/Scotchply 
bimaterial was determined using strain gages. The trend and magnitude of Kd obtained from strain gage 
analysis compared favorably with those from photoelastic analysis from the same experiment.  Thus, it is 
feasible to use strain gages to study subsonic interfacial crack propagation in isotropic-orthotropic 
bimaterials.  Differences in the methods and analyses are the subject of an on-going study. 
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ANALYSIS OF THE PHYSICO-CHEMICAL MECHANISMS
RESPONSIBLE FOR HYDROGEN ATTACK
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Koiter Institute Delft, Delft University of Technology, The Netherlands

ABSTRACT

The failure mode known as ‘hydrogen attack’ involves several processes which are active when steel compo-
nents are exposed to high hydrogen pressures at elevated temperatures. In this paper, a microstructural model
is presented which covers these processes through a combination of continuum mechanics with solid solution
thermodynamics, kinetics and chemistry. The model is applied to study the response of 2.25Cr-1Mo steel
consisting of a ferritic matrix and alloy carbides (e.g., M7C3, M23C6, M6C, M2C) to an exposure of 18MPa hy-
drogen pressure at a temperature of 530�C. The investigated microstructures vary in their carbide types and/or
their carbide volume fractions. The numerical simulations show that the microstructure that does not contain
M7C3 carbides is most resistant to hydrogen attack.

KEYWORDS

hydrogen attack, 2.25Cr-1Mo steel, diffusion, dissolution, methane pressure, creep, driving force

INTRODUCTION

2.25Cr-1Mo steel is a standard material for reactors used in the petro-chemical industries. In case of hy-
drocracking or hydrotreating applications, the material of the reactor is exposed to a high hydrogen pressure
and to elevated temperatures. It is this combination that is responsible for the material degradation process
called hydrogen attack (HA). During HA, carbon, present in the steel, and hydrogen, originating from the
gas atmosphere inside the reactor, form methane molecules. These molecules are captured in cavities which
have nucleated at the grain boundaries. Due to the presence of methane and hydrogen molecules, the cavities
are internally pressurized. Consequently, the cavities grow and coalesce which finally results in intergranular
fracture.

Carbon is present in the steel in two forms, namely interstitially dissolved in the ferritic matrix (�-Fe) and
bonded in carbides. A standard 2.25Cr-1Mo steel contains various types of carbides, such as M7C3, M23C6,
M6C and M2C [1]. The microstructure, characterized by the composition of the various alloy carbides and
their volume fraction, depends on the heat treatment. Generally, the steel that is exposed to the high hydrogen
pressure, does not possess a microstructure which is in equilibrium. So, the question arises whether this
influences the susceptibility to hydrogen attack. Our recently developed microstructural model [2] enables
us to shed some light on this issue. In this paper, we numerically study the response of non-equilibrium
microstructures and compare their resulting methane pressures and void growth to the ones of the equilibrium
microstructure.



MICROSTRUCTURAL MODEL

The microstructure is represented by a spherical unit cell of radiusro, in which a total ofN carbides with
the radius�j are embedded. The unit cell is also assumed to contain one already nucleated cavity of radius
a. Inside this cavity, the hydrogen pressure is taken to be the same as the one in the gas atmosphere inside
the reactor or autoclave. Our microstructural model includes several mechanisms that are potentially relevant
during hydrogen attack. These processes can be gathered in three groups (see Figure 1): (i) carbide dissolution
controlled by the diffusion of metal and carbon atoms in the ferritic matrix away from or to the carbides (Figure
1a); (ii) chemical reaction of carbon and hydrogen in the void going hand in hand with the diffusion of carbon
atoms to the void (Figure 1b) and (iii) growth of the void by grain boundary diffusion and dislocation creep
(Figure 1c). Each of these groups is treated in a submodel. In this paper we briefly summarize the main ideas
of the concept; for a complete description we refer to [2].

Figure 1: Submodels describing the processes leading to hydrogen attack. Submodel 1: dissolution of carbide
j with radius�j in the ferritic matrix together with the fluxJji leading to a homogeneous distribution in the
ferrite (a). Submodel 2: chemical reaction of_ncav

C
carbon atoms with hydrogen to methane (b). Submodel 3:

cavity growth due to creep and grain boundary diffusion (c).

Submodel 1: Dissolution of carbides
During hydrogen attack, the average carbon composition in the steel decreases which results in a driving force
for carbide dissolution, i.e. in a reduction of the Gibbs free energyG of the total system (�-Fe + carbides). Its
rate, _G, is linearly related to the size change of the carbides via

_G �
NX
j=1

Aj _�j: (1)

The coefficientAj depends on the actual radius�j of the carbidej, the thermodynamic parameters of the
phases� and carbidej, and on their composition. The exact expression ofAj and its derivation can be found
in [2]. Here, it is sufficient to mention that all phases are described with the sublattice model [3, 4] where the
corresponding thermodynamic parameters have been gathered from the literature (for a complete list see [5]).

During the dissolution of carbidej, _nji metal and carbon atoms (i = Fe, Cr, Mo and C) transfer across the
matrix-carbide interface and diffuse within the ferritic matrix. As the alloy carbides possess a higher content
of Cr, Mo and C than the ferritic matrix, these elements diffuse away from the dissolving carbide, while Fe
diffuses towards the carbide. For the modelling, it is assumed that the diffusion of the substitutional elements
controls the kinetics of the dissolution. Instead of directly solving Fick’s second law of diffusion, we express
the Gibbs energy dissipation_Qj

i associated with the diffusion of componenti by [2]

_Qj
i =
Z

V

RTV Fe

m

y�i D
�
i

(J ji )
2dV: (2)



with J ji the diffusive molar flux,T the temperature,y�i the composition of the ferrite,V Fe

m
its molar volume

andD�
i the diffusivity of componenti. To bypass the large numerical effort to calculate the fluxes locally,

we make the simplification that allk components are and remain homogeneously distributed in the ferritic
matrix and that no diffusion takes place inside the carbides. As another simplification, we do not take into
account the spatial arrangement of the carbides; instead we imagine that each carbidej sits in the center of
our spherical unit cell. Under the assumption that the components remain homogeneously distributed during
hydrogen attack, each flux should exhibit the radial dependenceJji (r) = ( _nji=4�r

2)(1�r3=r3
o
), as is illustrated

in Figure 1a. This allows us to integrate (2) over the volume of the unit cell. Since there exists a direct relation

between_nji and _�j, the total dissipation_Q =
NP
j=1

kP
i=1

_Qj
i can be formulated as a function of the unknown_�j. By

inserting (2) and (1) into the condition_Q + _G = 0 [6] we obtain the size change_�j of each carbide.

Submodel 2: Chemical reaction
When _ncav

C
carbon atoms in the cavity (located in the center of the unit cell, see Figure 1b) react with hydrogen

molecules to form methane, the total Gibbs energy reduces according to

_GC = � _ncavC �f = _ncavC (�CH4
� 2�H2

� ��C): (3)

�f represents the driving force and�x stands for the chemical potential of the componentx. Knowing the
actual composition of the ferritic matrix, the actual methane pressure in the cavity and the applied hydrogen
pressure, we can calculate this driving force. Besides�f , the availability of carbon atoms at the cavity-matrix
interface plays an important role for the kinetics of the chemical reaction. The more and the faster carbon
atoms diffuse in the ferritic matrix towards the cavity, the higher will be the rate of reaction, characterized by
_ncavC . Like in submodel 1, the dissipation energy due to the diffusion of C atoms,_QC, is equal to� _GC which
allows us to compute the number_ncav

C
of methane molecules that are newly formed per unit of time.

Submodel 3: Void growth
The gas pressurepm (= pCH4

+ pH2
) causes the cavity to grow (Figure 1c). Grain boundary diffusion and

dislocation creep (described by a Norton law) lead to an increase of the volume of the cavity,_V cav = _V cav

di�
+

_V cav

cr . A numerical and analytical analysis of the growth of a representative single cavity was performed by
Van der Giessenet al. [7] leading to approximate yet accurate closed-form expressions for_V cav

di�
and _V cav

cr
.

For the sake of brevity we just mention that_V cav

di�
depends linearly onpm, while _V cav

cr
is proportional topn

m

with n the creep exponent. The exact expressions are given in [2, 5, 7, 8]. Under the condition that the cavity
maintains its equilibrium spherical cap shape during growth, a relation exists between_V cav and the rate of the
cavity radius_a.

The outcome of the three submodels are the values for the rates_�j, _ncav
C

and _a. An explicit time integra-
tion scheme is applied to obtain the actual�j, ncav

C
anda as a function of the exposure time. Based on this

information, we update the composition of the ferrite and the methane pressure at each new time instant.

RESULTS

Before we can apply the model, the material parameters (e.g. diffusion coefficients of all components, creep
parameters), the operating and the initial conditions should be specified. For the material parameters we refer to
[2]. We chose to simulate autoclave tests where 2.25Cr-1Mo steels with different microstructures are exposed
to a hydrogen pressure of 18MPa at a temperature of 530�C. The alloy composition is fixed to 2.4at%Cr,
0.58at%Mo and 0.7at%C, while various carbide types and volume fractions are assumed in the calculations.
Chaoet al. [1] found the following carbide types and carbide composition (expressed in site fractions) in
their investigation: M7C3 with 35%Fe, 60%Cr and 5%Mo; M23C6 with 55%Fe, 39%Cr and 6%Mo; M6C
with 45%Fe, 13%Cr and 42%Mo and M2C with 3%Fe, 27%Cr and 70%Mo. Unfortunately, the total volume
fractionf carb is not mentioned, just their relative volume fractions: 43% of the total volume occupied by the
carbides belongs to M7C3, 25% to M23C6, 10% to M6C and finally 21% to M2C. As we do not know the value
for f carb, we study two cases. In the first case (microstructure m1),fcarb possesses the maximum possible
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Figure 2: Evolution of the total volume fraction of carbides (a), of the methane pressure (b) and of the void
radius (c) for various microstructures (m1, m2, m3) exposed to a hydrogen pressure of 18MPa at a temperature
of 530�C.

value, namelyf carb = 1:87% which then corresponds to the following composition of the ferritic matrix:
1.6%Cr, 0.16%Mo and 2.6�10�5%C. To check the influence offcarb on HA, the second microstructure (m2)
contains a smaller carbide volume fraction,fcarb = 1:3%, and a ferritic matrix of 1.9%Cr, 0.29%Mo and
2.2�10�1%C. Further input parameters are the total number of carbidesN in the unit cell, their radius�j and
the size of the unit cell (ro). For the sake of simplicity, we assume that in a unit cell of the radiusro = 8�m
there are 100 carbides which all possess the same size. This means that�j = 0:46�m in m1 and�j = 0:41�m
in m2. According to the measured relative carbide fractions, there are 43 M7C3 carbides, 25 M23C6 carbides,
10 M6C carbides and 21 M2C carbides in both microstructures. The third microstructure (m3) of interest
here is the equilibrium microstructure. We used the thermodynamics program Thermo- Calc [9] to predict the
equilibrium state of the 2.25Cr-1Mo steel at a temperature of 530�C in air. The outcome is a microstructure just
containing two types of carbides, namely M23C6 (30.8%Fe, 56.5%Cr and 12.7%Mo) with a volume fraction



of fM23C6 of 2.6% and M6C (35.6%Fe, 3.1%Cr and 61.3%Mo) with a volume fraction offM6C of 0.16%.
Again we assume that there are 100 equally sized carbides embedded in the unit cell. FromfM23C6 andfM6C

it follows that�j = 0:52�m and that 94 M23C6 carbides and 6 M6C carbides are present.
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Figure 3: Evolution of the volume fraction of the various carbide types (M7C3, M23C6, M6C, M2C) during
exposure at 530�C in microstructure m1 (a) and microstructure m2 (b).

The model is applied to simulate the response of these three microstructures to hydrogen exposure. Some
selected results are shown in Figure 2 giving (a) the volume fraction of all carbidesfcarb, (b) the methane
pressure and (c) the cavity radius as a function of exposure time for each microstructure. Starting with mi-
crostructure m1, we see (Figure 2b) that a methane pressure of 120MPa is built up at the beginning of the
exposure which leads to void growth (Figure 2c). In order to keep up the methane pressure in a bigger void,
new carbon atoms should react with hydrogen to methane. First, the carbon atoms dissolved in the ferritic
matrix react. Due to the initially very low carbon content of microstructure m1 (2.55�10�5%C), the reacting
carbon atoms mainly stem from the second source, the carbides. As seen in Figure 2a, their total volume
fractions decreases. During this dissolution, carbon atoms transfer from the carbide to the matrix where they
diffuse to the cavity to react. Carbide dissolution takes time since it is controlled by the diffusion of the sub-
stitutional elements Cr and Mo. It is not fast enough to keep the methane pressure at a constant value and
indeed it is seen (Figure 2b) to decrease as the cavity grows. In microstructure m2, the ferritic matrix contains
a high initial carbon content. As a first consequence, a high methane pressure (pCH4

= 1000MPa) is built up
in the cavity and the cavity grows very quickly during the early stages of the exposure. A second consequence
is that the carbides grow as long as the carbon content is high and as long as a driving force for precipitation
exists. This results in an increase offcarb from 1.3% to 1.9% as seen in Figure 2a. When the carbon content
has reached a low value, the methane pressure drops quickly, the void growth slows down and the carbides
dissolve similar to microstructure m1. Microstructure m3, which is initially in the equilibrium state, is much
less susceptible to HA. The methane pressure (starting with 70MPa and decreasing to 20MPa) is quite low
which results in a slow void growth. The carbides also dissolve very slowly.

Now, we have a closer look at the influence of the carbide type on HA. To find out whether they possess
a different susceptibility, Figure 3 shows the volume fractions of each carbide type individually, both for
microstructure m1 (a) and microstructure m2 (b). In m1, the M7C3 carbides dissolve by far the fastest, M6C
and M2C dissolve much slowlier while the M23C6 carbides seem to be quite stable during the first years. They
even grow for the first 6 years (Figure 3a). Except for the early beginning, the picture does not change for
microstructure m2. Due to the high initial carbon content in the ferrite, all carbide types grow first and then
they behave similar to m1. In microstructure m3 (not shown), the volume fraction of the M23C6 carbides
decreases from 2.6% to 1.2% within 30 years while the volume fraction of M6C remains the same (0.16%). It
turns out that the relatively high resistance to HA of m3 is related to the absence of M7C3 carbides.



CONCLUSIONS

A microstructural model has been presented which covers the potentially relevant mechanisms responsible
for hydrogen attack, such as diffusion of carbon and metal atoms, the chemical reaction to methane, grain
boundary diffusion and dislocation creep. The simulation of autoclave tests of 2.25Cr-1Mo steels with different
microstructures demonstrates that the methane pressure is not constant during HA, thus falsifying previous
decoupled approaches to HA. Then, they show that the methane pressure at the beginning of the exposure is
related to the initial carbon content of the ferritic matrix. Microstructure m2 with its high content of dissolved
carbon in the ferrite possesses a very high methane pressure initially. Afterwards, the methane pressure drops
in all cases, because the cavities grow and the carbides dissolve too slowly to supply sufficient carbon atoms
for the reaction. Consequently, the decreasing methane pressure is responsible for a delay in void growth.
Furthermore, the simulations reveal the big influence of the carbide types on the failure times. The equilibrium
microstructure (m3) which contains just M23C6 and M6C carbides fails after 30 years. The microstructures m1
and m2, where M7C3, M23C6, M6C and M2C carbides are present, give rise to failure times of 17 and 16 years.
The higher resistance of m3 can be mainly attributed to the absence of M7C3, which dissolves quite easily in
the other microstructures.
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ABSTRACT

At the head of a crack tip of plane stress problem, the near far stress field is taken as the Westergaard
equations for elasticity. Closer, it is given by the HRR plastic field. More closer, where damage occurs, it
is given by a linear approximation of stress from the ultimate stress�u at the border of the damage zone to
�u�� � Dc� at the real crack tip where the damage reaches its critical valueDc. It is shown that the damaged
zone is very small and homothetic of the plastic zone and that the ductile crack growth rate may be deduced
from the plasticity and damage parameters.1

STRESS ANALYSIS AHEAD OF A CRACK TIP

Consider the simple reference case of fracture mechanics : a crack of lengtha loaded in mode I by a state
of quasi-static monotic plane stress�� at infinity. Due to the properties of a material subjected to elasticity,
plasticity and damage, the domain close to the crack tip is divided into three regions as shown in figure 1.

– A region E far from the crack tip where the behavior of the material is purely elastic. The state of stress
not too far from the crack tip is given by the Westergaard analysis [1, 2].

– A region P closer to the crack tip where the behavior of the material is purely plastic. The state of stress
is given by the H.R.R. field [3, 4].

– A region D surrounding the crack tip where the behavior of the material is elasto plastic softened by
damage up to the crack tip where the damage reaches its value at fracture.

Elastic zone E

Using Westergaard equations the purely elastic domain is limited by a line along which the von Mises
equivalent stress�eq �

q
�
�
�Dij�

D
ij reaches the yield stress�y of the material. Its distance from the crack tip

along thex-axis is (G: strain energy release rate),
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Figure 1: Elasticity, plasticity and damage ahead of a crack

Plastic zone P

The plastic property of the material is represented by the Ramberg-Osgood constitutive equation,

p �
�
�eq
K

�M
(2)

wherep �
q

�
�
�pij�

p
ij is the accumulated plastic strain andK andM are material parameters. Eq. (2) models

plasticity as a nonlinear elasticity problem. It is valid as long as no unloading occurs and neglects the elastic
part of the strain. Ramberg Osgood law is the constitutive equation used in the HRR analysis in order to
determine the von Mises equivalent stress�eq and the equivalent plastic strainp along thex axis,

�eq � Const � ��
�

M��

�
a

x� a

� �

M��

(3)

p �
�
Const

K

�M
��

�M

M��

�
a

x� a

� M

M��

(4)

x � a � ry is the abscisse corresponding to the yield limit where the yield stress�y is reached, or in an
equivalent manner wherep takes a conventional value, let us saypy � �y�E, of the order of magnitude of
��� � ����, and

py �
�
Const

K

�M
��

�M

M��

�
a

ry

� M

M��

(5)

x � a� rD is the abscisse corresponding to the damage limit, i.e.D � � if x � a� rD,D �� � if x � a� rD
considering the continuous damage variableD (surface density of microcracks or microcavities) as a scalar for



isotropic damage. The damage thresholdpD, below whichD � �, is generally loading dependent and related
to the damage threshold in pure tension�pD characteristic of each material [5]. For simplicity we take here
pD � �pD,

pD �
�
Const

K

�M
��

�M

M��

�
a

rD

� M

M��

(6)

This shows that the damage zone is homothetic to the plastic zone

rD
ry

�

�
py
pD

�M��

M

(7)

In fact, this zone is very small. Ifpy is of the order of 0.2����, �pD for metals is often of the order of 5 to
20���� andM of 3 to 8,

rD �
ry

�� to ���
(8)

Damage zone D

The abscisse of the damage zonerD is defined byp � pD which corresponds for most metals to an
equivalent stress close to the ultimate stress�u [5]. Then�eq � �u for x � a� rD.

At the crack tipx � a, the damage reaches its critical value at mesocrack initiationD � Dc (Dc � ���
to 0.5 depending upon the material). Considering the hardening saturated forp � pD, the plasticity criterion
coupled to damage by the effective stress concept is written as

�eq
��D

� �u � � (9)

which gives the value of the stress at the crack tipx � a

�eq � �u���Dc� (10)

Figure 2: Behavior of the material by zone



The damage zone being small, a linear variation of the stress�eq is assumed fora � x � a � rD,

�eq � �u

�
��Dc

�
��

x� a

rD

��
(11)

The behavior of the material, elastic for�eq � �y, plastic by the Ramberg-Osgood law for�y � �eq � �u
is softened by damage for larger plastic strainpu corresponding to�u. The hardening being saturated, the
accumulated plastic strain, is in this range a linear function of the von Mises stress (figure 2) and

dp � �
pR � pu
�uDc

d�eq (12)

This allows to calculate the plastic evolution and the damage from its law of evolution taken as a function
of the total elastic energy and of the accumulated plastic strain [6], two variables governing also the crack
propagation [7]

dD �

�
��
uR�

�ES

�s
dp if p � pD (13)

also from the plasticity criterion:dD � �d�eq��u E is the Young’s modulus,S ands two material damage
parameters.R� is the triaxiality function. The linearity of the plastic strain induces the linearity of the damage,

dD

dx
� �

Dc

rD
and D�x� a� � Dc

�
��

x� a

rD�a�

�
(14)

CRACK GROWTH

Consider the loading�� at the level which has just created the crack of lengtha. The loading increment is
noted	��. It induces a virtual increment of the stress	�eq but as the stress�eq is bounded by�u atx � a�rD,
this corresponds to a decrease�	�eq which induces first an increment of the plastic strain, then an increment of
the damage, and finally a real increment of the crack	a (a discontinuity of crack mechanics from continuous
damage mechanics) as the Damage is bounded byDc (Figure 3).

Figure 3: Crack increment



It is necessary to indroduce a link which can be an energetic equivalenceDa � Dd between the crack
growth dissipationDa and the damage dissipationDd [5, 8]. If a�t�� � a� anda�t� � a,

Da �
Z a

a�

Ghda Dd �
Z
�

a�

Z t

t�

Y �Ddth�dx (15)

whereG � ��
�
�a�E is the strain energy release rate,Y is the damage energy release rate density (a constant

hereY � Yc � ��
uR���E), h is the size of the Representative Volume Element. The second integral is in fact

an integral betweena� anda� rD�a� as outside of the damage zone�D remains equal to zero,

Dd � h�Yc

�Z a�rD�a�

a�

D�x� a�dx�
Z a��rD�a��

a�

D�x� a��dx

�
(16)

Equations (1) and (8) may be combined in order to giverD as:

rD � 
G 
 �
E

����
y

�
py
pD

�M��

M

(17)

Then

Dd �
�

�
h�
YcDc

��
� �

a� a�

G

��

G�G�

�
(18)

Using the approximationDa � h�a � a���G � G���� and anticipating the fact that the initial strain energy
release rate does not have a quantitative effect, the energetic equivalenceDa � Dd allows for the determination
of G as

G �

s
hYcDc



�a� a�� (19)

which is the equation equivalent to the one of the R-curve in Fracture Mechanics. Furthermore it gives the
possibility to evaluate the danger of a damage crack initiation regarding to an increase of the loading.
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ABSTRACT

A technique for calculation of stress intensity factors for three-dimensional interface surface crack problems
is presented. Of special interest, is the analysis of interface delamination observed in electronic packaging
subjected to thermal cycling. Using a finite element approach, enriched 3-D interface crack tip elements are
developed for direct computation of stress intensity factors along the crack front. The enriched 3-D crack tip
elements contain the asymptotic displacement and strain fields for interface cracks. For cracks located
between silicon and polymeric underfill materials in electronic packaging, the mode I and mode II stress
intensity factors can be strongly coupled, since these materials yield relatively large values for Dunders'
parameters. It is demonstrated that the enriched interface crack tip element approach is a very efficient
technique for obtaining stress intensity factors and strain energy release rates for general three-dimensional
interface crack problems. Of particular interest in this study are the stress intensity factors for semi-circular
and quarter-circular surface cracks on the interface between silicon and epoxy. The enriched element
approach is particularly effective for obtaining mode I, II and III stress intensity factors in the small zone
near the free surface where the strength of the stress singularity is known to change.

KEYWORDS

Interface Cracks, Electronic Packages, Finite Element Method, 3-D Surface Cracks.

INTRODUCTION

One of the most important failure mechanisms that needs to be considered in the design of electronic
packages, is interfacial cracking between the various layers of dissimilar electronic materials, e.g., silicon
and epoxy. Such cracking can arise due to thermal cycling and/or moisture diffusion into the electronic
package. Large differences in coefficients of thermal and hygroscopic expansion provide the driving forces
necessary for interfacial cracking between material layers with inherently weak interfacial adhesion.
Typically, such cracking originates at edges and corners where high stress concentrations are known to
exist. The most severe stress concentrations tend to occur at three-dimensional corners [1], leading to the
type of three-dimensional corner cracking shown in Figure 1. This figure depicts crack growth due to



(a)
Free Surface

corner crack

(b)
Figure 1: Interface cracking between silicon die and epoxy underfill in flip chip package. Crack emanating

from corner after 300 cycles (-45¡C - 125¡C). Acoustic C-SAM image courtesy of David
Peterson, Sandia National Laboratories.

thermal cycling between -45¡C and +125¡C. Crack growth under these conditions is inherently mixed-mode
in nature with large mode II/III components. Application of interface fracture mechanics to predict
debonding between layered materials has been extensively investigated and can serve as a basis for
structural design for damage tolerance. This approach requires the accurate computation of stress intensity
factors, KI, KII, and KIII, as well as strain energy release rates, G, for complex geometries and loading. The
finite element method, suitably modified, can be used to compute these quantities for the complex interface
cracking problems encountered in semiconductor packaging. A particularly effective approach is the use of
"enriched" 3-D interface crack tip elements for direct computation of stress intensity factors [2]. The
enriched crack tip elements contain the closed-form asymptotic solutions for displacements and strains in
addition to the usual polynomial interpolation functions. Following this approach, the stress intensity factors
are additional degrees of freedom computed directly in the same manner as the nodal displacements. One
advantage of this approach is that there is no need for a special crack tip mesh, e.g., refined "tunnel" mesh
or relocation of nodes to obtain a suitable singular solution. As long as the enriched elements are properly
integrated and transition elements are used to maintain displacement compatibility, automatically generated
meshes are adequate for highly accurate results.

FINITE ELEMENT FORMULATION

Enriched Crack Tip Elements
The enriched finite element formulation for interface crack problems is an extension of concepts introduced
by Benzley [3] for conventional isotropic fracture problems. Application of the enrichment technique to
interfacial fracture problems is relatively straightforward for two-dimensional problems once the asymptotic
crack tip displacement and strain fields have been derived. In [4], an enriched crack tip element for interface
cracks between dissimilar isotropic media is developed. Reference [5] documents a similar formulation for
modeling interface cracks between orthotropic materials.

We have developed 3-D enriched elements for a variety of elements with various polynomial shape
functions. For example, Figure 2a depicts a 32-noded enriched hexahedron element that uses cubic
polynomial interpolation functions for displacements. In addition to the 96 displacement degrees of freedom
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Figure 2: a) Enriched cubic hexahedron showing crack tip nodes. b) Semi-elliptic surface crack showing
location of enriched crack tip elements and adjacent transition elements.

this element also has 12 unknowns representing the stress intensity factors KI, KII, and KIII, at nodes on the
crack front. Thus, for this particular element there are 108 unknowns. Since the enriched crack tip element
contains non-polynomial analytic terms, displacement compatibility cannot be ensured with neighboring
elements that do not contain the asymptotic terms. To enforce displacement compatibility between all
elements, transition elements should be used between the fully enriched crack tip elements and the regular
elements. The location of these transition elements is shown in Figure 2b. Transition elements also contain
the asymptotic fields for displacements and strains, but this contribution to the element stiffness matrix is
linearly zeroed out across the volume of the element. The relevant details for 3-D transition elements are
given by Ayhan in [6]. The components of displacement field for enriched 3-D elements of the type shown
in Figure 2 are given by
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The first summation terms in (1)-(3) represent the usual displacements in regular isoparametric elements,
i.e., Ni  are the interpolation functions in element coordinates ξ η ρ, ,( ) and u v wi i i, , , are the nodal
displacements. Z0. is the Òzeroing functionÓ that provides inter-element compatibility between the crack tip
elements and the elements that surround the enriched elements. In a typical transition element, Z0=1 at the
nodal points where the transition element is adjacent to any of the crack tip elements, and is 0 when adjacent



to regular isoparametric elements. Ki
I , K

i
II , and Ki

III Ôs are the unknown stress intensity factors, for modes I,
II, and III, respectively. For the cubic element, with four crack tip nodes, Ki

I , K
i
II , and Ki

I, are interpolated
using the cubic polynomial shape function associated with the displacements at these same nodes. The
functions f1, f2, g1, g2, and h are the asymptotic displacement terms that are coefficients of the mode I, II and
III stress intensity factors [3-5]. The terms f1j , f2j , g1j , g2j , and hj are the asymptotic crack tip displacement
expressions evaluated at the jth node in the element. It is well known that the asymptotic crack tip fields in
three dimensions are identical to two-dimensional fields in plane strain, with the possible exception of
points where the three-dimensional crack front terminates on a free surface. For three-dimensional analysis,
the plane strain crack tip fields are evaluated in planes that are perpendicular to the crack front. Thus, during
integration to calculate the element stiffness matrix, the perpendicular distance to the crack front r, as well
as the angular orientation θ, with respect to the plane of the crack, must be determined for evaluation of the

asymptotic displacements and strains. Since the element stiffness matrix is determined with respect to a
global coordinate system, the asymptotic expressions computed in the local crack tip coordinate system
must be transformed back to global coordinates.

Crack Tip Fields for Interface Cracks
The elastic singular stress field near the tip of an interface crack differs from that of a crack in a
homogeneous material and exhibits an oscillatory behavior near the crack tip region. The singular stress
field for a three-dimensional interface crack is given by

σ
π

σ θ ε σ θ ε σ θε ε
ij

i
ij
I i

ij
II

III ij
III

r
r r K= [ ] + [ ] +{ }1

2
Re ˜ ( , ) Im ˜ ( , ) ˜ ( )K K (4)

where r and θ  are the polar coordinates in the local coordinate system that is located on the crack front in

planes perpendicular to the crack front. The complex stress intensity factor K is defined by KI+iKII and
σ̃ ijÔs are the angular stress variation terms for different modes of loading. The complex singularity in (4)

depends on the oscillatory index, ε, given by

ε
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β
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=
−
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In (5) β is the second Dunders' parameter. Dunders' parameters for bimaterial problems are defined by
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with µ the shear modulus and κ=3-4ν for plane strain (ν  is PoissonÕs ratio). The subscripts for µ, κ and ν in

(6) identify the different materials on either side of the interface. For the silicon/epoxy materials used in this
study, the oscillatory index ε=0.066 and Dunders' parameters are given by α = -0.8235, β =-0.2044.

RESULTS

In an effort to investigate interfacial crack solutions for three-dimensional (curved) crack fronts on
silicon/epoxy interfaces, two different crack geometries are presented: 1) A semi-circular surface crack (Fig.
3a) and 2) A quarter-circular corner crack (Fig. 3b). Solutions are given for uniform tensile loading and
thermal loading. A typical finite element model had 3400 elements consisting of 32-noded cubic
hexahedrons and 26-node cubic pentahedrons with 26984 nodes. Because of the oscillatory form of the
mode I and mode II interface stress intensity factors (4), the presented stress intensity factors are "rotated"
using a procedure described by Rice [6], i.e.,

K K Lj
R

j
i= ε   , j =1 2, (7)

K KIII
R

III=    . (8)



In (7) L is a constant arbitrarily set as 2 meters. In addition, the plotted results are normalized using the

solution for a penny shaped crack, i.e., K aIR = ( )2
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Figure 3: a) Semi-circular surface crack b) Quarter-circular corner crack.

Interfacial Surface and Corner Cracks Subjected to Uniform Tension
Figure 4a shows the normalized rotated stress intensity factors along the crack front for the case of a semi-
circular surface crack on the interface between silicon and epoxy loaded in uniaxial tension. The results are
given as a function of the angle θ  measured from the plane of symmetry. Note that the mode I stress
intensity factor increases significantly as the free surface is approached and in the neighborhood of this
surface is 50% greater than the mode I stress intensity factor in the interior. KII, on the other hand, decreases
from the symmetry plane towards the free surface and KIII increases in magnitude having a negative sign.
For the quarter-circular corner crack (Figs. 3b & 4b), the results are symmetric with respect to the θ=45o

plane. We also note that, although KII remains almost constant along the front, a higher mode I stress
intensity factor is seen near θ=45o (middle region) than it was near the mid-plane (θ=0) for the interfacial

semi-circular surface crack problem. In both problems, the mode III component of the stress intensity factor
also takes its maximum value near the free surface region.
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Figure 4: Normalized stress intensity factors for silicon-epoxy interface cracks subjected to uniform tensile
loading. a) Semi-circular surface crack. b) Quarter-circular corner crack.

Interfacial Surface and Corner Cracks Subjected to Thermal Loading
Fig. 5a depicts the stress intensity factors along the crack front for the case of interfacial semi-circular
surface crack subjected to -1oC uniform cooling. There are no boundary restraints in either of these models.
Normalization is again with respect to the penny shaped crack mode I solution with σ 0 1= . As in the
preceding case, KI and KIII see a substantial increase as the free surface is approached. The other important
point is that for thermal loading problems, the mode II and mode III stress intensity factors become as



important as the mode I component. This reflects the high mode mixity that occurs for this type of loading.
It can be seen in the figures that KII takes its maximum value on the symmetry plane (θ =0o) whereas KIII

becomes maximum in magnitude on the free surfaces. Note also that near the symmetry plane, KI is
negative. For a homogeneous crack problem this would indicate that the crack surfaces are in large-scale
contact, but it is not so in this case. Because of the definition of the stress intensity factor in the bimaterial
case, having a negative KI does not always mean large scale crack surface contact, as it would in the
homogeneous case. Of course, the asymptotic crack tip contact associated with the oscillatory crack tip
behavior is present, but this is another matter. The stress intensity factors shown in Fig. 5b are for the case
of a quarter-circular corner crack on the silicon-epoxy interface with a -1oC uniform temperature change.
Again, the results are symmetric with respect to θ =45o plane and KI and KII have their maximum values

near the free surface whereas KII has a maximum value at θ =45o. Comparing the results with the previous

surface crack solution (Fig. 4), it can be seen that near the free surface region, the order of magnification in
KI  and KIII  are almost the same for both cases.
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Figure 5: Normalized stress intensity factors for silicon-epoxy interface cracks subjected to -1oC uniform
cooling loading. a) Semi-circular surface crack. b) Quarter-circular corner crack.
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ABSTRACT

An anisotropic constitutive model based on the assumption of linear elastic matrix weakened by
microcraks is derived by assuming a tensorial description of the damage and of the unilateral and
frictional effects on the displacement jump across the crack faces.  Damage and sliding evolutions are
obtained by defining proper limit conditions and associated flow rules.  This treatment implies a different
tensile-compressive response because under triaxial tensile stress states only the damage limit condition is
effective, otherwise this condition must be coupled with the frictional sliding one. By considering
monotonic loading paths, the constitutive equations provide limit strength domains; limit domains for the
case of biaxial stress states are obtained and their dependence on the friction coefficient is shown.

KEYWORDS

Anisotropic damage, microcracked solids, friction, brittle materials, limit strength domain.

INTRODUCTION

Micromechanical models based on a representation of the material meso-structure as a population of
growing microcracks embedded in an elastic matrix have been proposed by several Authors (see
Krajcinovic [1]) in order to get suitable descriptions of the different response to tensile, compressive and
mixed stress states exhibited by brittle materials. A direct approach, that ignores the interactions among
microcracks, assumes a vector representation of the anisotropic damage and considers the unilateral
frictional sliding between the crack faces; this allows a physical interpretation of the different response to
tensile and compressive stress states, load and damage induced anisotropy and energy dissipation at
constant damage. Unfortunately, these models involve a high number of internal variables making them
useless in computational applications. As a consequence, micromechanically inspired constitutive models
characterized by a reduced number of internal variables have been proposed [2,3]. On the other hand,
several phenomenological models, involving a limited number of internal variables, have been proposed
and applied. These models are based on both scalar-isotropic and tensorial description of damage and take
into account the unilateral effect of the crack opening mechanisms by means of the concept of positive
and negative projections of stress and strain tensors [4-7].
An attempt to derive a simplified damage model from a complete microcrack one [8] has been carried out
by Brencich and Gambarotta [9] by assuming isotropic damage variables as a measure of the average
crack size. In this model the opening/sliding effects in the microcracks were considered by two second



order tensors related to the overall normal and tangential traction on the crack faces. Moreover,  the
evolution equations of the internal variables were deduced by two limit conditions related to damage
propagation and frictional sliding. Even if this model provides good results in terms of stress-strain
response and limit strength domains, the assumption of isotropic damage implies several validity limits
for the model, with particular reference to non proportional loading paths. An extension of the model to
include an anisotropic damage description based on a tensorial representation was proposed in [10], but in
this approach frictional effects were disregarded.
The model here presented is developed in order to describe both the anisotropic damage and the effects of
frictional unilateral conditions on the displacement jumps across the crack faces.   The constitutive
equations are formulated in terms of a damage tensor evolving from the natural isotropic state and of
tensors standing for the overall effects of normal and frictional contact traction on the microcrack faces.
A further simplifying hypothesis on the representation of these tensors allows compact constitutive
equations and the definition of the tensor of damage energy release rate in terms of the stress, normal and
frictional tensors.  Damage and sliding evolutions are obtained by coupling a damage and a frictional
criterion that provide different evolution modes.  Finally, the constitutive equations are applied in case of
monotonic loading paths and  limit strength domains for biaxial stress states, depending on the frictional
parameter, are deduced; they seem to fit both the corresponding ones by the isotropic model [9] and the
experimental results.

CONSTITUTIVE MODEL BASED ON THE CONCEPT OF DAMAGE PLANES

The hypothesis of representing brittle materials as an elastic solid containing a population of non-
interacting microcracks, isotropically distributed at the natural state, allows the mean strain E to be
expressed as the sum n t= + +E T E EK of the mean strain in the elastic matrix and the contributions nE
and tE  due, respectively, to normal and tangential displacement discontinuities across the crack faces,
being K  the fourth-order elastic isotropic compliance tensor and T the mean stress tensor.  According to
[8], these contributions to the mean strain may be expressed as follows:

3 3( )     ,          [( ) ] 
2 2

n t
n n n n t n n n

c cp d sym dα σ α
π πΩ Ω

= − ⊗ Ω = − ⊗ Ω∫ ∫E n n E f nττττ     ,           (1)

where n is the unit vector normal to the crack plane on which the resolved stresses nσ = n Tni  and
( )n = − ⊗I n n Tnττττ  act;   cn and ct  are the normal and tangential compliance parameters of the set of the

plane crack systems not depending on n because the hypothesis of isotropy at the natural state; dΩ is the
infinitesimal solid angle representing the neighborhood of the unit vector n; Ω the unit hemisphere of all
the orientations; np  and nf are the normal and tangential tractions acting on the crack faces; ( 1)nα ≥  is the
damage variable representing the ratio between the actual average size of n-oriented cracks and the
corresponding one at the reference state. In this approach, nα  and nf  play the role of internal variables,
while the hypothesis of ignoring the sliding induced dilation allows the normal traction to depend on the
normal stress n np σ= − −  by the MacAuley operator.
To get a simplified model based on a reduced number of internal variables some simplifying hypotheses
are put forward. Firstly, the damage variable 3( )n na α=  related to each microplane is introduced and
assumed to depend on n in the form na = n Ani , being A ( ija )  a symmetric positive defined tensor,
having 0 =A I  at the natural state. Integration of equations (1) on Ω  implies:

[ ]( ) [ ]( )* *    ,      n n n t t tc c= − = −E A T A E A T AH P H F ,           (2)

having introduced the positive defined fourth-order symmetric tensors:

[ ] ( ) ( ) ( )1 7   2 2 ' ' 4 ' '
105 3n n tr = = ⊗ + + ⊗ + ⊗ + + 

 
A A A I I I I I A A I A I I AH H   ,         (3)



[ ] ( ) ( )1 17  2 ' ' 3 ' '   ,
105 3t t tr  = = − ⊗ − ⊗ + ⊗ + +  

  
A A A I I I I I A A I A I I AH H          (4)

being 1' ( )3 tr= −A A A I , ( ) ( )⊗ =B C X B C Xi  and T T( ) ( ) / 2= +B C X B X X C . The linear dependence

of the previously defined tensors on  the damage tensor A is expressed through the six order tensors nH

and tH  [1]:

( ), ,
1 1 1    ,    
7 20 7n ijrshk t ih kjrs ik hjrs jh kirs jk hirs ijrshkijrshk ijrshk

I I I I I Iδ δ δ δ= = + + + −H H     .            (5)

The definitions (3) and (4) of the tensors [ ] [ ]  and  n tA AH H  are particular cases of the general
representation given in [11] because of the assumption of independence of the parameters nc  and tc  on n
and of the damage description based on a second order tensor.  Moreover, the fourth order tensors
representative of the overall normal and tangential tractions on the crack faces are defined as follows:

( )* *1 1      ,         
2 4n n np d d
π πΩ Ω

= ⊗ ⊗ ⊗ Ω = ⊗ ⊗ ⊗ + ⊗ ⊗ ⊗ Ω∫ ∫n n n n f n n n n f n nP F ;            (6)

while the tensor *P  directly depends on T, the tensor *F  assumes the role of further internal variable of
the constitutive model.
To limit the complexity of the formulation, it is assumed that the frictional contact traction may be
expressed in terms of a symmetric traceless second order tensor *F  as follows *( )n = − ⊗f I n n F n .  A
further simplifying assumption is based on the observation that when 0  nσ ≥ ∀n , then * =P O  and when

0  nσ ≤ ∀n , then *
n= TP H .  Therefore it is assumed that tensor *P  may be expressed in the form

* *
n= PP H , being *P  a symmetric tensor satisfying the conditions: * =P 0  if  0  nσ ≥ ∀n  and  * =P T  if

0  nσ ≤ ∀n .  A possible choice for *P  suggested in [9] is:
* 5 1 3( )     ,       

2 2 2
tr p d

π Ω

= − = ⊗ Ω∫P P P I P n n .          (7)

Moreover, it may be easily observed by equation (4) that [ ] [ ] 't t=A T A TH H , being 1' ( )3 tr= −T T T I
the stress deviator.  On these hypotheses the constitutive equations are derived:

[ ]( ) [ ]( )* *      ,        ,      'n t n n n t t tc c= + + = − = −E T E E E A T P E A T FK H H    ,           (8)

which depend on the damage A and friction *F  internal variable to be evaluated by means of proper
evolution equations.   Within this model the thermodynamic force associated to the damage variable is
derived by the damage energy release rate and is described by the second order symmetric and positive
defined tensor Y having components:

( )( ) ( ) ( )* * * *
, ,

1 1  ' '
2 2rs n n hkrsij ij ij hk hk t t hkrsij ij ij hk hkY c T P T P c T F T F= − − + − −H H    ,                      (9)

besides the variable associated to the friction tensor is the sliding strain tensor tE . Once given the applied
stress T, the damage tensor A and the sliding strain tensor tE , from equation (8.3)  the tensor *F  is
obtained.

EVOLUTION EQUATIONS AND LIMIT STRENGTH DOMAINS

The evolution equations are obtained by assuming both a damage and a frictional sliding criterion. The
first one is based on the following assumption:

 ( ), ( ) 0d Rφ = − ≤Y A Y A    ,        (10)



being ( )R A  the overall damage toughness function to be properly chosen. When the limit condition
0dφ =  is attained then damage evolution equation is assumed:

    ,        ,       0d
d dd d∂φ

∂
= = = ≥A V V Y Y

Y

i i i
    ,                 (11)

that guarantees a positive energy dissipation 0d d= ≥Y
i

w . Moreover, the damage toughness function

( )R i  is assumed depending on the scalar variable D=1 3 2A  (D∈[1,∞)), providing a measure of the
overall damage (at the natural state D=1 and R(1)=0).  The progressive strength deterioration exhibited by
brittle materials up to the limit strength and the following strain softening phase may be modeled by the
toughness function, that must be chosen to attain a maximum value cR  followed by a decreasing phase
for increasing damage as long as it attains vanishing values (see for instance [12]).
When compressive stress acts on some crack plane, the limit damage condition must be coupled with the
frictional sliding condition.  In this case tensor P* does not vanish and 1/3trP*<0 represents the average
compressive stress on the set of compressed planes.  As a result, the crack sliding is partially restrained by
the frictional traction f.  In the frame of the present model, the limit condition should be formulated in
terms of the global friction tensor F*' and the average compressive hydrostatic pressure 1/3 trP*.  A
simplifying assumption could concern an overall frictional limit condition in a form analogous to the
Drucker-Prager criterion [10]:

* * ( ) 0s trφ µ= + ≤F P       ,        (12)

where µ  plays the role of friction coefficient.  In this case, when the limit condition is attained 0sφ =  the
sliding rule is assumed:

*

* *
         ,              ,      0t s s

φλ λ∂= = = ≥
∂

s FE V V
F F

i i i
 .        (13)

On these hypotheses it is possible to derive the evolution equations for the damage tensor and the friction
tensor following two different possibilities depending on whether overall compression or tension is
active.
In the case of tensile traction on any crack planes ( 0nσ ≥ ), it follows * 0tr tr= =P P  and so also the
friction tensor is vanishing * =F 0 . Only the damage limit condition (10) must be considered; when the
limit condition is attained 0dφ = ,  then the damage rate is obtained by solving the LCP:

[ ] [ ]' 2' ' 0    ,      0   ,      03n n d t t d dd dc c R d d dφ φ= + − ≤ ≥ =T V T T V T V A
i i i i i i i

i iH H ,        (14)

that has a single stable solution if ' 0R dR dD= > . The condition ' 0R =  define a limit state for the
damage process corresponding to an upper limit for the stress rate; since it may be observed that this
condition does not depend on the load history, it is here assumed as a limit strength condition and is
expressed in the simple form cR=Y .

If a compressive traction is acting on some planes, it follows * 0tr <P  and the strain rate tE
i

 associated to
the crack frictional sliding must be obtained by equation (13). In this case from equations (8), (11) and
(13) one obtains:

[ ] [ ]{ }1* *1' ( ' )t s t t
t

c dc λ−− = − −T F A V A T F
ii i i

H H ,        (15)

that allow us to formulate the evolution equations according to four different possible initial states:

(a) Elastic state:  0,   0 s dφ φ< < . In this case, being t =E 0
i

 it follows * '=F T
i i

.

(b) Friction limit state with stable damage: 0,   0 s dφ φ= < . The sliding rate 0λ ≥
i

 is obtained by solving
the LCP:



  0       ,        0        ,           0ssss sb tφ λ λ φ λ= + ≤ ≥ =
i i i i i i

     ,        (16)
where

[ ] 1 * 3         ,          '     ,        
2

sss s s sb t tr p dµ
π

−

Ω

= = + = ⊗ Ω∫V A V V T P P n n
ii i i i

i iH    ,        (17)

that always provides a single solution. While the sliding strain rate is given by equation (13), the

opening strain rate is not vanishing only if * ≠P T  and in this case [ ] *( )t n nc= −E A T P
ii i

H .

(c) Damage limit state with no sliding: 0,   0 d sφ φ= < .  Since this implies t =E 0
i

, this possibility is
meaningful only when some plane are compressed, that is * ≠P T . In this case, remembering equation
(15), the LCP (10) assumes the form:

0       ,        0        ,           0dddd db d t d dφ φ= + ≤ ≥ =
i i i i i i

,         (18)
where

[ ] [ ]1 * *1 2 '         ,        ( ) ( )3t t ddd t d n n d
n

b R t cc
−= − − = − −E A E V A T P V T P

i∼ ∼ i i
i i iH H   ,         (19)

having defined [ ] [ ] 1=t tt d t
−E V A E

∼
H H .   In the case * =P T  no damage evolution is allowed.

Moreover, the solution of problem (18) is unique until 0ddb <  and the condition 0ddb = , that depends
on the load path, characterizes a limit for the stress rate.

(d) Damage and friction limit state: 0,   0 d sφ φ= = . The evolution of the internal variables is obtained
by solving the coupled LCP:

   0    ,      0     ,      0   ,

  0    ,      0    ,       0  ,

sss sds s

dds ddd d

b b d t

b b d t d d

φ λ λ φ λ

φ λ φ

= + + ≤ ≥ =

= + + ≤ ≥ =

i i i i i i i

i i i i i i i
        (20)

where

[ ] 11 tsd ds s t
t

b b c
−= = V A E

∼
iH     .         (21)

In this case the solution is unique for load control paths until:

     [ ] [ ] [ ]1 1 1 2
2

1 2det ( )( ) ( ) ' 03t t ts t s t s t d
tt
Rcc

− − − = − + >  
B V A V E A E V A E V A

∼ ∼ ∼
i i i iH H H ,         (22)

a condition that is depending on the load history.

By substituting the sliding tensor rate tE
i

  and the damage tensor rate A
i

 in the incremental form of
equations (8) one obtains the complete constitutive equation to be applied in case of general loading
histories.  In the particular case of proportional load histories it is possible to obtain the limit strength
condition defined as the maximum value of the stress intensity allowable by the model. In fact, when
tensile stresses are acting on all crack planes ( * 0tr =P ) the limit stress state is path independent and
corresponds to the condition cR=Y .  If some or every crack planes are compressed ( * 0tr <P ), the limit

strength domain is obtained by simultaneously imposing equations 0,  0ddφ φ= =
i

 and det 0=B , that
corresponds to assume ( )* ' 'trµ= −F P T T ;  this implies the limit strength criterion to be expressed in

the general form cR=Y , being the internal variable in the definition (9) directly dependent on the stress
tensor. It follows that the limit strength domain only depends on three material parameters: the ratio

t nc cρ = , the friction coefficient µ  and the uniaxial tensile strength Tσ . In order to show some features
of the model, limit domains referred to biaxial stress states are shown in the diagrams of figure 1a.
Finally, a further simplifications can be obtained by assuming the scalar description of damage A=aI, that
provides the isotropic damage constitutive model proposed by Gambarotta and Brencich [9].
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Figure 1:  Biaxial limit strength domain for varying friction coefficient.
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ABSTRACT 
 
Volume energy density factor is derived to evaluate the crack growth behavior under the electric 
field/shear stress boundary conditions for the PZT-4 and PZT-5H piezoelectric ceramics. Positive electric 
field is found to enhance anti-plane shear crack growth while negative electric field tends to retard crack 
growth. This result is similar to that obtained for in-plane crack extension. Crack growth solutions for 
electric displacement/shear strain boundary conditions, however, suggest that positive electric 
displacement would retard anti-plane shear crack growth while the opposite would occur for negative 
electric displacement. It is anticipated the same conclusion would hold for in-plane crack extension, a 
result that deserves future investigation. 
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1. INTRODUCTION 
 
Anti-plane shear crack models have been used primarily as a guide for analyzing in-plane crack problems 
because they are simple to solve and behave similar to plane crack extension. Cracking of piezoelectric 
materials such as barium titanate and lead zirconate titanate ceramics has added complexities because of 
the electro-mechanical coupling effects. They possess the special features that when deform an electric 
field is produced and when subjected to an electric field deformation is pronounced. Such properties are 
induced through a process referred to as poling such that the materials become transversely anisotropic. In 
this spirit, the anti-plane shear crack model will be adopted in this work to better understand the in-plane 
crack growth enhancement and retardation behavior. 
 
One of the unexplained cracking phenomena in piezoelectric ceramics is concerned with the situation that 
a crack tends to extend longer when the electric field is directed in the pole direction. If the electric field 
opposes the pole direction, the crack extends shorter. Past attempts [1-4] have provided many reasons 
why the theoretical and experimental results did not agree but failed to emphasize why they should. Only 
recently, the volume energy density criterion [5,6] gave results that are physically sound and did not 
contradict with observed data. The energy release rate remain unchanged if the electric field direction is 

  



reversed with reference to that of the pole. 
The vulnerable situation for a piezoceramic with a pre-existing crack under anti-plane is for the crack 
edge to be parallel with the axis of longitudinal shear and transverse anisotropic which coincides with the 
poling direction. In contrast to in-plane extension the applied electric field would be normal (anti-plane 
shear) to the pole direction rather than being parallel to each other (in-plane extension). Hence, positive 
and negative electric field should be referred to the coordinate axes rather than the poling direction. The 
difference between a positively and negatively applied electric field in anti-plane shear is to reverse the 
direction of poling. What is physically meaningful is to identify the combination of boundary conditions, 
applied field direction and material symmetry that would enhance or retard crack growth. Moreover, 
inappropriate use of fracture criterion could lead to results that would violate the first principle. The 
energy release rate criterion shows that a positive crack driving force could become negative by 
increasing the absolute value of the applied electric field [7,8]. 
 
 
2. ANTI-PLANE SHEAR CRACK 
 
Consider the anti-plane shear of a line crack of length 2a in a transversely isotropic piezoelastic material. 
Referring to Fig. 1(a), the crack lies in the xy-plane while the poling direction coincides with the z-axis. 
At infinity, either the pair (τ∞; E∞) or (γ∞; D∞) are specified. The uniform shear stress and strain are τ∞ and 
γ∞, respectively whereas E∞ and D∞ are the uniform electric field and displacement, respectively.  

 

 τ∞ or γ∞  τ∞ or γ∞

 E∞ or D∞  E∞ or D∞

 
 

Fig. 1 Schematics of anti-plane shear crack and near tip element 
 
2.1 Basic equations 
Under anti-plane shear, there prevails only two pairs of stress and strain (σzx; γzx) and (σzy; γzy) which are 
functions of x and y. The in-plane electric and displacement field possess the components (Ex; Ey) (Dx; 
Dy), respectively. In the absence of body forces and charges, the equations of equilibrium are given by 
 

0
yx
zxzx =

∂
σ∂

+
∂
σ∂

,    0
y

D
x

D yx =
∂

∂
+

∂
∂

.                      (1) 

 

  



On the crack surface, the tractions Tz and/or surface charges q can be specified: 
 

yyxxyyxxxyz nDnDq,nnT +=−σ+σ=                  (2) 
 
where nx and ny are components of the unit normal vector. The constitutive relations take the forms 

x15zx44zx Eec −γ=σ ,   y15zy44zy Eec −γ=σ                 (3) 
and  

x11xz15x EeD ∈+γ= ,   y15yz15y EeD ∈+γ= .                (4) 
 
only three material constants need to be specified; they are c44 (elastic), e15 (piezoelectric) and ∈11 
(dielectric), 
 
2.2 Conditions far away and on crack 
Referring to Fig. 1(a), a uniform shear stress field τ∞ or strain field γ∞ together with uniform electric field 
E∞ or electric displacement D∞ can be specified, i.e.,  
   

∞τ=σzy   or   ∞γ=γ zy   for ,                (5) ∞→+ 22 yx
and 

∞= EE y   or   ∞= DDy   for .                (6) ∞→+ 22 yx
 

Note that poling is in the positive z-direction. 
 
The conditions on the crack surfaces are to be free of surface tractions and surface charges. They are 
written as 
 

0zy =σ ,  0Dy =   for 0y;ax =< .                     (7) 
 

The solution for this problem is well known [7,8]. The r and θ functions for those quantities referred to 
the x- and y- direction can be written as 
 

x-component: ,
2

sin
r

1
L+

θ
−     x-component: L+

θ
2

cos
r

1 .         (8)  

 

Refer to Fig. 1(b) for the polar coordinates measured from the crack tip. The r/1  singularity is the 
same as that found for the corresponding anti-plane shear crack in elasticity. 
 
 
3. Volume energy density function and factor 
 
The volume energy density in an element ahead of the crack, Fig. 1(b), can be computed from 
 

)EDED(
2
1)(

2
1

dV
dW

yyxxyzyzxzxz ++γσ+γσ= .                 (9) 

 
Eq. (8) indicate that the singular term would dominate as r→ 0, the crack tip. It follows that dW/dV in eq. 
(9) would depend on 1/r and can be expressed as 
 

r
S

dV
dW

= ,                                (10) 

 
where r is the distance from the crack tip such that r ≥ ro. The core region with radius ro is excluded from 
the analysis. 
 
For the loading in Fig. 1(a), the crack would extend along the x-axis θ = 0 where dW/dV reaches a critical 

  



value (dW/dV)c that is characteristic of the PZT material. In view of eqs. (8), all quantities referred to the 
x-direction would vanish and those referred to the y-direction for θ= 0 can be expressed as 
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K III
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π
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KIII
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,   
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π

=D             (11) 

 
which can be substituted into eqs. (9). Comparing the result with eq. (10) gives the energy density factor 
 

)KKKK(
4
1S DEIIIIII +
π

= γτ .                           (12) 
 

For an element situated at r = ro and θ = 0, the condition of (dW/dV)c is equivalent to S =Sc. The intensity 
factors in eqs. (12) stand for 
 

a)GeFc(K j15j44III π−=τ ,    aFjIII π=γK  
(13) 

a)GFe(K j11j15D π∈+= ,    aGK jE π=  
 
where j = I and II correspond to the two different types of boundary conditions (τ∞; E∞) and (γ∞; D∞) to be 
considered. They shall be referred to as Case I and II. 
 
Case I specifies τ∞ and E∞. The contractions F1 and G1 in eqs. (13) given by [7]: 
 

44

15
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Putting eqs. (14) into (13) and normalizing eq. (12) with respect to , it can be shown that )c4/(a 44
2
∞τ
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τ∞ ,  Case I                (15) 

 

where p = E∞/τ∞  is a load factor. 
    
Case II specifies γ∞ and D∞. The quantities Fj and Gj in eqs. (13) for j = II are known from [7]. They can 
be put into eq. (12) to render 
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∈
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where q = D∞/γ∞  is a load factor. 
    
Eqs. (14) and (15) show that the volume energy density factor S could increase or decrease with reference 
to the ratios of the electric field to shear stress or electric displacement to shear strain depending on the 
properties of piezoelectric materials. 
 
 
4. Crack growth criterion 
 
The form of eq. (10) has been used as a criterion [9,10] for crack initiation and growth. A crack is 
assumed to grow in segments of r1, r2, …, rj, …, rc after dW/dV in an element at r = ro shown in Fig. 1(b) 
has reached (dW/dV)c , i.e., 
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The first increment r1 is measured from the core region ro. Hence, the half crack length would increase 
from a to a+ ro+ r1. Each subsequent step can be treated in the same way. 
4.1 Effect of electric field and displacement reversal 
The effect of electric field and displacement will be examined. Now, let the superscripts +, 0, - be 
attached to those quantities that refer, respectively, to E∞ or D∞ that are positive, zero, and negative. 
Positive E∞ or D∞ corresponds to the positive direction of the coordinate axis. The corresponding crack 
growth segments are , and while the volume energy density factors are S , and  
where j = 1, 2, etc. It follows from eq. (17) that for the jth segment of crack growth yield the expression. 
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Once the energy density factors are known, the crack growth segments can be computed for different 
boundary conditions to examine how the direction of applied electric field displacement would affect 
crack growth. Numerical results will be made available for the PZT-4 and PZT-5H piezoelectric materials. 
Their elastic, piezoelectric and dielectric constants can be found in Table 1. 
 
 

TABLE 1 
 Elastic piezoelectric and dielectric constants 

 
Material constants  

    Material 
c44 ×10 (N/m10 2) e15 (C/m2) ∈11×10 (C/Vm) 10−

    PZT-4 2.56 13.44 60 

    PZT-5H 3.53 17.00 151 

  
4.2 Case I: Positive and negative electric field 
Note from eq. (15) that a change in the sign of p, i.e., positive and negative E∞ would affect the value of 
the energy density factor S. Using the case of E∞= 0 or  as reference, the ratio 

/  and S /S  can be calculated. This also gives / r  and r /  because they are directly 
proportional, eq. (18). The numerical results are summarized in Table 2 for different values of p = E
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Plotted in Fig. 2 are the numerical values in Table 2. Both curves go through the coordinate p = 0 and 

/ r =1. The crack growth segment is greater than r  for positive E∞ and smaller than r  for 
negative E

o
1

∞. This indicates that +E∞ and -E∞ would enhance and retard crack growth. Such a trend 
continues to prevail for the subsequent crack growth segments because of the relation [11] 

 
 

TABLE 2 
. Normalized first crack growth segments  for Case I (τo

11 r/r± ∞; E∞) 
 

E∞/τ∞×10  (Vm/N) 3− 
Material -15 -10 -5 0 5 10 15 

PZT-4 0.672 0.765 0.874 1 1.143 1.302 1.478 

PZT-5H 0.675 0.742 0.851 1 1.191 1.422 1.695 
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The results / r >1 for +E+
1r

o
1 ∞ and / r <1 for -E−

1r
o
1 ∞ is similar to those found for in-plane crack extension 

[6]. A sign change in E∞ alters the ways with which the electrical and mechanical properties of the 
material would interact with external disturbance. This causes the crack to grow longer for +E∞  and 
shorter for -E∞.  
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Figure 2: Normalized crack growth segment as a function of electric field to shear stress ratio 

 
4.3 Case II: positive and negative electric displacement  
When strain γ∞ and electric displacement D∞ are specified on the remote portion of the boundary, Fig. 
1(a), the coupling of the electrical and mechanical properties would react differently when the direction of 
the electric displacement D∞ is changed. This can be exhibited by solving for S in eq. (16) for the PZT-4 
and PZT-5H materials. Following the exact procedure as discussed earlier for Case I and eq. (15), the 
numerical values of /  are first obtained. Application of eq. (18) gives / r  from which eq. (19) 

gives the other growth steps /  for j = 2, 3, etc. The results for the first step are outlined in Table3. 
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TABLE 3 
Normalized first crack growth segments  for Case II (γo

11 r/r± ∞; D∞) 
 
D∞/γ∞ (C/m2) Material 

-15 -10 -5 0 5 10 15 

PZT-4 2.880 2.103 1.477 1 0.673 0.459 0.467 

PZT-5H 1.894 1.535 1.237 1 0.824 0.708 0.653 
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Figure 3: Normalized crack growth segment as a function of electric displacement to shear strain ratio 

 
In contrast to Case I for specifying (τ∞, E∞), the crack growth behavior for Case II where (γ∞, D∞) are 
prescribed reacts in an opposite manner. Negative D∞ decreases crack growth while positive D∞ decreases 
crack growth. Such a trend is displayed in Fig. 3. The curves also intersect at q = 0 and 

. However, their slopes are negative instead of being positive as those in Fig. 2. For 
Case I. These results are new and are expected to prevail for in-plane a crack extension as well. 

1)4/a/(S 11
2 =∈γ∞

 
 
5. CONCLUSIONS 
 
Further application of the volume energy density criterion show the enhancement/retardation behavior of 
crack growth in anti-plane shear is the same as that for in-plane crack extension [5,6]. However, when the 
stress/electric field boundary conditions are replaced, a reversal of the enhancement/retardation behavior 
is predicted. Using D∞= 0 as the base, crack growth would be increased for negative D∞ and decreased for 
positive  D∞. These effects are just the opposite to those for prescribing E∞ and τ∞. 
 
Experimental verifications of the above findings for anti-plane shear crack growth are impractical because 
it is next to impossible for producing a pure longitudinal shear mode. Some degree of opening mode 
would always be present ahead of a tunnel crack especially for the ceramic-like materials that are hard 
and brittle. The aim of this work is to provide the motivation for solving the electric displacement/strain 
boundary-value problem for in-plane crack extension. Displacement boundary condition experiments 
could be designed and performed to show that positive D∞ would retard crack growth whereas negative 
D∞ would enhance crack growth. This is contrary to the observations made in [1,2] for crack growth 
under the electric field/stress boundary conditions. 
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ABSTRACT 
 

A risk-based maintenance (RBM) technique has been generated to optimize inspection and 
maintenance plans for fossil-fired power plants which will be deregulated in Japan. In the present study, 
technological advances and problems are considered that have resulted from the application of the RBM 
to actual boiler plants with operating times exceeding 100,000 hours. Risk is defined as the product of 
the likelihood of damage in plant components by the consequence due to failure of the components or 
system. The present study found that the RBM is a useful decision tool for determining inspection 
priority, mitigation of undesirable risk, extension of the inspection period, and other improvements in 
maintenance practice. At the same time, serious potential problems are brought out. 
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INTRODUCTION 
 

 Risk-based maintenance (RBM) provides strategies for optimizing safety as well as 
maintenance costs for degraded components of boiler plants that have accumulated operating times 
exceeding 100,000 hours. The maintenance strategy consists of plans for inspections, repair, 
refurbishment, and replacement based on the risk assessment. The risk is defined as the product of 
likelihood of failure by the consequence severity. In Europe and the United States, major oil companies 
have already implemented RBI (Risk-based inspection) technique several years ago. As a result, several 
guidelines [1,2,3,4] have been published for RBI/RBM techniques. Some papers [5,6,7] were published 
on practical use of RBI/RBM to petrochemical plants and fossil-fired power plants. Furthermore, the 
practical guideline [8,9] and the standard [10] for nuclear power plants have also been published. In 
Japan, the RBI/RBM has lately attracted considerable attention as a new technique for maintenance 
planning of fossil-fired power and petrochemical plants that will be deregulated. In this study, the RBM 
technique has been provided as a systematic analysis of qualitative and semi-quantitative judgments for 
failure likelihood and consequence by calculating the risk ranking. As results of the application of RBM 



intended for actual boiler plants with accumulated operating times exceeding 100,000 hours, many 
advances and problems of the technique are considered to frame optimized risk scenarios. 
 
PROCEDURE AND RESULTS OF RBM INTENDED FOR THE 600MW BOILER PLANT 
 
Procedure of RBM 

The overall procedure of RBM is shown in Fig.1. 
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Figure 1: Procedure of RBM 
 
Inventory and plant customization 

The first step is to classify components and locations of a plant with a hierarchical structure in 
terms of the risk assessment and to define the risk of components and locations in the plant considering 
the operating conditions in terms of a standard rule. The aim of inventory is to include all relevant 
components, and identify all potential degradation locations. Table 1 shows the reheater system that 
consists of 8 components such as header, tube and so on in the 600MW boiler plant. Furthermore, those 
are divided into 43 locations as assessed locations with collection of each material specification, 
dimension, design data, and operating history and so on. Number of all locations in the 600MW boiler 
plant is about 500. Damage mechanisms to be fear at each location were defined for the risk assessment 
with inspection records and the residual life assessment data concerning the operating history. 
 
 

TABLE 1 
INVENTORY FOR THE ESTIMATED REHEATER SYSTEM IN THE 600MW BOILER PLANT 

 
Unit System Component Location (Number of Locations) 

Reheat inlet Header Shell weld etc. (7) 
RH tube-Inlet short tube Tube etc. (2) 
RH tube-Horizontal Lower Stage Tube, Oval Tie Lugs etc.(4) 
RH tube-Horizontal Middle Stage Tube, Oval Tie Lugs etc. (5) 
RH tube-Horizontal Upper Stage Tube, Oval Tie Lugs etc. (4) 
Tube-Vertical Upper Stage Tube (SUS321, STBA24) etc. (6) 
Tube-Unheated Region RH outlet tube etc. (7) 

 
 
 
K- Power Plant 
No. N-Boiler 

 
 
 

Reheater 

Reheat Outlet Header Shell Seam and Circ weld etc. (8) 
Total Number 8 Components 43 Locations 

 
Table 2 shows the plant customization included the operating condition for the estimated boiler. 

The assessment time is defined as the number of operating hours expected to be accumulated up to the 
next but one inspection. In order to demonstrate the utility of the method for validation of extension to 
the inspection period, the risk assessment assuming that an extension of inspection period from 24 
months to 48 months, can be carried out in this study. 

TABLE 2 



CUSTOMIZATION FOR THE ESTIMATED REHEATER SYSTEM OF 600MW BOILER 

 
Item Subject 

Boiler On-Load about 117,000 hours 
Operating history total number of hot starts, warm starts, cold 

starts 
about 600 times 

Outage Frequency 24 months 
Expected Utilization 70 % 

 
Assumed Current Inspection Plan 

Service hours at next outage about 137,000 hours 
Outage Frequency 48 months 
Expected Utilization 70 % 

 
Assumed Revised Inspection Plan 

Service hours at next outage over 150,000 hours 
Cost of one day outage about ¥ 8 million 

 
Risk Assessment 

As mentioned before, the risk is defined as the product of likelihood of failure and the consequence. 
Likelihood of failure (L=F x M) can be derived from multiplication of failure frequency (F) from the 
database based on general failure cases or personal experiences by a revised factor (M). The revised 
factor M can be obtained from considering factors of inspection program (monitoring), degradation of 
materials, conditions of construction, and operating conditions of the past and the future by following 
each module for judgment. The factor M needs to have weighting factors in terms of their likelihood. 
This idea is according to standard ideas in RBI/RBM through API [1,2] and ASME [3,4] guidelines. The 
consequence of failure can be calculated from safety consequence (injury or death) and financial 
consequence (plant outage, repair cost, and injury or death of plant operators). Financial consequence is 
usually expressed by cost or money.  

Skilled engineers on the design, the maintenance, operating, inspection, metallurgy, and structural 
strength perform the risk assessment with the systematical judgment procedure under the following two 
steps. 

Primary qualitative risk category of each location is decided in the timeframe of 24 months 
assumed as a current inspection period. Any potential degradation mechanism that can cause component 
failure is assessed using the qualitative / semi-quantitative risk ranking (QRR) procedure. This involved 
assessing the likelihood of failure, and separately, the consequence of failure of that specific location, by 
the damage mechanism. Safety risk ranking and financial risk ranking are both determined, using the 
risk matrix as shown in Fig.1. Following the risk category plotted in the matrix, actions to reduce the 
risk are required. The risk category and required actions are expressed as shown in Table 3. 
 
 

TABLE 3 
REQUIRED ACTIONS FOLLOWING THE RISK CATEGORYS WITHIN THE TIMESCALE 

 
Risk Category (Fig.1) Required Actions 

Category 1 Acceptable No inspection or other actions are required, considered unless to safety national legislative 
requirements 

Category 2 Acceptable with 
controls 

Define and implement an appropriate revised inspection, assessment strategy to support risk 
ranking judgment  

Category 3 Undesirable Mitigate to Risk Category 1 or 2 within the timescale of the next overhaul, in the following actions 
(1) Improved inspection procedures  (2) Improve operating practices or controls 
(3) On-line plant monitoring  (4) Engineering measures to mitigate consequence  

Category 4 Unacceptable Mitigate immediately to Risk Category 1 or 2 as above 
 

Assessed locations with the high risk (Category 3 or Category 4) are considered to reduce the risk 
to Category 1 or 2 by effective inspection methods or actions. Consequently, necessary actions are 
determined to obtain “Acceptable or Acceptable with controls” conditions. 

In the next step, revised qualitative risk ranking (RQRR) is carried out. In this study, the mitigation 
of the risk category with actions according to Table 3 is considered. At the same time, the risk change 
due to extension of the inspection period of 24 months to 48 months is assessed. 



 
Results and consideration on RBM for 600MW boiler plant 

Figure 2 shows the plots of risk matrices for assessment results on typical locations. Fig. 2(a) 
describes the risk ranking within the current inspection requirement (every two years for regular 
inspection). Most of the components in the matrix were ranked as “Category 1; Acceptable”. Fig. 2(b) 
shows results of the revised risk ranking in assumption of the inspection period of every four years. 
Results shown in Fig. 2(b) expressed the effects of both extension of inspection period and the required 
actions considered in revised risk ranking (RQRR). 
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Figure 2: Examples of RBM assessment results on the reheater system of 600MW boiler 
 
As shown in Fig.2 (b), almost of the locations were plotted in the “Category 1; Acceptable”, even 

though extension of the inspection period from two years to four years was assumed. Risk at the location 
(B) in the figure was mitigated by the revised risk assessment. High risk at some locations (A, C) 
expresses not to change the Category after considering required actions or improvement of the 
inspection. 

Details of assessment at the high-risk locations (A, B, and C in Fig. 2) are described as follows. 
 

Location (A); Reheater Outlet Tube (STBA24 unheated tube) – thinning of wall 
The residual life at this location was assessed to be just over two years by consideration of thinning 

rate at the tube wall due to both oxidation and calculating the creep life. Therefore, the result indicated 
that the risk was too high for the likelihood of failure. Although the safety consequence was 
“Negligible”, the financial consequence was “High” according to the failure. Consequently, final risk 
assessment of the location was “Category 4; Unacceptable”. In the revised risk assessment (RQRR) to 
clarify the problem, any solutions or actions to reduce the risk could not been found. Finally, urgent 
replacement of the component was decided as the only action to reduce the risk. This result was in 
consistent with the actual action that the component had been replaced at an outage recently. 

 
Location (B); Reheater Outlet Header - creep damage of seam weld 

At the location, initiation and growth of internal cracks due to circumferential stress have been 
reported in abroad. According to experiences in the oversea plant, the likelihood at the location should 
be ranked as “High”. In Japan, there is, however, no experience of the failure at the location. 
Consequently, the risk rank as “Low” was considered. Furthermore, the current inspection methods of 
PT (Dye Penetrant Test) or MT (Magnet Particle Test) were not enough to assess the internal damage of 
the header wall. The financial consequence was ranked as “Catastrophe”. According to this assessment, 
the risk of the component was assessed as “Category 3; Undesirable”. In the revised risk assessment 
(RQRR), the risk ranking was reduced by improvement of the inspection technique, using UT 
(Ultrasonic Test, TOFD method) to be possible to detect the internal damage. Finally, the action allowed 



the risk to be reduced to “Category 2; Acceptable with Controls”. 
 
Location(C); Reheater Outlet Vertical Tube - damage by oxidation and creep  

At the location, the excessive wall-thinning rate has been found recently with continuous periodic 
measurement of wall thickness by the ultrasonic equipment. Although problems in terms of inspection 
methods and locations of measurement concerning the reason of excessive thinning were considered, it 
was not possible to reduce the risk from “Category 3; Undesirable” to “Category 2; Acceptable with 
Controls” by any actions. Therefore, the replacement should be considered. Consequently, the obtained 
result in the assessment was consistent with the actual replacement of the component that had been 
replaced at a outage recently the same as reheater outlet tube plotted as A in Fig.2. 
 
ADVANDAGES AND FUTURE TASKS OF RBM 
 

As the results of RBM assessment, many advantages were found in the maintenance planning as 
follows. 
(1) Covering all locations of a unit concerning the damage by inventory. (2) Effective information 
handed down from experiences of the experts in consistence with RBM results. (3) Improvement of the 
safety assessment with global standards and damage mechanisms (4) Decision making of maintenance 
items among several units of the plant based on the priorities decided by RBM. (5) Clarifying the 
reasons of inspections and repairs for reaching a consensus among the maintenance department, the 
investment department in the plant customer, public inspection organizations and others. (6) Omitting 
the current inspections at locations assessed as low-risk categories. (7) Smooth transition of inspection 
record stored by papers to the electric system. (8) Others. 

At the same time, future tasks are justified on the basis of  development of risk scenarios. The 
consequence scenarios concerning financial factors should include systematically the assets assessment 
due to the scale of power generation, the type of usage of the boiler (utility or industrial), financial 
strategy of the plant customer, and others as shown in Fig. 3. The quantitative judgment system that 
could reflect the subjective probability of expert opinions and experiences with the numerical data of the 
residual life assessment should be developed in the likelihood ranking. 
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Figure 3: Development of consequence scenario 

 
 

CONCLUSIONS 
 

Risk based maintenance (RBM) technique has been applied to the actual fossil-fired power 
plants. As results, it is concluded that many advantages for the maintenance planning is expected. The 



RBM could be attracted considerable attention as a new technique for maintenance planning of 
fossil-fired power plants that will be deregulated in Japan. At the same time, the systematic and 
quantitative method for framing risk scenarios such as the assets assessment should be developed. 
Valuable databases of failure cases and knowledge-based information by expert’s experiences are also 
required to apply the RBM effectively to various plants and structural components. 
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ABSTRACT 
   Fatigue strength of welded joints in welded structures are much lower than that of base metals. 
Many experiments show that the fatigue crack normally initiates at welded toe, so that the fatigue 
strength can be increased dramatically by peening weld toe.[1,2,3] 
   Ultrasonic peening made by Tianjin University in China under the financial support of Natural 
Science Foundation of China is one of the most useful methods to improve fatigue behavior of weld 
toe due to improving toe geometry, removing defects and modifying the residual stresses distribution 
in this region. 
   For evaluating the ultrasonic peening performance carried out by our equipment, the fatigue tests 
were performed on butt and cruciform joints of Q235B steel both in the as-welded and peened 
condition. Test results are as follows: 
1.Both butt and cruciform peened joints show a significant increase in fatigue life under different 
stress levels (high cycle fatigue). The results show that the fatigue life of the peened weld toe was 
20~30 times as long as the as-welded joints, and in many cases the fatigue cracking initiation was 
transferred to the base metal instead of the weld toe. 
2.The increase in fatigue strength (at 2×106 cycles)of the peened Q235B butt welded joints 
compared to the as-welded joints was 57%,and for the cruciform joints, the increase was 64~71%. 
The fatigue strength of both the butt and cruciform welded joints were no lower than that of the base 
metal. In such cases, weld joints is not the degense location any longer. 
 
1. INTRODUCTION 

 
Fatigue is one of the main forms of the failures of the welded structure. Many experiments show 

that the fatigue crack mainly initiates at the weld toe, so that the fatigue strength can be increased by 
treatment the welded toe.[1.2] 

Ultrasonic peening made by Tianjin University in China under financial support of Natural 
Science Foundation of China is one of the most useful methods to improve fatigue life due to 
improving toe geometry, removing defects and introducing benefit compressive residual stress, as 
well as 1) It can be used not only for plate butt joints, but also for the tube joints, to which it is difficult 
by using other methods, such as TIG dressing. 2) It can be applied not only to the process of structure 
manufacturing in the working shop, but also to the field welding condition such as to bridges, oil 
platforms, ships and so on. 3) High treatment velocity (at the velocity of half meter per 



minute). 4) Other advantages: it don’t produce noise; the whole device is not heavy. ( the peening unit 
weight is only several kilograms.) 
   Fig.1 is the picture of the ultrasonic 
peening device. One of the most important 
part in peening device is energy transform 
part, which based on piezoelectric ceramic 
transducer, is convenient to use for its small 
size, light weight, lower power to supply 
and easy to apply. The equipment is 
matched with the special ultrasonic power 
generator which used IGBT as the higher 
power component, matched with delicate 
frequency tracing system and the constant 
vibrating velocity control system, controls 
the quality of the ultrasonic peening results. The peening unit, named ultrasonic peening gun, consists 
of the sound system, shell and holder, and was designed to give high treatment velocity (at the 
velocity of half meter per minute) and strong peening force. 

Fig.1.Ultrasonic peening device 

 
2. MATERIAL, SPECIMENS AND TESTING CONDITION 
 

 Table 1.Mechanical properties of Q235B steel 
 

material σs /MPa σb /MPa δ 
Q235B 267.4 435.5 26% 

  The material used in this research program is Q235B steel. Table 1 gives the mechanical properties 
of this steel. Both as-welded and peening conditions of the cruciform (under tensile) and the butt 
(under four-point bending) joints were considered in this study. The welding parameters are given in 
table 2. 
 
2.1.Preparation of butt Welded Joints 
   On the surfaces of each piece of the specimen, a X groove was cutting and a thickness equity to 
1mm was left in the middle of the specimen in order to prevent or reduce distortion. The welds were 

                  Table 2. Welding process parameters 
 

Joints （1 pass）welding 
   current（A） 

（2 pass）welding 
   current（A） 

Welding Voltage 
（V） 

Butt joints 110 120 24~30 
Cruciform joints 130 150 25~30 

produced in two passes by manual arc welding with J422 electrode. 
 
2.2.Preparation of Cruciform welded joint: 



   A X groove with 60° angle was cutting for the load-carrying piece of the specimen. The welds were 
produced in two passes by same manual arc welding with J422 electrode. In order to prevent or 
reduce distortion, spot-fixing weld was accepted and opposite distortion was taken before welding. 
2.3.Fatigue Tests: 
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corresponding to the specimen, whose life is just higher than 2×106 and the fatigue strength 
corresponding to 
the specimen ,whose life is just lower than 2×106. 
  The results from S-N curves are as follows: 
  Compared with welded joints, the peened joints show significant increase in the fatigue life under 
different stress levels and the fatigue strength at a cycles 2×106. 
  On the butt peened joints, fatigue crack initiated at the weld toe under cycles much more than that on 
the as welded joints for  some specimens, however for  more specimens, fatigue crack  initiation 
occurred in the base metal. The S-N curves of both crack initiation conditions are similar in the slope 
and fatigue stress levels, so that the fatigue strength of the peened joints can be considered as same as 
the base metal. Compared to the as-welded joints, the increase in fatigue strength (at 2×106 cycles ) 

of the peened Q235B butt joints 
was 57%. For the cruciform peened 
joints, most cracks occurred in the 
base metal. The increase in fatigue 
strength of the peened cruciform 
joints tested with R=0.25 was 64%. 
For the specimen tested with R= - 
0.5, the increase was 71%.  
   Table 4 gives the fatigue life 
(under the same stress level) of the 
two series joints. According to the 
S-N curves (see from fig.3, 4, 5), 

the fatigue life of welded joints 
corresponding to the stress which 
comes from the peened joints 
corresponding to 2×107 cycles can be 
obtained. The results shows in Table 4. 

Table 3. The fatigue limit of welded joints and with peening 
treatment joints 

 
Fatigue strengths (∆σ/Mpa)  

Type As welded Treatment Improving 
degree/% 

Butt joints 148.5 234 57 
Cruciform joints
（R=0.25） 

142.5 234 64 

Cruciform joints
（R=-0.5） 

165 282 71 

   Analysis of the results shows that the 
fatigue life of the peened joints was 
40~60 times as long as the as-welded 
joints. Provided that the deviation of the 
test results were taking into 
consideration, the improvement was 

20~30 times. 

  Table 4 . The fatigue life of welded joints and with 
               peening treatment joints 

 
Joints Condition Stress life 

Butt joints
（R=0.1） 

As welded 
 Treatment 

228 
228 

 1.65×105 
  1.0×107 

Cruciform joints  
(R=0.25） 

As welded 
 Treatment 

211 
211 

  2.4×105 

  1.0×107 
Cruciform joints 

(R= - 0.5） 
As welded 
 Treatment 

235 
235 

5.12×105 

1.0×107 

   Test results reveal that the ultrasonic peening was an effective technique for improving the fatigue 
properties of the welded joints. The fatigue strength of the peened joints was nearly equal to the base 
metal. In such cases, welded joints is not the degense location any longer. 

 
4.CONCLUSIONS 
 

1) Both the butt and cruciform peened Q235B joints show a significant increase in fatigue 
life under different stress levels (high cycle fatigue), and also increase in fatigue strength under 
the same cycles. The difference in stress level was increasing with the increase of cycles. 



2) The relative improvement in fatigue limit (at 2×106 cycles ) caused by ultrasonic 
peening of the butt and cruciform joints were respectively 57%and 64%~71% compared with the 
as-welded condition. 

3) The fatigue strengths of both the butt and cruciform welded joints were no lower than 
that of the base metal, when ultrasonic peening of the joints were carried out. Compares with the 
peened butt welded joint, the fatigue of cruciform welded joints after peened are increased more 
significantly. 

4) The fatigue life of peened joints at least was 20~30 times as long as the as-welded joints. 
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ABSTRACT 
 
Rotational bending fatigue tests for low alloy steels, KSFA80, KSFA110 were carried out to clarify the 
property of fatigue strength of high tensile forged materials. Fatigue fractures occurred even though the 
repeated stress exceeded 108 cycles, which started at an interior inclusion. Fatigue strength of forged 
materials show anisotropy depending on the relative direction of specimen to forged fiber flow, and it is 
shown that this anisotropy of fatigue strength is due to the projective shape and size of inclusions at crack 
origin to a plain perpendicular to the maximum stress direction. The effect of non-metallic inclusion to 
fatigue strength was estimated using the �area parameter model. 
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High cycle fatigue, Low alloy steel, Forged steel, Crankshaft, Inclusion, Interior fracture. 
 
 
INTRODUCTION  
 
Recent years, the use of low alloy steels as material for crankshafts has gained for small and medium sized 
diesel engines, because of a demand for engines to be smaller and lighter in weight. Generally, fatigue 
design of products is based on the fatigue limit defined at 107 cycles of repeated stress, but for high speed 
engines, 107 cycles will be achieved in a short time and can not be enough to evaluate the fatigue limit. 
Therefore, the necessity for understanding the fatigue strength characteristic in the long life range of more 
than 107 cycles is recognized. But the fatigue data of low-alloy steels in the long life range are not enough 
under the present situation. In this study, fatigue tests of low alloy steels up to 108 cycles or more of 
repeated stress were performed to clarify the fatigue properties in the long life range. On the other hand, 
fatigue strength of forged products, like CGF (Continuous Grain Flow) crankshaft, are affected by the 
differences in the angle of the direction of applied stress and the direction of forged fiber flow, because 
fatigue strength of forged steels show anisotropy depending on the relative direction to the forged fiber flow. 
In this study, the effect of relationship between forged fiber flow and the direction of applied stress, and the 
effect of shape and size of inclusions in materials to fatigue strength were examined.    
 
 
EXPERIMENTAL DETAILS 
 
Four types of materials were subjected to fatigue testing, two types of KSFA80 and two types of KSFA110 
(Class NK standards). The chemical compositions of each sample material are shown in table 1 and the 



 

forging ratio and the heat treatment conditions are shown in table 2.  
 
 

TABLE 1 
CHEMICAL COMPOSITION OF MATERIALS 

 
 
 
 
 
 
 
 
 

TABLE 2 
FORGING RATIO AND CONDITIONS OF HEAT TREATMENT 

 
 
 
 
 
 
 
 
 
 
Test specimens were cut out from round bar bulk materials having diameter of 320mm, and machined to 
hourglass type of shape with a minimum sectional diameter of 10mm. In the case of KSFA80A and 
KSFA110A, the test specimens were prepared which had a direction relative to the forged fiber flow of 0 
degrees (referred to hereunder as being in the L direction), 45 degrees (referred to hereunder as being in the 
S direction) and 90 degrees (referred to hereunder as being in the T direction), while the test specimens of 
KSFA80B and KSFA110B were prepared which were in the L and T directions, respectively. Because the 
Vickers hardness distribution at a section of the bulk materials were almost constant from the surface to the 
center as shown in Fig. 1, the test specimens were cut out from each position of bulk materials including the 
center. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1: Vickers hardness of bulk materials, KSFA80B and KSFA110B 
 
Fatigue tests were carried out on the test specimens using a canti- lever type rotational fatigue testing 
machines at 3,000rpm of rotating speed. Detailed observations of the fracture surfaces of each specimens 
were made using scanning electron microscope (SEM) and energy dispersive X-ray analyzer (EDX) thereby 
identifying inclusions that were the crack origin of fatigue fracture.  
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Material C Si Mn P S Ni Cr Mo Cu

KSFA80A 0.43 0.26 0.73 0.011 0.005 0.44 1.07 0.22 0.08

KSFA80B 0.44 0.30 0.74 0.010 0.003 0.51 1.10 0.25 0.04

KSFA110A 0.37 0.27 0.40 0.009 0.003 2.82 1.61 0.41 0.05

KSFA110B 0.33 0.26 0.51 0.014 0.003 2.99 3.00 0.61 0.03

Material Forging
ratio

Heat Treatment

KSFA80A 3.2S  870°C•@7Hr OilQuenching & 640°C 15Hr AirCooling

KSFA80B 11.9S  870°C•@9Hr OilQuenching & 635°C 20Hr FurnaceCooling

KSFA110A 3.1S  870°C•@7Hr OilQuenching & 600°C 17Hr AirCooling

KSFA110B 6.8S  870°C•@7Hr OilQuenching & 590°C 15Hr FurnaceCooling



 

EXPERIMENTAL RESULTS 
 
S-N properties 
S-N diagrams of each sample material are shown in Figs. 2 and 3. In these figures, different plot symbols 
were used to indicate whether the fatigue crack started at the surface of test specimen (surface fracture) or at 
the interior of test specimen (interior fracture). Surface fracture means fatigue crack started at slip band or at 
a surface inclusion, and interior fracture means fatigue crack started at an interior inclusion. In Fig. 4, "f" 
mark was added to the plots for fish eye type fracture.  
 
 

 
 
 
 
 
 
 
 
 
 
 
                  (a) KSFA80A                               (b) KSFA80B 
 

Figure 2: S-N diagrams of KSFA80 
 
 
 
 
 
 
 
 
 
 
 
 
        
                (a) KSFA110A                              (b)KSFA110B 
 

Figure 3: S-N diagrams of KSFA110 
 
The fatigue strength of KSFA80A, KSFA110A and KSFA110B in the T direction are lower than those in the 
L direction, namely, the anisotropy of fatigue strength appears clearly. This tendency is the most remarkable 
in KSFA110B. On the other hand, the fatigue strength of KSFA80B in the L direction and the T direction 
show almost equal values. The fatigue strength of KSFA80A and KSFA110A in the S direction are slightly 
lower compared with those in the L direction, but in the long fatigue life range, there seems no significant 
difference between them. As shown in Figs. 2 and 3, fatigue fractures occurred at even more than 107 cycles 
of repeated stress which generally regarded as fatigue limit, and most of these fatigue fractures started at an 
interior inclusion. This type of fracture is more remarkable in KSFA110 than KSFA80. Fatigue fractures 
starting at an interior inclusion in the long life range are reported in many papers [1,2] recent years in steels 
with an extremely high tensile strength like bearing steel (about σB=2,000MPa), but there seems no previous 
study using low alloy steel with the strength of the same level as the sample materials in this study. The 
above experimental results suggest that the interior fatigue fracture in the long life range occurs in steels 
having a tensile strength of more than 800MPa. 
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Effect of inclusion to fatigue strength 
As described above, there is a tendency that fatigue fracture starts at an interior inclusion in the long life 
range in high strength low alloy steels, but the mechanism of that interior fatigue fracture has not 
completely clarified by now. As for the present experiment, compressive residual stress was confirmed in 
the surface thin layer of the test specimens using X-ray stress measurement method. This compressive 
residual stress is thought to be one of the causes of the interior fatigue fracture.  
This compressive residual stress exists in the surface hardening layer introduced by grinding when test 
specimens were machined. It takes the maximum absolute value of 400MPa at specimen surface and 
decreases to 0MPa roughly at a depth of 50µm (see Fig. 4).    
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4: Residual stress distribution of test specimen (KSFA80B) 
 
However, most of the surface inclusions of specimens in the T direction are much longer than the depth of 
the region where residual stress exists, therefore, it is difficult to explain the mechanism of the interior 
fatigue fracture only by the influence of the surface hardening layer. As another factor of the interior fatigue 
fracture, the difference of environment between the surface and the interior is assumed. For example, crack 
closure caused by oxidation takes place only at the surface. Moreover, the effect of hydrogen embrittlement 
around interior inclusions was proposed in a recent study [3]. To clarify the mechanism of the interior 
fatigue fracture, a quantitative examinations of these factors are necessary in the future.  
 
Fig. 5 shows Two examples of SEM images of fatigue crack origins. These are fracture surfaces of the 
specimens fractured in the long life range, and fish eye type fractures are observed. The inclusion shown in 
Fig. 5(a) is observed at KSFA110B in the L direction, which has circle shape on the fracture surface. On the 
other hand, the inclusion shown in Fig. 5(b), observed at KSFA110B in the T direction, has thread- like 
shape on the fracture surface. The latter is clusters of many small inclusion grains. From EDX analysis, the 
inclusions at crack origins are mostly composed of Mg, Al, Si and Ca, and assumed to be an oxide type, 
while some MnS were also observed.  
 
 
 
 
 
 
 
 
 
 
 
    (a) KSFA110B-L (σa=568MPa, Nf=43,655,200)  (b) KSFA110B-T (σa=372MPa, Nf=30,825,250) 
 

Figure5: SEM images at crack origins 
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Table 3 shows the values of average and standard deviation of sizes of inclusions at crack origins, a, b, 
(a+b)/2 and a/b, where a is a length of short side of circumscribed rectangular of the inclusion and b is a 
length of long side of the rectangular.  
 
 

TABLE 3 
AVERAGE VALUES OF SIZE AND ASPECT-RATIO OF INCLUSIONS 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
In each material except for KSFA80B, inclusions have thread- like shapes running in the direction of forging, 
and average values of a/b are about 0.2-0.4 in the T direction specimens and are about 0.7-0.8 in the L 
direction specimens. Inclusions of KSFA80B have nearly circle shape on the fracture surface both in the L 
and the T direction specimens, and their average values of a/b are both 0.8. The anisotropy of the fatigue 
strength of each sample material appeared in the S-N characteristics of Figs. 2 and 3 depends on 
three-dimensional shapes of inclusions, and was remarkable in steels containing thread- like shape inclusions. 
For convenience, assuming (a+b)/2 is a representative value of projected size of inclusion on the fracture 
surface, there is a tendency that the fatigue strength decreases as the average value of the size of inclusion 
becomes large.     
 
Because the fatigue strength of steels depend on the size of inclusion at crack origin as mentioned above, It 
is expected that the fatigue strength could be estimated by the use of a parameter which combines stress 
with the  size of the inclusion at crack origin, like initial stress intensity factor of micro crack initiated at the 
inclusion. Murakami et al [4,5] assumed proportional relationship between threshold stress intensity factor 
range of crack propagation, ∆Kth and cubic root of crack size, (�area)1/3 and proposed a method called   �
area parameter model for estimation of fatigue limit as equations (1) . 
 

                                                         (1) 
 
 
                Where σw - fatigue limit (MPa), Hv - Vickers hardness (kgf/mm2) 
                      �area - Square root of projected area of inclusion (µm) 
                      F - Shape parameter 
                          =1.43  for surface inclusion 
                          =1.56  for interior inclusion 
 
Fig. 6 shows a relationship between σa/σ'w and Nf, where σa is stress amplitude and σ'w is estimated fatigue 
limit calculated from equation (1) corresponding to the size of each inclusion observed at crack origin. For 
the calculation of σ'w, area values were represented by ellipse for interior inclusions and by semi-ellipse for 
surface inclusions. As for extremely long inclusions, area values were of the ellipse which semimajor axis is 
five times of semiminor axis uniformly [6]. The values of Vickers hardness used for calculations were the 
average values of the measurement results shown in Figure 1. For each sample material, all the values of 
σa/σ'w are above 1.0 except for one of KSFA110B. This means that almost all the specimens broke at higher 
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80A-L 0 - - - - - - - -

80A-S 11 26 12 57 41 42 25 0.5 0.2

80A-T 34 37 16 295 203 166 104 0.2 0.1

80B-L 9 44 24 56 27 50 25 0.8 0.2

80B-T 25 51 21 69 38 60 25 0.8 0.2

110A-L 27 35 14 45 17 40 14 0.8 0.2

110A-S 14 34 13 67 33 51 18 0.6 0.3

110A-T 29 38 13 161 122 100 61 0.4 0.3

110B-L 23 21 6 34 15 27 9 0.7 0.2
110B-T 34 49 14 352 182 201 93 0.2 0.1



 

stress amplitude than estimated fatigue limits. And the difference between the lowest estimated value, σ'w 
and applied stress amplitude, σa for each material is within 10% of σa. From these results, it is recognized 
that the equations  (1) can estimate fatigue limits of forged low alloy steels approximately. As well as 
KSFA80B, almost same σa/σ'w values are obtained for both in the L and the T direction in KSFA110B of 
which sizes of inclusions, �area are largely different from each other. Displayed by "×" or "+" mark in Fig. 
6(a) are data of unbroken specimens at 3×108 cycles of repeated stress. The σa/σ'w values of these unbroken 
specimens were calculated using �area of the inclusions observed at the crack origins on the compulsorily 
fractured surfaces. It is reasonable that these values of unbroken specimens were almost the minimum 
values in all data obtained in KSFA80B.  
 
 
 
 
 
 
 
 
 
 
 
 
                 (a) KSFA80B                                (b) KSFA110B  
 

Figure6: Relationship between σa/σ'w values and Nf 
 
From the above experimental results and considerations, it was shown that the fatigue strength of forged 
steels were affected by the shape and the size of inclusions and the anisotropy of fatigue strength of forged 
materials were explained by this. Therefore, it is clear that the most effective way to improve the fatigue 
properties of forged steel is to make the inclusions spherical and small.  
 
 
CONCLUDING REMARKS 
 
The experimental findings and the conclusions drawn from the present study are summarized as follows. 
(1) Most of the inclusions at crack origins are oxidants composed of Mg, Al, Si and Ca, and even very small 

inclusion about 10µm acts as fatigue crack origin. 
(2) In the long life range, fatigue crack initiates at an interior inclusion in high strength low alloy steel. 
(3) Three-dimensional shape and size of inclusions in steel affect fatigue strength, and the anisotropy of 

forged material can be explained by this. The most effective way to improve the fatigue properties of 
forged steel is to make the inclusions spherical and small. 

(4) Using the �area parameter model, fatigue limit of forged low alloy steel can be approximately 
estimated.  
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ABSTRACT 
 
A finite element simulation is carried out to study the fracturing behavior of concrete tunnel linings 
with smeared crack model. To simulate the crack localization observed in experiment, a numerical 
strategy is introduced. Some weak elements as structural imperfections are inserted at critical positions 
of the tunnel linings to avoid the unrealistic crack distribution cracks due to the limitation of smeared 
crack model itself and the structural features of tunnel linings. It is found that the crack characteristics 
and structural performances of tunnel linings can be well simulated and predicted by smeared crack 
model with the numerical strategy on crack localization. In addition, the effect of a key material 
parameter, fracture energy, on the structural response of the tunnel linings is discussed. 
 
KEYWORDS concrete tunnel linings, smeared crack model, fracture energy, crack localization, 
load-carrying capacity 
 
INTRODUCTION 
 
In Japan, there are currently thousands of railway and road tunnels in service. Many of them are being 
suffered from aging and external force, such as earthquake and traffic loading. Therefore, there exist 
serious problems on how to efficiently inspect and repair them to extend their service life. For this 
purpose, much work are being carried out experimentally [1,2], as well as numerical simulation [3], to 
study the mechanism of tunnel deformation and fracturing behavior. In this paper, the scale model 
experiments [1] is reviewed and referred. Smeared crack model is used to simulate the cracking 
behavior of the concrete tunnel linings. The objective is to obtain a general understanding of the effect 
of crack distributions on structural performance of plain concrete tunnel linings and the applicability of 
smeared crack model for the simulation on crack localization in such a structure.  
 
 
EXPERIMENTAL REVIEW 
 
A 1/3 scale model of plain concrete tunnel lining, as shown in Figure1, was tested. A tunnel lining 
specimen was supported by the I-shaped steel beams. No soil mass constrain outside the sidewalls was 
arranged. The external load was acted vertically down at the outside crown. This kind of load condition 
approximates the 2-dimension case. 
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Figure 1: Cracks observed in experiments  
 
According to the experimental observation [1], all the cracks that caused by the vertical load are 
flexural cracks. The first crack occurred in the crown (inside) followed by the ones occurring at the 
outside of sidewalls and the inside of bottom, as presented in Figure 2. 
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Figure 2: Cracking behavior observed in experiment 

Figure 3: Four stages of tunnel lining response 
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From the load-displacement curve of experimental results, as shown in Figure 3, the structural stiffness 
decreased after the crack occurred at the inside of crown. But the tunnel lining could still resist the 
external load until the cracks happened at the outside of sidewalls. When the cracks at the sidewalls 
propagated to a certain extent, the tunnel lining began to lose its load resistance with the continuous 
deformation up to the ultimate collapse. A possible reason of the zigzag behavior in the experiment 
may result from unloading due to localized crack propagation. It can be seen that the structural 
response can be divided into 3 stages: 1)elastic stage with constant stiffness; 2)nonlinear stage after 
cracking occurrence with gradually decreased stiffness (but still positive); 3)strength degradation stage 
with negative stiffness until ultimate structural collapse. 
 
The material properties obtained from identified uniaxial compression test are uniaxial compressive 
strength fc = 26.2MPa, Young’s modulus E=2.3×104MPa and Poisson ratio ν=0.17 [1]. As a reference 
property, the tensile strength ft can be calculated through transformation equation ft=0.23fc

2/3=2.03MPa, 
based on the concrete design standard of JSCE. 



SMEARED CRACK MODEL 
 
A finite element formulation of smeared crack model [4] is used in the simulation. But, the treatment 
on the variation of shear modulus along the crack plane is modified by applying a softening curve 
rather than using conventional constant shear retention factor. The relation between the crack strain 
increment ∆eck and the stress increment ∆s can be defined as 
 

 ∆s =Dck ∆eck       (1) 
 
where Dck contains the local stress-strain relations normal to and along the crack plane. It could be 
written as 
 

          (2) 
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in which DI is mode I tensile softening modulus, DII is mode II shear softening modulus and D0

II is the 
initial shear modulus before the mode II softening is entered, as shown in Figure 4. According to crack 
band theory [5], the actual discontinuous displacements on the crack plane, δn for opening and δt for 
sliding, are smeared over the a band of width h. Therefore, the crack strains eck=δn/h and γck=δt/h are 
obtained. In the simple form, the crack band width h can be taken as an equivalent element size. For 
2-dimension elements, h is approximated as h= A , where A is the element area. Fracture energy is 
assumed to be a material property, defined as the energy required to bring a unit area to complete 
fracture. The areas below the local stress-strain curves at crack plane are the unit fracture energy over 
crack band h, GI

f /h for mode I and GII
f /h for mode II. 
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Figure 4: Softening models (a) Mode I tensile softening (b) Mode II shear softening 
 
A linear tension softening curve is adopted for mode I fracturing. It is assumed that mode I fracture is 
initiated first when principle stress reaches the concrete tensile strength. Therefore, the shear stress 
across the crack is zero at the onset of cracking. That is why the shear stress-strain diagram in Figure 
4(b) starts from the origin. Upon subsequent change of the principle stress axes the shear stress across 
the initial crack plane may increase until its maximum value τ, thereafter the shear softening branch is 
started. Different from the present treatment of mode II softening, in the traditional smeared crack 
model, a constant shear retention factorβis multiplied to the elastic shear modulus and kept unchanged 
in subsequent calculation. It may likely result in shear stress locking so as to lead to incorrect numerical 
results. Furthermore, the unloading and reloading are modeled by a secant path, which implies that the 
stress follows a linear path back to the origin. 
 
 
NUMERICAL SIMULATION 
 
A finite element code, in which smeared crack model is implemented, is used to carry out the numerical 
simulation. The structural model of tunnel lining, as shown in Figure 1, is discritzed by 4-node plane 
stress elements. Strain and stress are integrated at 4 Gaussian quadratic points. 



 
Treatments of Shear Modulus on Crack Plane 
 
First, the difference between the proposed shear softening model and the traditional constant shear 
retention factor is compared. The constant shear retention factor withβ=0.5, 0.1 and 0.01 is used 
respectively for the traditional post-tension crack treatment of shear modulus. Other common material 
properties are concrete tensile strength ft=1.8Mpa, mode I fracture energy GI

f=0.15N/mm. For the shear 
softening model, initial shear retention factor isβ=0.5, shear strength isτ=0.2MPa and mode II 
fracture energy is GII

f=0.01N/mm. The results are shown in Figure 5. 
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Figure 5: Different treatment of shear modulus 
 
It is demonstrated that value of constant shear retention factor significantly influences the numerical 
results even though the mode II fracture is not dominant in the tunnel lining structure under such a load 
condition. Only the curve of case β=0.01 is close to the one of the shear softening model. In the 
viewpoint of concrete material behavior, the shear softening model is more physically reasonable 
because concrete is quasi-brittle material and the shear modulus dose not likely drop dramatically at the 
onset of the opening crack. In the following simulations, the mode II softening model is adopted. 
 
Effect of Initial Imperfection 
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Figure 6: Initial imperfection at different positions  
 

From the experimental observations, the localized cracks are mainly located at the following positions: 
1)inside of crown, 2)outside of sidewalls, and 3)bottom of tunnel. Three cases are used to study the 
effect of the initial imperfection in the numerical simulation by smeared crack model, as shown in 
Figure 6: (a) without any initial imperfection, (b) with initial imperfection only at inside crown ① and 
(c) with initial imperfection positions ①+②. Since the crack that happens at the bottom does not 
further propagate, its effect on the structural behavior is not discussed in this paper. The initial 
imperfection is inserted by weakening one tip element with 1/2 concrete tensile strength and 1/4 
fracture energy GI

f of the normal ones. Concrete properties are tensile strength ft=1.8MPa, mode I 
fracture energy GI

f=0.15N/mm. 
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 Figure 7: Crack patterns with and without initial imperfections 
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Figure 8: Load-displacement curve with and without initial imperfection  
 
The simulation results of crack patterns and load-displacement curves are shown in Figure 7 and 8. 
Figure 7(a) (b) and (c) correspond to the case (a) (b) and (c) in Figure 6, respectively. Without any 
initial imperfection, cracks are widely distributed at the outside of sidewalls. Since the localized crack 
does not form, the local unloading behavior could not be found in load-displacement curve. This may 
result from two reasons. One comes from the deficiency of the smeared crack model, which smears a 
realistic crack over the whole finite element. This easily leads to the distributed crack. The second 
reason may be due to the gentle stress distribution in the tunnel lining under such a vertical load. The 
arch-shaped structure makes the stress gradient along the sidewalls relatively small. This also causes 
the difficulty during FE simulation of crack propagation. By using the numerical strategy with weak 
elements at critical positions, it is found that crack localization can be simulated by smeared crack 
model. 
 
Concrete Fracture Energy 
 
Fracture energy, GI

f, is generally considered as a material property, which is defined as the amount of 
energy required to create a unit area of mode I crack. Because there is not much experimental data of 
the fracture energy, 5 cases with fracture energy GI

f=0.10, 0.15, 0.20 0.40 and 1.0N/mm are simulated. 
The results are compared to the experimental one. Concrete tensile strength is ft=1.8MPa. 
 
The load-displacement curves are presented in Figure 9. It can be seen that when fracture energy is 
relatively small with GI

f=0.10, 0.15, 0.20N/mm, cracks propagate rapidly after initiated. Because the 
stress on the crack plane releases rapidly, the local unloading behavior is apparently seen when cracks 
develop at crown and at sidewalls respectively. However, in the case of higher fracture energy GI

f=0.40, 
1.00N/mm, such an unloading behavior is not clearly shown out. With increase of fracture energy, not 
only the load-carrying capacity is enhanced, but the crack patterns also change even though the weak 
elements are inserted in the same critical positions as discussed previously. The area of cracked 
elements elsewhere also increases, as shown in Figure 10. Therefore, increasing the fracture energy of 
concrete by some means could effectively enhance the load-carrying capacity and prevent excessive 
crack localization in tunnel linings.  
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Figure 9: Load-displacement curve with different fracture energy  
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Figure 10: Change of crack patterns with increase of fracture energy  
 
 
CONCLUSION 
 
Through the numerical simulation with smeared crack model, the cracking behavior of concrete tunnel 
linings is studied. Shear softening model is used, in place of constant shear retention factor, as a 
rational approach to treat shearing behavior on the crack plane. As to smeared crack model, it is 
generally considered not so applicable to simulate localized cracking in complicated structures such as 
tunnel lining. But, by inserting weak elements at critical positions, such a disadvantage is overcome, 
and characteristics of cracking behavior and structural response are well simulated. In addition, the 
significance of fracture energy is discussed. Increasing the fracture energy of concrete tunnel lining 
intends to result in distributed crack so that it can effectively enhance the load-carrying capacity and 
deformation. This finding might be helpful to tunnel lining design in the future. 
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ABSTRACT 

 
In this paper, we present a new approach to consider the near-tip fields of a crack in elastic flat plate 

subjected to bending forces. The Reissner assumptions of the plate theory were adopted. By introducing the 
dual variable vectors in the state space, the governing equations were established in the frame of the 
Hamiltonian system. Following problems were solved by using the present approach: (1): Cracks in elastic 
homogeneous plates. (2): Cracks formed by several homogeneous plates. Interface cracks between two 
dissimilar plates and cracks meeting an interface between two elastic plates are two special cases of this 
problem. (3): Cracks in orthotropic plates. (4): Cracks formed by several orthotropic plates. This work shows 
the efficiency and the simplicity of the present theory in studying the crack-tip asymptotic fields in plates. 

 
KEYWORDS 
 
Crack, plate, asymptotic analysis, near-tip fields, orthotropy, interface 
 
1. INTRODUCTION 
 
The principal theories studying the asymptotic fields near a crack tip in a plate loaded by bending forces 
were established in the 60’s of the precedent century (Sih, 1965, Knowels and Wnag, 1960, Hartranft and 
Sih, 1968, 1970 etc.). Some of them were established on the basis of Poisson-Kirchhoff’s thin plate theory, 
others on the basis of the Ressner theory. The Poisson-Kirchhoff theory provides rather simple mathematical 
procedures, but gives some physically incorrect behaviors about the near-tip fields. On the other hand, 
Ressner’s thin plate theory gives physically more reasonable results, but the solution of the six-order 
differential equations remains difficult for some problems posed in this topic.  
 
In this paper, we propose a new approach to find out asymptotic fields near a crack tip in thin plates loaded 
by bending. By choosing appropriate dual variables in the state space, we can establish the governing 
equations of the problem in the frame of the Hamiltonian system. All equations found are presented in the 
form of a system of first-order differential equations. Therefore, one can easily perform the separation of the 
variables and resolve the corresponding eigenvalue problems. The mathematical approaches are quite simple 
and a large range of problems in this domain can be dealt with. 
 
2. FUNTAMENTAL EQUATIONS  
 
Consider a semi-infinite crack in a thin elastic plate of thickness h. We adopt the hypothesis made by 
Reissner about the deformation of thin plates. (1): The strain and stress at the direction normal to the mid-
plane are neglected, i.e.: 
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(2): The in-plane displacements depend linearly on the thickness coordinate z: 
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Where ru~  and θu~ are functions independent of the z coordinate. We write now the equilibrium equations in 
the cylindrical coordinate system: 
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The relationships between the strain and displacement components are, according to assumption (2): 

According to the Hooke law, we can directly write the relationships between the displacement and stress 
components: 
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We multiply the three first equations by z then perform integration through the thickness. For the two last 
equations, we just perform integration. We obtain: 
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where k = 5/6 is a corrector constant in order to take the parabolic distribution of the shear stresses into 
account. Equation (3) and (6) are the fundamental equations we use in this work. The boundary conditions at 
the crack lips are written as following: 

0)()()( =π±=θ=π±=θ=π±=θ θθθθ zr QMM    (7) 
In order to solve these fundamental equations, we perform the following variable changes: 
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Then equations (3) and (6) become respectively: 
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3. TRANSFORMATION INTO THE HAMILTONIAN SYSTEM ON THE BASIS OF THE RADIAL 
COORDINATE 
 

In this case, we note ( )•=
ξ∂
∂ , and then we define the dual variables as following:  
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We eliminate from (10) the quantities that do not exist in the above dual variables, namely: 
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By neglecting the terms of higher orders as r→0, we obtain the following dual differential equations: 
Hvv =&    (13) 

with: 
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The resolution of the governing equation (13) with the boundary conditions (7) is easy. We first write the 
solution under separable form: 

)(θ= µξψev     (16) 
where µ is an eigenvalue. ψ(θ) is the corresponding eigenvector. Substituting (16) into (13) gives: 

( ) 0IH =θµ− )(ψ    (17) 
From (14), we remark that the solution of v1 is independent of v2. So we can first solve the eigenvalue 
problem (17) for v1. We can easily find the eigenvalues ,...2/3 ,1 ,2/1 ,0 ±=µ . In crack problems, only 
eigenvectors of v1 for positive eigenvalues exist. The singular fields for v1 can therefore easily be obtained, 
namely: 
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where K1 and K2 are stress intensity factors, )1(12 ν+= EhD . From dimension analysis, we know that the 
eigenvalues for v2 may be negative, and the most negative eigenvalue is µ=−1/2. Since the eigenvector of v1 
for µ=−1/2 is nil, from (14), we have: 

2222 vHv =&    (19) 
The solution of (19) with the boundary solution (7) is: 
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(18) and (20) are just the solution found out by Hartranft and Sih (1968) by using an integral transform 
technique. Here we find it with rather a simple approach. 



 
4. TRANSFORMATION INTO THE HAMILTONIAN SYSTEM ON THE BASIS OF THE 
ANGULAR COORDINATE, MULTI-MATERIAL PROBLEMS 
 
If we define the dual variables as follows: 
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and we note ( )•=
θ∂
∂ . We eliminate from (10) quantities that don’t exist in the dual variables defined above, 

namely: 
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We obtain another dual differential equations: 
Hvv =&     (23) 

with 

1212222

1111

21

11

vHvHv
vHv

HH
0H

H
22 +=

=








=

&

&
  (24) 

 























+

ξ∂
∂

ν+
−

−
=



























+

ξ∂
∂

ν+
−

ν+

=





























ξ∂
∂

−−

ξ∂
∂

ν−
ξ∂
∂

−

ν−
ξ∂
∂

ν−−

ν+
ξ∂
∂

−

=

0001
)1(2

0010

01
)1(2

)1(20

0100

100
12

)1(12001

0)1(2410

21222

2

23

3

2

3

11

Ehk
Ehk

Ehk

Eh
Eh

Eh

HH

H

  (25) 

The solution of (23) gives the same results as those found in the precedent section.  
The main advantage of this approach is its high capacity to deal with the multi-material problems. Imagine a 
crack or a notch formed by n homogenous plates, all interfaces between two of these plates intercept at the 
crack tip. The boundary conditions at the crack lip are therefore:  
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and the continuity conditions across the interfaces are: 
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where the superscript (i) indicates the quantities in the zone occupied by the plate i. It is seen that the variable 
vector v is continuous across all the interfaces. This makes the solution of the multi-material problems much 
easier. In each zone, we can establish the governing differential equation (23), namely: 

)()()( iii vHv =&    (28) 
We look for only the eigenvalues leading to singular stress filed near the crack tip. According to the analysis 
made in the precedent section, the vectors v1 corresponding to negative eigenvectors are nil, while a singular 
vector v2 requires negative eigenvalues. Therefore, we can divide (28) into two distinguish equations: 
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We can resolve (29) by writing v1 and v2 under separable form: 

)()( )(
2

)(
2

)(
1

)(
1

21 θ=θ= ξµξµ iiii ee ψψ vv    (30) 
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The solution of (31) is immediately written as follows: 
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According to the continuity conditions (27), we obtain the relationship between the ψ’s at the two crack lips: 
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where G1 is a 4×4 matrix and G2 is a 2×2 matrix. According to the boundary conditions (26), we have finally 
the following conditions allowing calculation of the eigenvalues: 
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Once the eigenvalues obtained, the corresponding eigenvectors can immediately be computed from (33). 
 
5. ORTHOTROPIC PLATES 
 
Anisotropy is a very important quality in composite plates. Now let us consider an orthotropic plate that is 
habitually used in engineering applications. If the mid-plane is perpendicular to the orthotropic axis, one can 
write the relationship between the stress and strain components in the cylindrical coordinate system: 
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The components of the stiffness matrix may be function of θ. From (37), one can easily find:  
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By choosing the following dual variable vectors: 
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and by neglecting the high order quantities as r →0, we can find the following dual differential equations: 
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Here again, we establish the standard form of the governing equation (40) in the Hamiltonian system. We 
can then perform the separation of the variables and solve the corresponding eigenvalue problem as 
described in the precedent section. As for the isotropic materials, cracks or notches formed by several 
anisotrapic plates can also be dealt with in a very similar manner.  
 
6. CONCLUSIONS 
 
In this paper, we have developed a new approach to deal with asymptotic fields near a crack tip in thin plates 
subjected to bending forces. Ressner hypothesis are used in this theory. By establishing dual differential 
equations in the frame of the Hamiltonian system, a large range of problems in this topic, some of them are 
often difficult to treat with the traditional techniques, can be solved in rather a simple way.  
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ABSTRACT 
 
In this paper, we studied the stress singularities near tip of a two-dimension notch, which could be a crack 
tip, formed from several elastic materials, each of them may be generally anisotropic. By introducing the 
dual variables in the state space, the basic equations governing the posed problem were established. We also 
proposed a numerical method to solve the governing equations. It was shown that the mathematical 
formulations advanced are quite simple and the numerical method proposed is easy and highly accurate.  
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Notch, crack, interface, multi-material, bimaterial, anisotropy, plane stress, generalized plane strain 
 
 
1. INTRODUCTION 
 
Knowledge about the stress concentration near the tip of a notch in anisotropic materials, or a crack as a 
special case, has a particular importance. The fracture behaviors of such a structure may be interesting for 
many engineering applications such as composites, crystals, welded structures or reinforced polymers etc. In 
this topic, one can note the pioneering works of Stroh (1958), Sih et al. (1965) or Hoenig (1982) concerning 
the asymptotic fields near a crack tip in homogenous orthotropic or general anisotropic materials. The next 
studies were carried out in determining the near-tip fields when the crack lying at or touching an interface 
between two anisotropic materials. Several basic crack problems have been solved (Gotoh, 1967, Clements, 
1971, Willis, 1971, Delale and Erdogan, 1979, Ting and Hoang, 1984, Ting, 1986, Qu & Bassani, 1989, Suo, 
1990, Gupta et al., 1992, Ting, 1996, Sung and Liou, 1996, Lin and Sung, 1997, Matntic et al., 1997 among 
others).  
 
In all the studies mentioned above, the linear elastic anisotropy theory developed by Lekhnitskii (1953) and 
Eshelby et al (1953) were essentially followed. This theory provides explicit results for some problems such 
as cracks in homogenous materials or cracks lying at an interface etc. However, for more complex problems, 
the methods provided by this theory leads to long and difficult mathematical formulations.  
 
In this paper, we propose to study the stress singularities near the tip of a notch formed from several 
generally anisotropic elastic materials. We will use, in this work, another methodology than that of 
Lekhnitskii and Eshelby. This new methodology consists in introducing the Hamiltonian system and the 
state space method into the continuum mechanics and has been successfully used in the reform of the 
elasticity theory (Zhong, 1995). In this work, we deduced the governing equations allowing the 
determination of the stress singularities and the asymptotic fields near the notch tip. The mathematical 
formulation is quite simple comparing with those currently appeared in the literature. We also proposed a 



numerical method to solve the governing equations. It has been shown that this numerical method is simple 
and highly accurate.  

 
2. GOVERNING EQUATIONS OF THE PROBLEM 
 
Let consider a notch formed from several elastic anisotropic materials. We establish a Cartesian coordinate 
system and a cylindrical coordinate system with their origins at the notch tip and the z-axis representing the 
notch front. The material 1 occupies the sectorial domain [θ0,θ1], named zone 1; the material 2 occupies the 
zone 2, bounded by [θ1,θ2], and so on. Under remote loading, the stress concentration at the notch tip will 
take a mixed mode nature due to the anisotropy of the materials.  
 
First, we write the stress components in the Cartesian system and in the cylindrical system as 

and{ }T
yzxzxyzyxxyz τττσσσ=σ { }T

zrzrzrzr θθθθ τττσσσ=σ  respectively. The 

corresponding strain components are { }T
yzxzxyz γγγεyxxyz εε=ε

}
and 

respectively. In the Cartesian system, each material has a homogeneous 
and anisotropic elasticity: 

{ T
zrzrzrzr θθθθ γγγεεε=ε

xyzxyzxyz εσ C=    (1) 
Cxyz is the stiffness matrix of the material. All its components cij (i, j = 1,6) are constant. In the cylindrical 
system, the stress and the strain components can be obtained from their corresponding quantities in the 
Cartesian system with a coordinate rotation, namely, 

xyzzrxyzzr εσσ εθσθ == TT ε                   (2) 
where Tσ and Tε are the coordinate rotation matrices about the stresses and strains respectively. Therefore, 
the stress-strain relationship in the cylindrical system is: 
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TCTC
C

xyzzr

zrzrzr εσ
.    (4) 

This shows that in the cylindrical system, the stiffness matrix is not a constant matrix but a function of θ. 
Hereafter we work exclusively in the cylindrical system, therefore the subscript rθz will be omitted in order to 
simplify the notations. At the present, we do not distinguish the different materials in the formulation.  
 
We write now the fundamental equations of the anisotropic elasticity in the cylindrical system: 
 
(a): The equilibrium equations: In the case when the stress components are independent of the z-axis, the 
equilibrium equations are: 
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We perform the following variable changes: 
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and 

...etc    ;     
    ;     
rSrS

rSrS

rrrr

rrrr

θθθθ =ττ=
=σσ=

   (7) 

Then by using the notation 
θ∂
∂

=⋅)( , the equilibrium equations (5) can be rewritten as: 
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We define the following variable vectors: 
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Hence, the equilibrium equations (8) can be rewritten as: 
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(b): The displacement-stress relationship: If the displacement components are independent of the z-axis, the 
relations between the strain and displacement components are: 
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By substituting (11) into (4) and by using the variable changes (6) and (7), one obtains: 
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Similarly, we define a displacement vector 
{ } { }T

r wuuθ=q    (13) 
By using the definitions (9) and (13), the relationship (12) can be rewritten as: 
 

ξ∂
∂

++=
ξ∂

∂
++=

qCqCqCpqCqCqCp 111 fedtfed &&    (14) 

Or : 

( )
ξ∂

∂
−+=








ξ∂

∂
−−= −−− qCCCCpCCpqCqCpCq fddfddtfed

1
11

1
1

1&    (16) 

with: 
















=

















−
−
−

=















=
















=

















−
−
−

=















=

555154

353134

151114

1

5254

3234

1214

1

565452

363432

161412

1

656164

454144

252124

6264

4244

2224

666462

464442

262422

0
0
0

0
0
0

ccc
ccc
ccc

cc
cc
cc

ccc
ccc
ccc

ccc
ccc
ccc

cc
cc
cc

ccc
ccc
ccc

fed

fed

CCC

CCC

 (18) 

In (17) the relationship C  is used. Since the strain energy in solids is always positive, 
consequently, C

0CCC =− −
edde

1
11

d is a positively definite matrix. Therefore, the inversion of the matrix Cd is permitted 
 
(c): The governing equations: By substituting equation (17) into the equilibrium equation (10), the variable 
vector pt is eliminated. Then we obtain, from (10) and (16), the following dual equations that govern the 
posed problem: 
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In fact, it is more convenient to define a total vector v as variables in the state space: 

{ }TTT pqv =     (21) 
such that the governing equations (19) become: 

Hvv =&     (22) 
with: 
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(d): The boundary conditions and the continuity conditions: Referring to Fig.1, we adopt the superscript (i) to 
indicate the quantities in the zone i , for example, v(i), H(i), etc.. The boundary conditions at the two free 
surfaces of the notch are: 
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The continuity conditions across the interfaces are: 
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These relations show the advantage of the choice of the dual variables in the present study: the multi-
material problem can be dealt with as a single material problem since the variable vector v is continuous 
across all the interfaces. This makes much easier the resolution of the governing equation (22). 
 
If we suppose the stress component σz=0, from the third equation of (4), one deduces the strain component 
εz: 
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Introducing (26) into (4) eliminates all components in the third colon and the third row of the stiffness 
matrix C. The other components become: 

33

33
) ( c

cc
cc ji

ijij stressplane −=    (27) 

By adapting this new stiffness matrix, all formulations deduced for the generalized plane strain can directly 
be used for plane stress problems. 
 
 
3. SOLUTION METHOD 
 
By examining the governing equation (22), it is self-evident to try to solve it by using the variable separation 
method. We suppose that the variable vector v(ξ, θ) can be written under separable form: 

)()exp(),( θλξ=θξ ψv    (31) 
where λ is an undetermined eigenvalue, ψ(θ) is a variable vector depending exclusively on θ. Then equation 
(22) becomes: 
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In (32), H is function of θ only, 
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The continuity conditions across the interfaces become: 
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We believe that equation (32) may be solved by different ways. In this work, we propose a numerical 
method allowing the determination of the eigenvalue λ and the corresponding eigenvector ψ(θ). First, we 
divide a zone, the zone i bounded by the interfaces θ=θi-1and θ=θi for example, into Ni intervals of equal 
angle size by inserting Ni−1 points. In each interval, we integrate (32) by using the trapezoidal 
approximation: 
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where d is the interval size. From (35), we have: 
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where I6 is a 6×6 unite matrix. Hence, we immediately obtain the relation between  and ψ , namely: )(i
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According to the continuity conditions (34), one has: 
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Hence, we obtain the relation between and ψ , namely, )( 0
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In practice, the trapeze method provides quite a poor accuracy in calculation of G. The accuracy can 
considerably be improved by using the Richardson extrapolation technique.  
 
Now we write (40) in the form of the dual vectors q and p: 
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Since p(θ = θ0) = p(θ = θn) = {0}, from the second equation of (42), one has: 
0qG 01 =θ=θ )(2     (43) 

This leads to: 
0)det( 2 =1G     (44) 

Equation (44) is the condition required to determine the eigenvalues λ. Iteration techniques for roots finding 
can be used for the determination of λ. In this work, the Muler method is used because it can generate 
complex roots even if a real initial value of λ is chosen, and vice-versa. Once the eigenvalues determined, 
the vector q(θ = θ0) is obtained from (43). Therefore, the boundary value problem posed becomes an initial 
value problem. Any numerical method providing a good accuracy can be used for solving equation (32). 
Otherwise the eigenvectors  can straightforwardly be given from (36), and all stress and displacement 
components can easily be obtained from (31) and (17).  

ψ

 
 
5. CONCLUSIONS  
 
In this work, we have established the general equations governing the asymptotic fields near a notch tip 
formed from several general anisotropic materials. These equations are expressed under the form of a system 
of first-order differential equations, instead of a high-order differential equation of a single variable as in the 
traditional methods. The dual variables chosen present important advantages in the resolution of the 
problems because of their continuity across all the interfaces. A numerical method has been proposed to 
solve the egeinvalue problem. This numerical method is simple and highly accurate comparing with results 
obtained in other existing analytical solutions. Consequently, the present method enables us to deal with a 
large range of problems in this topic with rather simple mathematical formulations and small numerical 
effort. Since the new materials developed recently present a large field in which the modeling of the 
anisotropy is important, we believe that the present work provides a new tool to study problems in this 
domain. 
 
 



REFERENCES  
 
Clements, D.L. (1971). A crack between dissimilar anisotropic media. International Journal of Engineering 
Science 9, 257-265. 
Delale, F. & Erdogan, F. (1979). Bonded orthotropic strips with cracks. International Journal of Fracture 
15, 343-364. 
Eshelby, J. D., Read, W. T. & Shockley. W. (1953). Anisotropic elasticity with applications to dislocation 
theory. Acta Metallurgica 1, 251-259. 
Gotoh, M. (1967). Some problems of bonded anisotropic plates with cracks along the bond. International 
Journal of Fracture Mechanics 3, 253-265. 
Gupta, V., Argon, A. S. & Suo, Z. (1992). Crack deflection at an interface between two orthotropic media. 
ASME Journal of Applied Mechanics 59, 79-87. 
Hoenig, A. (1982). Near-tip Behavior of a crack in a plane anisotropic elastic body. Engineering Fracture 
Mechanics 16, 393-403. 
Lekhnitskii, S. G. (1953) Theory of an anisotropic elastic body. Holden-Day, San Francisco. 
Lin, Y. Y. & Sung, J. C. (1997). Singularities of an inclined crack terminating at an anisotropic bimaterial 
interface, International Journal of Solids and Structures 34,3727-3754. 
Mantic, V. et al, (1997). Stress singularities in 2D orthotropic corners. International Journal of Fracture, 83, 
67-90. 
Qu, J. & Bassani, J. L. (1989). Cracks on bimaterial and bicrystal interfaces. Journal of Mechanics and 
Physics of Solids 37, 417-433. 
Sih, G. C., Paris, P. C. & Irwin, G. R. (1965). On cracks in rectilinearly anisotropic bodies. International 
Journal of Fracture Mechanics. 1, 189-203. 
Stroh, A. N. (1958). Dislocations and cracks in anisotropic elasticity. Philosophy Magazine 3, 625-646. 
Sung, J. C. & Liou, J. Y. (1996). Singularities at the tip of a crack terminating normally at an interface 
between two orthotropic media. ASME Journal of Applied Mechanics 63, 264-270. 
Suo, Z. (1990). Singularities, interfaces and cracks in dissimilar anisotropic media, Proceeding of the Royal 
Society of London A427, 331-358. 
Ting, T. C. T. & Hoang, P. H. (1984). Singularities at the tip of a crack normal to the interface of an 
anisotropic layered composite. International Journal of Solids and Structures 20, 439-454. 
Ting, T. C. T. (1986).Explicit solution and invariance of the singularities at an interface crack in anisotropic 
composites, International Journal of Solids and Structures 22, 965-763. 
Ting, T. C. T. (1996).Anisotropic elasticity, Oxford University Press 
Willis, J. R. (1971). Fracture mechanics of interfacial cracks, Journal of Mechanics and Physics of Solids 19, 
353-368 
Zhong, W. X. (1995). A new systematical methodology in elasticity theory (in Chinese). Dalian Science & 
Technology University Press. 



ORAL/POSTER REFERENCE: ICF100923OR

ASYMPTOTIC MODE III AND MODE E CRACK TIP SOLUTIONS IN
FERROELECTRIC MATERIALS

Chad M. Landis

Department of Mechanical Engineering and Materials Science, MS 321,
Rice University, P.O. Box 1892, Houston, TX, 77025

landis@rice.edu, ph: 713-348-3609, fax: 713-348-5423

ABSTRACT

Complete asymptotic solutions for the Mode III, longitudinal or anti-plane shear, and Mode E applied
electric field cases are presented for idealized ferroelectric switching materials.  The mathematical
procedure required to solve these problems has been presented by Rice [1].  The purpose of this work is to
compare and contrast the mechanical and electrical solutions.  The constitutive behavior of the material is
specified by an initial linear response, a segment of non-hardening switching behavior, i.e. perfect plasticity
in the mechanical case, and finally a region where lock-up occurs.  The crack tip solution is characterized
by an outer solution with a standard r−1 2 singularity that is not centered on the crack tip, a switching zone
with the solution given by a simple radial slip line field, and an inner lock-up region which surrounds the
crack tip.

KEYWORDS

Ferroelectric, dielectric, non-linear behavior, crack tip fields

1. INTRODUCTION

To reduce the mathematical complexity of analyzing the crack tip fields, the following assumptions are
made.  First, all electromechanical coupling effects including piezoelectricity are ignored.  This assumption
is not necessary for the purely mechanical anti-plane shear case.  Second, the constitutive response, i.e.
stress versus strain or electric field versus electric displacement, is taken to be completely reversible.  This
is to say that the stress or electric field is a unique function of the strain or electric displacement
respectively.  Borrowing the mechanics terminology, deformation theory plasticity is assumed.  This
assumption is used in preference to a more appropriate incremental theory in order to make the
mathematics tractable.



The remainder of the paper will be devoted to presenting the equations governing the distributions of stress
and strain or electric displacement and electric field and the solution to these equations very close to a
crack tip.  In order to emphasize the similarities between the mechanical and the electrical problems the
equations will be presented concurrently.

2. GOVERNING EQUATIONS

Equilibrium and Gauss’ law are given by
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where the shear stresses areτ τx xz=  and τ τy yz= , and the x and y components of the electric displacement

are Dx and Dy.

The shear strains, γ γx xz=  and γ γy yz= , and electric field components, Ex  and Ey , are derived from the

gradient of the z displacement, w , or the electric potential, φ, respectively.
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Eqn. 2 implies the following compatibility condition for the shear strains and that the curl of the electric
field is zero.
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The constitutive behavior of the material is assumed to be completely reversible, i.e. a deformation theory
in mechanics terminology is used.  For an isotropic material the stresses and strains or the electric field and
electric displacement are collinear.
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What remains is to specify the relationships between the magnitudes of the shear stress and shear strain and
the magnitudes of the electric field and electric displacement.  These magnitudes are given by

τ τ τ= +( )x y
2 2 1 2

 and γ γ γ= +( )x y
2 2 1 2

,     E E Ex y= +( )2 2
1 2

 and D D Dx y= +( )2 2 1 2
(5)

For the mechanical problem the stress is specified as a function of the strain and the electrical problem is
characterized with the electric field as a function of the electric displacement.
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The shear modulus and dielectric permittivity are G and κ , the shear yield stress and coercive field are τ 0

and E0 , and the lock-up strain and electric displacement are γL  and DL .  The parameters γ0 and D0 are
related to the yield stress and coercive field by

γ τ
0

0=
G

,         D E0 0=κ (7)

3. THE CRACK TIP

The crack tip solutions presented here along with the solution for a conducting crack are discussed in
further detail by Landis [2].  Consider a semi-infinite crack with faces lying along the negative x-axis and
tip at the origin.  It is assumed that the size of the switching zone, as yet to be determined, is much smaller
than the crack length or any other characteristic length in the geometry of the problem.  In the mechanical
case the crack faces are traction free.  For the electrical case it is assumed that the permittivity of free space
is zero and there is no normal component of electric displacement along the crack faces.  The boundary
conditions are then that

for ,      ,      y x Dy y= < = =0 0 0 0τ (8)

The solutions for the full fields with lock-up are now presented.  The reader is referred to Rice [1] for the
mathematical details of the solution procedure.  For both the mechanical and electrical problems the
switching regions are circles and the radii of the switching regions for the mechanical and electrical cases
are
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The lock-up zones are also circular, surround the crack tip and are embedded within the switching zones.
The radii of the lock-up zones are,
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The solutions outside the switching region are given by
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Here Xτ  and XE  represent the x coordinate of the centers of the switching zones.  The solution in the
switching region is a radial slip line field.  The solutions in these regions are
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As drawn in Figure 1 and as indicated by the region of validity for Eqn. 13 and Eqn. 14 the lock-up zone is
circular and it is tangent to the boundary of the switching zone.  This point of tangency lies on the crack
faces in the mechanical case and in front of the crack tip in the electrical case.  The solution within the
lock-up zone cannot be written in simple closed form with stresses or electric fields as functions of
coordinates as in Eqns. 11-14.  Instead the solution is given for the coordinates as a function of the strain or
electric field components.

Slip lines
originate from

this point

Switching Zones

Lock-up 
Zone

Mechanical Electrical

r

θ

Figure 1:  The switching and lock-up regions around a crack tip for the mechanical and electrical cases.

The crack tip solutions within the lock-up zones can be represented by contours of constant strain or
electric field magnitude.  The constant strain or electric field contours are circles that are not centered on
the crack tip.  The x and y coordinates along a given contour are then

  x X R= + cos2α (15)

y R= sin2α (16)

where X is the x coordinate of the center of the contour and R is the radius of the contour. The angle 2α  is
the angle between a line drawn to a point along the contour and the x-axis.  Then the components of shear
strain or electric field at this point along the contour are

mechanical:  γ γ αx = − sin ,     γ γ αy = cos (17)

electrical:  E Ex = − sinα ,     E Ey = cosα (18)



The parameters R γ( )  and X γ( ) for the mechanical case will be presented first.  For a given strain
magnitude the radius and the x coordinate of the center of this circle are
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For the electrical problem the radius of a constant electric field contour and the x coordinate of its center
are,
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4. DISCUSSION AND IMPLICATIONS FOR NUMERICAL METHODS

The analyses presented in Section 3 are most applicable to initially unpoled ferroelectric ceramics.  The
analysis of poled ferroelectrics and in general full electromechanical coupling is beyond the scope of this
work.  The inclusion of coupling in the electrical and mechanical fields requires more detailed constitutive
relations.  Hence, due to the complexity that this type of coupling introduces it is likely that the solution to
the crack tip problem will rely on numerical methods.  The features appearing in the simple solutions of
Section 3 will almost certainly appear in the more complicated fully coupled problem as well.  For
example, at the point of tangency between the switching and lock-up regions there is a large gradient of
strain in the mechanical case and electrical displacement in the electrical case.  This is an interesting issue
for a numerical solution since from a mathematical standpoint, Eqn. 1 and Eqn. 3, these field variables are
not equivalent.  Hence, a standard finite element formulation that interpolates displacement and electric
potential may be inferior to a mixed or hybrid formulation.  At the very least the solutions presented in
Section 3 offer an analytical check for any numerical method designed to solve field problems in
ferroelectrics.
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ABSTRACT 
 
Interfacial atomic structure (chemical structure) of a Pd/ZnO hetero junction was investigated by atomic 
resolution high voltage transmission electron microscopy (ARHVTEM) in order to clarify the cause of 
thermal fracture of a metal/ceramic interface. A misfit dislocation, predicted by O-lattice model of Bollman, 
did not work as a stress accommodation mechanism in the ZnO(0001)/Pd(111) interface which was a polar 
interface. But in the non polar ZnO( 0110 )/(200) interface periodic stress localization occurred. The 
periodicity of the local strain coincided with that of misfit dislocation. Atomic structure image of the 
ARHVTEM showed that an atomic arrangement across the interface was in the order of O-Zn-Pd. It was 
shown that weakness of the ZnO(0001)/Pd(111) interface against cyclic heating is attributable to the absence 
of the periodic stress localization of the misfit dislocation.  
 
KEY WORDS 
 
thermal fracture, metal/ceramic interface, misfit dislocation, stress accommodation mechanism, bonding 
strength, high-resolution electron microscopy, chemical structure 
 
INTRODUCTION 
 
Although metal/ceramics hybrid materials are widely used, namely surface coating, electron device packages, 
and wirings to the semiconductor, a well known weak point problem still remains unsolved i.e. a 
metal/ceramic hybrid material is broken at the junction by cyclic heating during the work. A cause is known. 
The brittle junction has been attributed to large difference in thermal expansion coefficient between metal and 
ceramic. Expanded atomic distance across the hetero interface due to heating accidentally goes over the 
threshold of atomic bonding to produce a crack. Previously employed method to solve this problem was to 
insert a cushion material which has intermediate thermal expansion coefficient value. But, what ever cushion 
material is used it could not be the final solution of the problem. Melting point of the cushion was sometimes 
lower than that of the component metal. Mechanical strength of the cushion was not necessarily higher than 
any of the component materials in the other occasion. It rather provided a new additional problem. More 
credible solution based on a physical principle has been desired. Despite not few people have discussed so far 
to give a clear solution in atomic dimension either experimentally or theoretically, the problem still remains 
unsolved [1]. Major cause of the situation is attributed to the lack of an experimental tool to analyze the 
interface structure in real atomic dimension.  

In the present work a ZnO/Pd interface is observed by our atomic resolution high voltage transmission 
electron microscope (ARHVTEM). This microscope enables us to observe even chemical structure of the 
hetero interface. The investigation is focused on the stress accommodation mechanisms of the interface in 
atomic dimension.  



 
EXPERIMENTS 
 

A high purity Pd sheet 100µm in thickness was alloyed by 2at% Zn. The alloy sheet was heated at 1273K 
for 100 hours to make Zn solute in Pd. Following diffusion treatment the Pd-Zn alloy sheet was internally 
oxidized at 1073K for 14～37 hours in the air to obtain a ZnO precipitate in the Pd matrix.  
The precipitated sheet was mechanically thinned down to 10µm and then was thinned by Precision Ion 
Polishing System (PIPS). Incident angle of Ar ion of the PIPS was kept less than 4degree.  Vacuum and 
acceleration voltage of the PIPS specimen chamber were respectively ～10-6torr and 4kV.  Damaged surface 
layer produced during the thinning was brown off by five minutes irradiation of Ar at 2.5kV acceleration. 
The atomic resolution high voltage transmission electron microscope (ARHVTEM) was employed for the 
atomic structure investigation of the ZnO/Pd metal-ceramic hetero interface. The resolution of the microscope 
is 0.1nm at the optimum focus condition (so called Scherzer condition) and the information limit of this 
machine extends over 0.09nm [2], which are enough power to investigate the atomic structure of the ZnO/Pd 
hetero interface. Observation was performed at 1250kv acceleration and 39nm defocus, corresponded to the 
optimum focus condition. Not only atomic structure image but also ordinary lattice image was effectively 
employed depending on the required information level. 
 
RESULTS 
 
Chemical structure of ZnO crystal 

Fig.1. Identification of Zinc and Oxygen in the ARHVTEM
atomic structure image. Zn appears in darker contrast and O in
the thinner in both calculated image and picture. Projected
inter atomic distance of Zn and O is 0.114nm.   

Super high resolution of the ARHVTEM enabled to observe chemical structure of the ZnO crystal as shown in 
figure 1. The picture image was obtained from 3nm thick specimen at Scherzer focus condition so that atomic 
potential in the specimen was directly 
projected on the image in dark contrast 
(called as a projected potential image or 
atomic structure image)[3]. The atomic 
structure image is highly qualified for the 
atomic structure investigation in contrast 
to an ordinary lattice image which is 
obtained from thicker specimen and 
shows only periodicity of atomic 
potential. A line profile of darkness 
along the Zn-O atomic pair (bottom left) 
of the picture (bottom right) consisted of 
two peaks. The higher peak 
corresponded to Zn and the lower one to 
O i.e. Zn appeared in darker thick 
contrast and O in brighter thin contrast. 
The intensity profile of a simulated 
image computed by multi-slice method, 
shown in upper half of figure1, well 
coincided with that of experimental 
result.     
 
Geometry of Pd/ZnO interface 
The ZnO crystal and the Pd matrix were joined together by (0001) plane of the ZnO and (111) plane of the Pd. 
The (0001) plane is a polar interface stacked in turn by Zn-plane and O-plane. <110> axis of the Pd and 
< 0211 > axis of the ZnO were parallel to each other and to the electron beam too. (This interface is noted as 
ZnO(0001)/Pd(111) hereafter and is called as a polar interface.) Although most developed surface of a ZnO 
crystal grown in the free space is )1220( plane, the (0001) plan exceedingly developed in the present ZnO 
crystal precipitated in the Pd matrix (Fig.2). The development of (0001) plane of the precipitate ZnO is 
attributable to the energy reduction effect of the ZnO/Pd interface. Integrated inter atomic interaction energy 
over the interface area of the ZnO(0001)/Pd(111) junction must be lowest among the possible other ZnO/ Pd 



interfaces to present. Morphology of the interface was flat (or straight) in atomic dimension, showing well 
defined atomic arrangement (Fig.3).  
 
Absence of misfit dislocation in the ZnO(0001)/Pd(111) interface   
Atomic arrangement shown by white dots in figure 3 is unusually 
straight everywhere in spite of 14% lattice mismatch at the interface. 
The 14% lattice mismatch, according to O-lattice model [4], must 
introduce a misfit dislocation at every eight (111) planes of Pd along 
the interface. The introduced dislocation is expected to localize the 
stress around the core to release the stress in the other region. The 
interface structure is stabilized by this mechanism. Additional 
thermal stress, if supplied, is absorbed by sliding of the dislocations. 
In the present interface, however, no periodic image contrast of the 
misfit dislocation was seen (Fig.2.). No evidence of atomic site shift 
parallel to the interface, corresponding to the strain field of the misfit 
dislocation, was observed even in the lattice image of high 
resolution TEM; every white dot in figure 3 ranged straight directing 
to the interface. No strain localization around the misfit dislocation 
seems present. An absence of the periodic strain localization means 
that no stress accommodation mechanism works in the interface. 
Under this situation inter atomic distance across the interface 
changes from place to place. If the ZnO/Pd junction is exposed to 
cyclic heating, the uppermost inter atomic distance may go over the 
threshold of local atomic bonding by thermal strain due to different 

thermal expansion coefficient. 
Repeated the process by the 
cyclic heating a fine crack may 
grow to break all the interface 
atomic bonding. 

Fig.2. Well developed (0001)
surface of ZnO. 

(0001

(111) 

ZnO

Pd 

Zn 
Pd 

O 

 
Chemical structure of the 
ZnO/Pd interface 

Fig.3.  
Well defined ZnO/Pd interface.
Interface is parallel to (111) plane
of Pd and (0001) plane of ZnO. 

 
Employed an atomic structure image which is observed under strict 
condition, namely less specimen thickness than 30nm, a super high 
resolution TEM with 0.1nm resolution, strict optical axis alignment, an 
obtained data (picture) will be capable of not only atomic structure 
analysis but also chemical structure investigation [4]. 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
Pictures s

Fig.4. Well defined ZnO/Pd 
interface. Interface is parallel to
(111) plane of Pd and (0001) 
plane of ZnO. 
Fig.5. Four candidate structure models of the ZnO/Pd
interface viewed from < 0211 > direction.  #3 is the
most likely structure. 
hown in figure1 and figure 4 fulfill the required condition. 



Chemical structure of the ZnO(0001)/Pd(111) interface was investigated by the image of figure 4 following 
the principle shown in figure 1. ◎ was put at Zn position, a darker spot in the ZnO region of the picture. Small 
dot was put at O position, a brighter spot. Medium size dot was put at Pd position in the bottom half region. As 
a result of this procedure an atomic network was completed (Fig.4). It was shown from the result that ZnO 
was terminated by Zn (not by O) at the interface even though there were four possible geometrical candidates 
as shown in figure 5. Although Zn connects to Pd also in the model #4, geometrical structure does not coincide 
with the present picture. The model #1 and #2 are totally not the case. 
 
Periodic interface structure   
Atomic structure image (projected potential image) in the wider region was inspected in order to see further 
precise structure which was hidden in figure 3 (lattice image). Atomic site was successfully pointed out in 
most area but in some small region the image contrast was not clear. An extent of the un clear diffused region 
was at most several (111) planes of Pd in diameter (encircled by doted line in figure 6). No other characteristic 
feature such as atomic site shift was detectable even in the clear image region. Each atomic plane which was 
either parallel or intersecting to the interface appeared straight. The straight atomic row tells that there is no 
local elastic strain field. A periodicity of the diffused region coincided with that of misfit dislocation. 
 

 

Fig.6. Atomic structure image of the
ZnO/Pd junction. No local strain
(stress) accommodation mechanism is
recognized. 

 
The diffused image in figure 6 is attributed to slight irregular atomic displacement. In this region, ordinary 
local atomic bonding may not be expected.  
 
ZnO( 0211 )/Pd(200) non polar interface  
A stress accommodation mechanism some times presented in the ZnO/Pd interface. In the case that the 
interface was parallel to ( 0111 ) plane of ZnO and (200) plane of Pd, periodic strain localization occurred 
(Fig.7(a)). An atomic arrangement of this structure is more apparent in the magnified image of encircled 
region of figure 7(a), shown in figure 7(b). Several (111) atomic planes of Pd in the vicinity of an extra half 
plane were apparently curved. Atomic rows in between the “dislocation” look straight showing that the 
extended strain over the interface was localized around the extra half plane or the dislocation core. A 
periodicity of the local strain was well coincided with that of misfit dislocation predicted by O-lattice model. 
The misfit dislocation in this case seems to work as a stress accommodation mechanism.  
 
DISCUSSION 
 
To be noted in the present result is that the efficiency of misfit dislocation on the stress accommodation 
depended on the interface orientation in the same materials. The periodic stress localization by the misfit 
dislocation did not occur in the ZnO(0001)/Pd(111) interface (Fig.3,6) but it did in the ZnO( 0111 )/Pd(200) 
 



        Fig.7. In the non polar interface parallel to ( 0111 ) plane of ZnO  
and (200) plane of Pd periodic strain localization occurs. 

 
interface (Fig.7). Geometrical parameter seems to control the interface structure. However, the geometry can 
not be an essential cause in the physical phenomena. Physical contents which is adjoined (is represented) by 
the geometrical parameter must be essential cause. In the present system heterogeneous bonding nature and 
rigidity of ZnO crystal influenced on the result. Although a Pd crystal may show the heterogeneity, a ZnO 
crystal is more clearly orientation dependant. The reason why the strain localization did not occur at the 
dislocation core in the ZnO(0001)/Pd(111) interface is that atomic bonding across the interface was not 
enough to provide strong component force which was parallel to the interface to pull atoms to the dislocation 
core. In the other words, rigidity of the component materials in the direction parallel to the interface 
surmounted the applied component force and kept the original structure. If the atomic bonding across the 
interface is stronger and rigidity of the component material in the direction parallel to the interface is lower the 
misfit dislocation may concentrate the nearby strain to the core region to accommodate the misfit stress as is 
shown in the ZnO( 0111 )/Pd(200) interface. 
 
SAMMARY 
 
Well defined ZnO/Pd interface was produced and atomic structure was investigated employing ARHVTEM in 
order to see the cause of weakness of a metal/ceramic bonding against cyclic heating. The followings were 
shown. A misfit dislocation may not work as a stress accommodation mechanism in the ZnO(0001)/Pd(111) 
interface. However, it should work in the ZnO(1101)/Pd(200) interface. The atomic arrangement across the 
interface was in the order of O-Zn-Pd. It is suggested that the absence of stress (and strain) localization of the 
misfit dislocation may cause fragile interface.       
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ABSTRACT

In the present study, corrosion fatigue crack initiation of a 13Cr stainless steel and a high-strength aluminum
alloy was investigated by using an atomic force microscope (AFM). The corrosion fatigue tests of 13Cr stain-
less steel were conducted in distilled water and dilute sodium chloride solution, and it was found that the
corrosion fatigue life was affected by the environmental condition. The corrosion fatigue life was found to
be shorter for higher concentration of sodium chloride. But no influence of dissolved oxygen was found on
the corrosion fatigue life. From the surface observation by AFM, no corrosion pits were observed in 100 ppm
sodium chloride solution before crack initiation. They formed after crack initiation. In 500 ppm solution, cor-
rosion fatigue cracks were found to be initiated from surface inclusions. In this solution, corrosion pits were
also found at the crack initiation site. The sizes of the pits just after initiation were almost independent of the
concentration of sodium chloride. The growth rates of the pits, however, were higher for higher concentration
of the solution. The fatigue strength of 7075-T651 alloy in 3% NaCl solution was also much lower than that
in air. In this material, corrosion pits were observed prior to crack initiation, and corrosion fatigue cracks were
found to be initiated either at corrosion pits or grain boundaries. For crack initiation at corrosion pits, it was not
nucleated from the deepest point of the pit. The crack initiation site within the pit was also the grain boundary.

KEYWORDS

Corrosion fatigue, Corrosion pit, AFM, Stainless steel, High strength aluminum alloy

INTRODUCTION

Since microscopic observation is the most useful method to clarify the mechanisms of fatigue processes in
materials, the progress of metal fatigue study has strongly depended on the development of new microscopic
observation methods such as optical microscopy (OM), transmission electron microscopy (TEM), and scanning
electron microscopy (SEM). Recently, we obtained a new microscope called as ”Scanning Probe Microscope
(SPM)”, which gives us three-dimensional images of solid surfaces on the atomic scale. It has excellent
capabilities for analyzing the topographic nature of solid surfaces. Recently, many types of the scanning
probe have been developed. Among SPMs, scanning tunneling microscope (STM) and scanning atomic force
microscope (AFM) are now widely employed for the studies of strength of materials because the surface
morphology of materials can be observed with atomic scale resolution with these microscopes. By using STM



and AFM, Komai and others [1] observed the micro-crack initiation and growth behavior in stress corrosion
cracking. Matsuoka and others observed cleavage fracture surface [2]. For fatigue micro-mechanisms, Ishii
and others [3] observed fatigue slip band with STM. They also examined fatigue striation shape with AFM [4].
Yoon and others observed nucleation mechanism of intergranular cracks in high-cycle fatigue [5]. Ohgi and
others observed crack initiation at grain boundary in low-cycle fatigue [6]. Nakai and his co-workers have been
studied on fatigue slip bands, fatigue crack initiation, and the growth behavior of micro-cracks in a structural
steel [7] and α-brass [8]-[12]. Nakai and Oida [13], Saxena and others [14], and Ogawa and Hatanaka [15]
observed the change of surface roughness during fatigue test in air. Nakai and Shimizu studied corrosion pits
and crack initiation mechanisms in corrosion fatigue of a stainless steel [16].

In the present paper, corrosion fatigue tests of 13Cr stainless steel and high strength aluminum alloy were
conducted in sodium chloride solutions, and crack initiation mechanisms were observed by means of optical
microscopy and scanning atomic force microscopy (AFM) to clarify corrosion fatigue crack initiation mecha-
nisms.

EXPERIMENTAL PROCEDURE

The material for the present study was a 13Cr stainless steel, AISI 414, and a high strength aluminum alloy,
7075-T651. The chemical composition, mechanical properties, and heat treatment conditions of the materials
were described elsewhere [16, 17]. Prior to the fatigue tests, the surface of specimens was polished by buffing.
The specimen has a minimum cross section of width 8 mm and thickness 4 mm, and has weak stress concen-
tration with the elastic stress concentration factor 1.03 under plane bending and 1.13 under push-pull loading
[16]. The push-pull loading fatigue tests were carried out in a computer controlled electro-hydraulic fatigue
testing machine, and a computer controlled electro-dynamic vibrator was employed for the plane-bending
fatigue tests. They were operated at a frequency of 30 Hz under fully reversed cyclic loading (R = −1).

Since it was very difficult to identify in advance where fatigue cracks would be nucleated, we took replicas
at the predetermined numbers of fatigue cycles. The replica films were coated by Au before observations.
Although the height of the surface is reversed from the original surface by the replication method, the height
of the replica film in the AFM images was reversed by an image processing technique. An scanning probe
microscope (Seiko Instruments Inc.: SPA-350), which has large stage unit, was employed for the present AFM
observation. The resolution of the microscope is 0.5 nm in the surface direction and 0.1 nm in the vertical
direction. The region for AFM observation was determined by optical microscopy at a magnification of 2000
on a CRT monitor. In the present study, corrosion fatigue tests of the stainless steel were conducted in sodium
chloride aqueous solution from 0 to 500 ppm, and the effect of sodium chloride concentration and dissolved
oxygen on the corrosion fatigue life and crack initiation mechanism were examined. The corrosion fatigue
tests of the aluminum alloy were conducted in 3% sodium chloride aqueous solution.
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Figure 1: S-N curves.



(a) N = 2.40 × 104 cycles (b) N = 3.75 × 104 cycles (c) N = 5.80 × 104 cycles

(d) N = 9.00 × 104 cycles (e) N = 1.00 × 105 cycles (f) N = 1.25 × 106 cycles

Figure 2: AFM images of surfaces in 100 ppm NaCl solution at σa = 430 MPa
(13Cr stainless steel, Scanning area: 35 µm x35 µm).

EXPERIMENTAL RESULTS

S-N Curves
Figure 1 shows the relation between stress amplitude, σa, and number of cycles to failure, Nf . In either
material, the fatigue life in aqueous environments was shorter than that in air. In 13Cr stainless steel, the
fatigue life in 10 ppm NaCl solution was almost the same for that in distilled water. The fatigue life in 100
ppm NaCl solution, however, was shorter than that either in 10 ppm solution or in distilled water. For either
concentration of NaCl solution, the fatigue life in aerated solution was almost the same for that in deaerated
solution. In push-pull loading, some cracks were initiated from the cylindrically curved side surface. Since
it was easier to make observation on the plane surface than on the curved surface when the magnification of
the microscope was high, plane bending fatigue tests were conducted. There were no significant difference in
fatigue life between plane bending and push-pull loading [16].

(a) N = 3.70 × 104 (b) N = 5.25 × 104 (c) N = 3.18 × 105

Figure 3: AFM images of surfaces in 500 ppm NaCl solution at σa = 430 MPa (13Cr stainless steel).



(a) N = 3.70 × 104 (b) N = 5.25 × 104
(c) N = 3.18 × 105

Figure 4: Higher magnification AFM images of surfaces in 500 ppm NaCl solution
(13Cr stainless steel, σa = 430 MPa).

(a) Pit width. (b) Pit depth.

Figure 5: Change of pit sizes (13Cr stainless steel).

13Cr Stainless Steel

Crack initiation process
Either in distilled water and in 10 ppm sodium chloride solution, no cracks were initiated from corrosion pits,
then the mechanism of crack initiation in these solutions may be similar to that in air.

AFM images of the specimen surface fatigued in 100 ppm solution are shown in Fig. 2. In these figures,
extrusions are found in (b)(N = 3.75 × 104), and a crack was initiated from the extrusions in (c)(N =
5.80 × 104). The extrusion is considered to be corrosion product, which was formed at bare metal surface
produced by a crack embryo. A corrosion pit was formed at the crack initiation site in (e)(N = 1.00 × 105).
Then, it is evident from the AFM observation that the fatigue crack was initiated before the corrosion pit
appeared, and a corrosion pit was found to be initiated along the crack, while optical micrographs showed that a
crack was initiated from the corrosion pit. Therefore, it is important to notice that we sometimes misunderstand
the corrosion fatigue crack initiation process from optical microscopy.

Figures 3 and 4 are AFM images of the corrosion fatigue process in 500 ppm sodium chloride solution at σa =
430 MPa, where images in Fig. 4 are higher magnification images of the crack initiation site of the inclusion.
In this case, corrosion pits were appeared almost at the same time of the crack initiation. These results were
consistent with those with optical microscopy. Inclusions also existed in specimens those were fatigued in
10 ppm solution, 100 NaCl solution, and in distilled water, but they were not crack initiation site in these
environments.

Growth behavior of corrosion pits

Depth and surface width of a corrosion pit can be measured from cross-section geometry of the pits, which



(a) N = 9.4 × 105 (b) N = 1.5 × 106 (c) N = 2.5 × 106

Figure 6: AFM images of crack initiation from corrosion pit (High-strength aluminum alloy).
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Figure 8: Change of intrusion depth in fatigue
process (High-strength aluminum alloy).

can be obtained from AFM image. Changes in the size of corrosion pits are plotted as a function of number of
cycles in Fig. 5, where the pit width was measured perpendicular to the loading direction. The stress amplitude
for these observations was 430 MPa, and the concentration of NaCl was either 100 ppm or 500 ppm. Although
the sizes of corrosion pits just after initiation was almost independent of the concentration of NaCl, the growth
rate of the pits was higher for higher concentration of NaCl. The aspect ratio of corrosion pit was almost
independent of the concentration of NaCl, and it gradually increased with number of cycles. The aspect ratio,
however, remained 0.14 at the final stage of corrosion fatigue, then, the stress concentration by these pits were
small.

High Strength Aluminum Alloy
AFM images of the specimen surface fatigue at a stress amplitude of 100 MPa were shown in Fig. 6, where
arrows indicate the loading direction. The corrosion pit was initiated at very early stage of fatigue process, and
it grew with number of cycles, and a crack was initiated from the pit. The crack initiation at N = 1.5 × 106

could be identified clearly from AFM images. The change of the geometry of cross-section is indicated in Fig.
7. No cracks were initiated from the deepest point of the corrosion pit. It was initiated at a grain-boundary
within the pit. As shown in Fig. 8, the growth rate of the intrusion depth at crack initiation site was accelerated
with crack initiation.

Even for a crack whose optical micrographs showed that it was initiated from grain-boundary without corrosion
pit, AFM images sometimes indicated that there was a small pit at the crack initiation site. In that case it was
not clear whether the pit was nucleated after or before crack initiation [18].

CONCLUSIONS



Corrosion fatigue tests of a 13Cr stainless steel and a high strength aluminum alloy were conducted in sodium
chloride solutions, and the initiation processes of cracks and corrosion pits were observed by means of optical
microscopy and scanning atomic-force microscopy. The following results were obtained:

(1) In both materials, the fatigue life in aqueous environment was shorter than that in air. In the stainless
steel, the corrosion fatigue life was shorter for higher concentration of sodium chloride. But no influence of
dissolved oxygen was found on the corrosion fatigue life.

(2) In the stainless steel, no cracks were initiated at corrosion pits when the concentration of sodium chloride
was less tham10 ppm. In 500 ppm solution, cracks were found to be initiated from surface inclusions. In this
solution, corrosion pits were also found at the crack initiation site.

(3) In the aluminum alloy, cracks were initiated either at corrosion pits or grain boundaries. For crack initiation
at corrosion pits, it was not nucleated from the deepest point of the pit. The crack initiation site within the pit
was also the grain boundary.
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ABSTRACT

We show that fixed-length cracks can race along an interface between two dissimilar crystals pressed together
in compression and shear. These cracks permit one crystal to slide over the other as expected from Coulomb’s
laws of friction. We calculate the coefficient of static friction to be 0.2.
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INTRODUCTION

Many problems familiar to continuum mechanics can be studied in a new way when one decides to take
into account explicitly the atomic structure of matter. Reluctance to take this path largely stems from the
assumption that inclusion of atomic detail will create an impenetrable barrier to analytical progress. This
assumption is best reversed by counter–examples. We show here that it is possible to calculate a coefficient of
friction analytically starting with an atomic description of sliding surfaces.

Coulomb’s laws of friction say that the force needed to slide a solid across a surface is proportional to the
force with which the two are pushed together, but independent of the apparent area of contact. This fact is
surprising. One would expect that solids in contact over larger areas would become more difficult to slide.
Conventional explanations are based upon the fact that actual areas of contact are much smaller than apparent.
The contacts are made through populations of asperities that jut out of the two solids, and the actual area of
contact grows in proportion to the force pressing them together[1].

The complexities of this conventional explanation make it difficult to study in great detail. The asperities
are treated in statistical fashion, and their individual properties are usually described phenomenologically. We
therefore think it will be of interest to display a case where frictional sliding can be described analytically, and
with a level of detail reaching down to the atomic scale.

We are able to accomplish this task because our scenario of frictional sliding is different from the conven-
tional one. Our picture of solids in contact does not include asperities. Instead, we imagine two perfect crystals
pressed into one another, weakly adhered across an interface, and ask what horizontal force is necessary for the
first to begin to slide over the second. The answer is that sliding begins when the ratio of shear to compressive
force reaches a critical value. At this point it becomes possible for fixed-length cracks to form at the interface,
and propagate at a substantial fraction of the speed of sound, allowing one surface to slip over the other. Cracks
of this sort were first described by Yoffe[2], for whom they were a mathematical artifact making it possible
to describe dynamic cracks. The condition for these interface cracks to form is completely independent of the



area of contact of the two crystals. Therefore this scenario, like the conventional one, leads to a slipping rule
in accord with Coulomb’s law of friction.

The objection will naturally be raised that this scenario, even if correct, is irrelevant. Real surfaces are
rough, the conventional picture applies, and ours is just a theoretical curiosity. To counter this objection, we
appeal to experiment. Propagating modes similar in character to those appearing in our theories have been
observed in laboratory studies of sliding[3, 4]. The idea that such modes exist plays an important role in
geophysics, where traveling pulses of slip are invoked to explain anomalously low generation of heat during
earthquakes[5, 6, 7, 8, 9, 10, 11, 12]. Thus while we agree that our calculations take place in an idealized
setting, we believe that sliding of this sort can actually occur. We do not know how large is the domain of
validity for our picture of sliding dominated by self-healing Yoffe cracks, as opposed to sliding dominated by
the flow and failure of asperities.

CALCULATIONS

Establishing our idealized picture of friction involves combining information from several different calcula-
tions.

Our first calculation describes the motion of a semi-infinite crack along a weak interface between a crystal
and a rigid substrate. This work is performed analytically for arbitrarily large systems, using Wiener-Hopf
techniques as in Slepyan[13] and Marder[14]. The techniques must be generalized because certain symmetries
present in the earlier problems are now lost. The Wiener-Hopf problem for interface cracks becomes a

�����

system of coupled equations that can be solved using Wilson’s algorithm[15]. The end result is an analytical
description of the motion of every atom, and in particular a relationship between the speed of the semi-infinite
interface crack and loading conditions far away.

Semi-infinite cracks traveling along interfaces exhibit the peculiar phenomenon of stress rotation, first
found by Williams [16], and schematically shown in Figure 1 where the bottom material is assumed rigid for
simplicity.

����� �
	�� ����

Figure 1: Stresses rotate near the tip of a crack separating dissimilar materials. Samples (b) and (c) are each
twice the size of sample (a). The top boundaries in (a) and (b) have similar displacements while the the near-tip
stress fields in (a) and (c) are similar.

Suppose one pulls straight up on a sample containing a crack as in Figure 1(a). Linear elastic theory
predicts a counter-clockwise rotation of stress fields from the boundary to the crack tip. The rotation is log-
arithmically slow, progressing a constant amount as the distance to the tip is halved. The rotation halts just
outside the tip, where the continuum approximation fails. Now consider a similar thought experiment on a
sample twice as high [Figure 1(b)] but with the same inter-atomic separation. Because the continuum approx-
imation is valid over a larger portion of the sample, there is more room for stress rotation, and as a result, the
near-tip stress fields in Figure 1(b) are just a rotated version of those in Figure 1(a).

Because of the existence of stress rotation it is possible to construct cracks whose tip experiences tension
even though far away the system is loaded in compression. In all such cases, the crack opens for some distance
behind the tip, but the compressive loading then forces the upper and lower crack surfaces back into contact.
Thus, these cracks are propagating regions of slip and separation of a sort first envisioned by Yoffe[2].

Our second calculation is an explicit computation of such cracks, using molecular dynamics simulations,
as shown in Figure 2. Unfortunately, the systems that are accessible numerically are small, involving only
millions of atoms. Increasing to billions of atoms is possible, but would not help much, since stress rotation is
logarithmically slow.

Our third calculation is an analytical calculation for moving cracks of finite length on interfaces. We re-
derived and generalized the continuum solution of Dhaliwal, Saxena, Das, and Patra [17, 18] for a Yoffe crack
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Figure 2: Numerical simulation of a self-healing Yoffe crack traveling through a compressed strip.

moving along an interface. In the continuum solution one chooses crack velocity & , crack length ' , the total
distance with which the surfaces slip (*) , and the far field stresses +�,.-/�0 , ,1-0�0�2 . These parameters determine a
unique solution.

The history of self-healing Yoffe interface cracks has been controversial[19, 20, 21, 22, 23], because
the continuum descriptions of these cracks contain disturbing features, including infinite numbers of self-
intersection of opposing crack faces, and energy fluxes to crack tips in unphysical directions. We propose
to resolve these controversies by locating those continuum cracks that are consistent with our atomic-scale
solutions near the tips.
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Figure 3: Shear and tensile stresses that support steadily moving Yoffe cracks. Stresses are normalized by
Young’s modulus � and velocities are normalized by shear wave speed �"� . Integral values of crack length '
and total slip (*) lead to a discrete set of states for each velocity. (a) Solution set for &������[���
� . Points that
appear to form a curve have the same slip (*) but different crack lengths ' . (b) Catalog of 120,000 interface
crack states, for velocities between 50% and 80% of the shear sound speed, in increments of 1%. Notice that
when the ratio of stresses  ¡, /�0�¢ , 0£0 drops below around 0.2 there are no more states.

Thus our final calculation connects microscopic and macroscopic scales. We compute the far-field asymp-
totic stresses of the semi-infinite atomic interface cracks and demand that these stresses match the near-field
asymptotic stresses for the continuum self-healing Yoffe cracks. Only a small fraction of the original con-
tinuum solutions turn out to be consistent with microscopic constraints on near-tip physics. We find that
the original five-dimensional space of continuum solutions is reduced to a space indexed by one continuous
parameter (the velocity) and one countably infinite parameter (crack length and slip).

The set of solutions shown in Figure 3(a) results from setting crack velocity &R�¤�¥�?���"� (where ��� is the shear



wave speed) and exhaustively considering all possible crack lengths ' and slips (*) . In Figure 3(b) we display
all running crack states for velocities below 80% ��� , in increments of 1% ��� . When the ratio of horizontal
shear to compressive shear  ¡, /�0�¢ , 0£0 drops below around 0.2 there are no more states. Thus the condition for
sliding to become possible corresponds to Coulomb’s law of friction, with a coefficient of 0.2.

QUESTIONS

Many questions have still to be addressed. When does this mechanism of friction apply, and when does flow
and fracture of asperities dominate? How do the conditions for initiation of these Yoffe cracks differ from
conditions of propagation? Could such a difference account for a difference between coefficients of static and
kinetic friction? How can effects of temperature and surface roughness be incorporated within this scenario?

This work was supported by the National Science Foundation (DMR-9877044), and by a fellowship from
the Computational and Applied Mathematics program at The University of Texas at Austin.
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ABSTRACT 
 
Isostress molecular dynamics and lattice statics methods have been used to compute theoretical 
responses of metals to various modes of loading at finite strain, with particular attention to elastic 
instabilities at points of bifurcation, as well as to post bifurcation phenomena leading to phase 
change or material failure.  The example of nickel in [100] and [110] loading is presented in 
detail.  Interatomic interactions are expressed both by simple Morse pair potentials and by more 
accurate semi-empirical embedded-atom-method potentials that have been parametrized 
specifically for studies of crystal elasticity at finite strain.  The mechanical responses and failure 
modes are strongly influenced by crystalline symmetries and incipient bifurcations. 
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INTRODUCTION 
 
A number of years ago, Hill [1] observed that "Single crystals free from lattice imperfections are 
used increasingly as microstructural components.  Perfect crystals are capable of elastic strains 
well beyond what can properly be treated as infinitesimal.  Their response to general loading is 
virtually unknown and is doubtless complex…"  In this context, Milstein and Chantasiriwan [2] 
noted that "Atomistic model computations can shed light on these complexities, particularly 
when comprehensive comparisons are made among different metals, crystal structures, and 
loading directions."  Topics of current interest [2-4] include theoretical strength, stability, 
bifurcation, and failure modes at large strain.  Here, we employ both the methods of lattice 
statics (LS), in which stable as well as unstable homogeneous deformation paths are studied, and 
the isostress molecular dynamics (IMD) ansatz Lagrangian of Parrinello and Rahman (P&R) [5], 
in which inhomogeneous bifurcations can occur naturally.  Extensive series of LS [6a] and IMD 
[6b] simulations have been carried out; initial results have appeared elsewhere [2,4].  The LS 



computations employ an embedded-atom method (EAM) [7] that reproduces identically all 
second and third order elastic moduli  and , atomic volume V, and cohesive energy E, and  ijC ijkC
yields good theoretical pressure-volume and phonon-dispersion curves, when compared with 
experiment.  The IMD simulations employ Morse interatomic potentials that were fit to two 
second order elastic moduli and atomic volume [8]; such potentials have been widely used in 
previous LS computations and yield large strain behavior in excellent qualitative agreement with 
more rigorous atomic models and experiment [8,9].  In this paper, we examine the behavior of 
nickel (Ni) under [100] and [110] loading as a particular example. 
 
 
RESULTS AND DISCUSSION 
 
Figure 1 shows the LS and IMD mechanical responses of the Ni Morse model; the LS behavior 
is typical of that previously observed for the complete family of Morse function crystals [8-10], 
as well as for quantum mechanically based pseudopotential models [11]; complete expositions of 
the LS response have appeared elsewhere [8,11]; a cursory description is provided here.  The 
crystal structure on the primary path (solid line) of Fig. 1a (and throughout Figs. 1b-d) is 
tetragonal ( in general), with uniaxial load  (per unit reference area) applied 
parallel to the [100] direction; transverse loads .  Uniaxial stress  
where  is the length of a fiber divided by its length in a reference state; the reference state here 
is the unstressed face centered cubic (fcc) configuration F on the primary path of Fig. 1a.  The 
primary path contains two additional unstressed states, body centered cubic B and a special 
tetragonal configuration T, and two invariant branch points [8,12], at which the tetragonal crystal 
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     Figure 1: Mechanical response of Morse Ni in (a) [100] and [110] and (b)-(d) [100] loading  



can bifurcate homogeneously, under strict uniaxial load, from the primary tetragonal path to a 
secondary orthorhombic path (dashed lines).  Under such branching, second order              
moduli relations identify the branch points; relations with higher  order  moduli  characterize  the 
branching, as is discussed below, in connection with the EAM results.  The primary path may be 
considered as face centered (fc) or body centered (bc) tetragonal.  With the moduli reckoned to 
the fc axes (as in Figs. 1 ), the left hand (lh) and right hand (rh) branch points occur 
respectively, at ; conversely, if the moduli were reckoned to the bc 
axes, the lh and rh branch points, respectively, would coincide with C C  
[8,11].  At a " C " eigenstate, to first order, the homogeneous eigendeformation is 

, where  indicates incremental change.  The 
crystal thus becomes body centered orthorhombic (bco) on the lh secondary branch and face 
centered orthorhombic (fco) on the rh branch; the lh and rh secondary paths also contain, 
respectively, the unstressed F and B structures, although oriented with the load parallel to the 
[110] directions of these cubic structures.  Thus, the respective secondary paths also represent 
primary paths of [110] uniaxial loading of the F and B crystals.  The branch paths and 
symmetries have profound effects on crystal elasticity [8,9,11]; e.g., note the considerably 
smaller value of the (local) maximum in s  in [110] loading than in [100] loading of fcc Ni, 
owing to the incipient bifurcation at the lh branch point.   
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We turn next to the topic of stability.  In the Morse model of Ni, states T and B are elastically 
unstable; the stable ranges in Fig. 1a are thus on the tetragonal and the bc  orthorhombic paths, in 
the "neighborhoods" of states F.  The use of elastic moduli in assessing stability at finite strain 
has been discussed elsewhere [1,8,12]; here we simply note that, as criteria for stability on the 
tetragonal path, " C " locates an invariant eigenstate (its location is independent of the  
choice of geometric parameters  in the definitions C E ) [12], while 
" " occurs where the conjugate variable p  in the relationship 

 is stationary, and thus depends on the choice of q  [12].  The  represented in 
Figs. 1c,d are the Green moduli; and thus, in these figures, D=0 at the minimum value of the 
Green conjugate stress, which varies as . 
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Figures 1b-d compare the LS and IMD mechanical responses of Ni under [100] tensile ( ) 
and compressive ( ) loading.  In the IMD simulations, the Ni crystal was first equilibrated 
in a tetragonal configuration at constant temperature T and constant uniaxial [100] stress.  Either 
this equilibrated state remained stable indefinitely, or the crystal subsequently lost stability; both 
isothermal and adiabatic transformations were studied.  The equations of motion in the IMD 
simulations were integrated using a fifth-order Gear predictor-corrector algorithm [13].  
Isothermal conditions were maintained by rescaling the atomic velocities at each time step.  The 
dimensionless fictitious supercell mass W in the P&R Lagrangian was taken to be .  The 
time step size  was typically about 10

1 1l >

20

1 1l <

W =
tD -15 s; numerical accuracy and stability were tested for 

each thermodynamic state examined in our simulations.  The initial configuration was an fcc 
crystal represented by a cubic supercell.  For all of the IMD results reported in this paper, the 
simulation supercell contained 2048 atoms, periodic boundary conditions were employed, and 
the Morse potential cut-off distance was 5.6294 Å.  Systematic convergence tests confirmed that 
this supercell size does not affect the mechanistic details of the transition under consideration.  
The , at finite temperature, were computed from canonical fluctuation formulae [14]. rsC
 
States (A) and (B) in Figs. 1b-d indicate where stability was first lost in IMD simulations at 1 
and 300 K, respectively.  At 1 K, the crystal becomes unstable very near the states n 
tension and  in compression (states (A)).  At elevated temperature, the instabilities occur 

22 23C C=  i
D 0=



earlier (states (B)), well before ; thus thermal activation "overcomes" the 
elastic strain energy barrier to bring about transformation. 

22 23C C and D= = 0

   
We concern ourselves next with the tensile instability, which leads to fracture.  (The compressive 
instability, which results in transformation to a hexagonal close packed (hcp) structure in 
adiabatic simulations, or to faulted  hcp in isothermal simulations, will be discussed elsewhere 
[6b].)  Previously, P&R [5] examined the behavior of the Morse Ni model in an adiabatic IMD 
simulation at and also found failure in the neighborhood of the C  state that was 
identified earlier by Milstein and Farber [10].  Here, we delve deeper into the failure 
phenomenon by examining (i) the influence of temperature and stress upon the elastic moduli 
and points of instability and (ii) the details of atomic movements during isothermal IMD 
simulations of failure. 
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                       Figure 2: Determination of critical stress and its dependence on temperature 

 
Figure 2a illustrates, for selected values of T, the stress dependence of the time to required for the 
onset of instability adiabatically, with T (of the equilibrated state) as a parameter; the asymptotic 
limits of stress at which the instabilities are not observed after "infinitely" long times are referred 
to as the critical stresses s .  Values of s  are indicated by solid triangles in Fig. 2a, and a 
complete set of  values is plotted vs T in Fig. 2b; s  is seen to decrease continuously and 
monotonically with T, vanishing at the theoretical melting point of about 2000 K.   

c c
cs c

 
The mechanism of bifurcation is seen in Figs 3a-j, which show the computer generated evolution 
of the atomic configurations during an isothermal IMD simulation at 1 K and 17.05 GPa.  This 
stress is slightly greater than the critical stress of 16.5 GPa at 1 K.  The load is [100] uniaxial, 
and thus is perpendicular to the plane of the paper in Figs. 3a-d, and is vertical and parallel to the 
plane of the paper (i.e. the (110)

2a 0<

 plane) in Figs. e-j. At , the crystal is face centered 
tetragonal, with lattice parameters ; the predicted bifurcation, d = , 
is seen to have initiated in frame b, after about 10 ps.  However, the bifurcation does not occur 
homogeneously throughout the crystal, but occurs in alternating domains that bifurcate 
withd .  In this stage, the atoms remain within their (100) 
planes, which in themselves remain fairly flat and parallel to each other, as seen in frame f.  As 
the instability proceeds, however, the atoms tend to "shear" out of the (100) planes, which, in 
turn, leads to void formation and failure.  The initial bifurcation is thus a precursor to the 
ultimate failure.  The shearing is seen predominantly in frame h.  Supercells containing as many 
as 16,384 atoms were tested and found to exhibit similar bifurcation and failure responses.
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Figure 3: Evolution of atomic configurations during bifurcation and failure in an isothermal IMD 
                           simulation of Ni under 17.05 GPa [100] tensile stress at T=1 K           
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              Figure 4: Mechanical response of the EAM model of Ni in [100] and [110] loading 
 
Finally, we examine the LS behavior of the EAM model of Ni, and compare it to that of the 
Morse model.  The EAM model is generally considered as more rigorous in that is has more 
substantial bases in theory.  Also, its linear and non-linear elastic properties in the unstressed fcc 
state are identically in accord with experiment.  As seen from Figs. 4, there is general agreement 
between the Morse and EAM models, in that both models: (i) exhibit bifurcations at 

, leading to orthorhombic structures under uniaxial stress, (ii) contain the 
unstressed F and T states on the bc orthorhombic (lh) branch, and (iii) have the unstressed B and 
T configurations on the fc orthorhombic (rh) branch.  Also, as in the case of the Morse model, in 
the EAM model, the crystal structures (and lattice parameters) in the states F, B, and T on the 
primary path are identical to the corresponding structures in states F, B, and T on the 
orthorhombic path, but differently oriented with respect to the loading direction; i.e., the loading 
direction is parallel to the [110] axes of the cubic crystals F and B that reside on the secondary 
paths.   
 
There is also reasonable quantitative agreement, i.e. s  is 17 and 21 Mpa, respectively, in the 
Morse and EAM models at the LS tensile instability (i.e. at ); the respective 
maximum stresses  on the primary path are 26 and 39 MPa, so s  is 0.65 in the Morse 



model and 0.55 in the EAM model.  One noticeable difference, however, is the slope d /  of 
the secondary path at the rh branch point, which is positive in the EAM model but negative in the 
Morse model; such branching, with positive slope, has not heretofore been observed in prior 
computations.  Whether or not the slope of the fco branch path influences the IMD bifurcation 
response is yet to be determined.  The slope on the secondary path at  is given by 
[15] 
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where, .  The term in brackets [ ] is the slope on the primary path at the 
branch point, which must be positive if branching terminates stability; thus the expression in the 
brackets { }, which contains the higher order moduli, must be less than c c or 
positive slope on the secondary path at c .  We have used lattice summations to calculate 
the moduli in both the Morse and EAM models, to fourth order, and verified Eqn. 1 by 
comparison with the slope d , computed directly on the branch path at  

2
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CONCLUSIONS 
 
Reasonably good agreement is found between the results of Morse model and (more 
sophisticated) EAM model lattice statics simulations of uniaxial loading of face centered cubic 
Ni single crystals.  For both models, under [100] uniaxial loading, a branch point is found in 
tension at the invariant “C22 = C23” eigenstate. The associated homogeneous eigendeformation 
leads to branching from the tetragonal crystal structure to body centered orthorhombic, via the 
bifurcation = 0, = , with the load 1aδ 2aδ 3a−δ l 1 remaining uniaxial, i.e., δ =  
(the 1-direction is coincident with the [100] axis, the transverse 2- and 3-directions are [010] and 
[001]).  

0=

 
In isostress molecular dynamics simulations of [100] loading of Morse model Ni crystals, it is 
also found that stability in tension is lost as elastic moduli C22 and C23 approach equality.  
However, the “predicted bifurcation” occurs locally, rather than uniformly; as shown by the 
computer generated evolution of the atomic configurations in the isothermal, isostress molecular 
dynamics simulations, during bifurcation and subsequent fracture.  That is, the crystal’s lattice 
parameters bifurcate inhomogeneously, with the 1aδ =  and, in alternating domains, 

 and .  The bifurcation occurs as a precurser to failure.  At 
elevated temperatures, thermal activation causes lattice instability prior to the convergence of 
C

2 3a aδ = −δ > 0 02 3a aδ = −δ <

22 and C23. The critical stress for failure s  is found to decrease continuously and 
monotonically with temperature, vanishing at the theoretical melting point of about 2000 K. 
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ABSTRACT 
 
When a uniaxial tensile test is performed to investigate tension softening behavior of concrete, a 
secondary flexure occurs inevitably because of the heterogeneous nature of concrete, even in the case of 
no eccentricity in the applied load.  The secondary flexure causes a significant reduction in the 
observed peak load, and then makes the estimated observed tensile strength unreliable.  Therefore, the 
prevention of the flexure occurrence is essential to obtain reliable experimental results.  In order to 
meet this requirement, the authors have developed a unique test procedure, which consists of a manually 
operated adjusting gear system.  Although the system has provided successful and informative results, 
it also has an intrinsic drawback, i.e. human related malfunction.  The main objective of this study is to 
establish and to qualify automation for the prevention of the secondary flexure, using 
computer-controlled DC motors instead of manual operations.  Consequently, the application of the 
automatic system on the uniaxial tensile test not only provides better test results but also reduces long 
time efforts. 
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Uniaxial tension, tension softening, secondary flexure, automatic control, test method, concrete 
 
 
INTRODUCTION 
 
The information of tension softening process is essential to analyze fracture behavior and to estimate 
concrete properties.  One of the best ways to investigate the tension softening process is testing under 
uniaxial tensile loading because of simultaneous investigation of tensile strength and softening curves 
from single specimen.  Additional tests or calculations, for instance the inverse analysis, are not 
required for the uniaxial tensile test.  The authors had developed and reported a unique test procedure 
of uniaxial tensile test for concrete [1].  This test procedure provides solutions for four common 
problems of the test, such as unstable fracture, secondary flexure, multiple cracks and overlapping 
cracks.  First, the problem of unstable fracture can be avoided by employing a deformation-controlled 
loading process with an appropriate measuring length.  Second, a secondary flexure caused by 



heterogeneous nature of concrete as well as unpredicted flexures due to load eccentricity are eliminated 
by equalizing reciprocally opposite lateral elongations.  For this purpose, a specifically designed 
manual-operated adjusting gear system was developed.  Next, multiple cracks are prevented by the  
application of primary notches on the middle of two identical laterals of a specimen.  At last, 
overlapping cracks are avoided by adopting additional notches, called a guide notch, on the middle of 
other sides (cast and bottom laterals). 
 
The prevention of the secondary flexure is the most significant among these four problems because the 
flexure, if it occurs, reduces the measured peak load up to 20%.  Nevertheless, many researchers have 
paid little attention on the importance of the effect of the secondary flexure [2,3] or have sometimes 
failed in the prevention of it mainly because of insufficient experimental apparatus [4,5]. Thus, the 
main issue of this study is to establish the test procedure to prevent the secondary flexure in uniaxial 
tensile test of concrete. 
 
 
MANUALLY OPERATED ADJUSTING GEAR SYSTEM 
 
A secondary flexure is denoted as the induced flexure (namely lateral flexing) originated fundamentally 
in the heterogeneous material aspect of concrete.  Even when there is no eccentricity in the applied 
load, the secondary flexure will occur.  General causes of the secondary flexure are the effects of local 
softening at the weakest zone of a specimen and of non-symmetrical arrest of propagating cracks by 
aggregates.  The secondary flexure produces strain gradient, making one half portion softened but the 
opposite half contracted relatively within the cracked section.  The cohesive stresses in the softened 
zone decrease a little to compare with tensile strength, while the stresses at the opposite side are reduced 
much due to superposition of compressive stress by the flexure, as illustrated in Figure 1.  Therefore, 
the peak load, which is the resultant force of these tensile stresses along the cross section, decreases 
considerably.  
 
In order to control the secondary flexure, a specifically designed adjusting gear system was attached as 
illustrated in Figure 2.  When a certain side of a testing specimen is elongated more than the opposite 
side, the longer side is contracted by manual turns of the adjusting gear on that side until balanc ing 
elongations, while the opposite side gear should be released completely.  If the elongation of a certain 
side becomes longer than the opposite when the opposite side gear have already been tightened, the 
tightened side should be released until the balance.  Without this release, the deformation of a 
specimen is too restricted to express a real softening phenomenon.  When the measuring length of 
deformation is 70 mm and the maximum limit of the deformation is 0.35 mm, the four side 
deformations are monitored by a digital strain meter with the resolving power of 1 µε.  For the manual 
operation, it is inevitably required to use a human labor for continuous monitoring and controlling. 
 
 
 
 
 
 
 
 
 
 
 
 
 
               Figure 1: An illustrative explanation of a secondary flexure 
 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2: Apparatus to prevent secondary flexure 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
           (a) average deformation                  (b) individual deformation of ch-2 and ch-4 
 

   Figure 3: Load-deformation curves by manual control 
 
 
PROBLEM OF MANUAL OPERATION 
 
Although the test procedure, mentioned in the previous section, shows great improvements of the 
uniaxial tensile test and provides much reliable information of tensile behavior of concrete, it has an 
inevitable weakness– employment of human operators as a kind of a controller.  Outputs could 
sometimes be different even if ideally identical concrete specimens were tested because the controlling 
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patterns of human operators would be varied with respect to operator’s skill and character, or date and  
time of testing.  Fig. 3 shows the worst test result due to the mis take in the manual control.  The 
radical drop at around δ=0.04 mm on the load-deformation (P-δ) curve in 3 (a) and corresponding 
contorted individual P-δ curves in 3 (b) might not be caused by the testing material itself but by the 
human mistake in controlling the adjusting gear.  Thus, in order to establish fundamental and scientific 
basis for the test procedure, the kind of any uncontrolled and unpredicted factors should be excluded, 
and thus the development of an automatic adjusting gear system is required. 
 
 
AUTOMATIC ADJUSTING GEAR SYSTEM 
 
In order to improve manual operation, an automatic control system was developed.  One DC 6V and 
60 rpm motor controlled by a computer program is attached to each adjusting gear.  The schematic 
diagram and photograph of the automatic system are shown in Figure 4 and 5, respectively.  Figure 4 
 
 
 
 
 
 
 
 
 
 

Figure 4: Controlling and recording system 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5: Experimental set-up 



and 5 show upper and lower grips of loading machine, a prismatic specimen with notches, 
extensometers crossing the notches, load-cells connecting to rods and the adjusting gear system with 
motors.  The only difference between the manual and the automatic system is the type of the adjusting 
gear controller in the Figure 5.  The controller was human labor for the manual system, while that was 
a set of motors (See Figure 5) and a computer system.  Both four side strains of the specimen and four  
strains of steel rods in the gear system are reflected for the control.  The DC motor employed rotates 
clockwise or counterclockwise without speed variations.  The computer program that controls the 
rotation of motors was written in the BASIC language, and the time duration of one cycle is 0.04 second.  
The algorithm of the computer program is shown in Figure 6.  The motors begin to round when the 
deformation difference (Dif) exceeds a threshold (D), and an adjusting gear is judged whether it is  
 
 

 
Figure 6: Flow-chart of controlling program 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
                 (a) for average                          (b) for ch-2 and ch-4 
 

   Figure 7: Load-deformation curves by automatic control 
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tightened or not by the comparison with the rod strain and other threshold (3D).  The algorithm of the 
motor control consists of one turn and several time-unit-rests and the rest time is inversely proportional 
to the level of deformation difference.  The rest is indispensable because of the delay in the response of 
the concrete specimen to the operation, especially at the load descending branch after peak load. 
 
 
RESULTS AND DISCUSSIONS 
 
Figure 7 are examples of P- δ curves obtained by the automatic control system.  7 (a) shows the 
relation with respect to the average deformation of four laterals, while 7 (b) to the individual 
deformation of ch-2 and 4.  It is shown that the smooth and better curves are obtained by the automatic 
system in comparison with those obtained by the manual adjusting system.  Both curves in 7 (b) are 
coincide all over the range.  Thus, the automatic adjusting gear system enables to provide more 
reliable test results than manual operation. 
 
 
CONCLUSIONS 
 
An automatic adjusting gear system, which consists of four DC motors and a computer program, to 
control the secondary flexure in uniaxial tensile test of concrete is developed.  The system shows a 
great improvement in controlling the secondary flexure and observing the tension softening behavior in 
comparison with the manual-operated system.  Therefore, the automatic system provides an optimistic 
future in the field of the uniaxial tensile testing in concrete.  
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ABSTRACT

A nonlinear fracture mechanics model is formulated for analysis of mode I delamination of orthotropic
double cantilever beam specimens in the presence of large scale bridging conditions. The model accounts for
the presence of regions of contact along the wake of the crack, which may form due to the action of the
bridging mechanisms. The problem is solved using a nonlinear integral equation approach in terms of stress
intensity factors at the crack tip. An approximate weight function is proposed and validated numerically for a
pair of concentrated forces acting on the surfaces of the delamination. The model is applied to investigate the
influence of the orthotropy of the material on the fracture behavior and the validity of approximated solutions
based on beam theory.

KEYWORDS: Nonlinear fracture mechanics, weight functions, delamination, strengthening mechanisms,
anisotropic material, large scale bridging.

INTRODUCTION

Mode I and mixed mode delamination in large scale bridging conditions, such as those created by through
thickness reinforcement in composite laminates, shows unusual phenomena of crack face closure, crack
arrest and crack propagation with crack face contact, which have no precedent in the delamination of
conventional tape laminates [1,2]. In [3] the authors considered a typical mixed mode geometry, the Mixed
Mode Bending specimen proposed by Crews and Reeder, and explained these phenomena by means of a
simple analytical model based on Timoshenko beam theory. The model treats the delaminated arms of the
specimen as beams on an elastic, generally nonlinear, foundation of Winkler type with the constitutive laws
of the springs given by the bridging law, which characterizes the bridging mechanism. The crack closure
phenomenon is a manifestation of the oscillations of the function representing the deflection of the beams in
the wake of the crack. The wavelength of the function, λ, sets the characteristic length scale of the problem,
which in the case of linear bridging mechanisms is given approximately by λ/4 = π/2 4

3d /4 βk , with β3 the
modulus of the foundation and kd the flexural stiffness of the beam cross section. Once the limit
configuration for crack tip closure is approached, the fracture response of the specimen will depend on the
geometry and the loading conditions. In the case of a specimen symmetric about its midplane and in the
absence of mode II loading, the crack will stop and the specimen will break by mechanisms other then
delamination. In the presence of mode II loading or in asymmetric specimens, the crack will continue to
propagate and the propagation will be opposed not only by the bridging mechanism but also by friction
acting in the regions of contact.



The model proposed in [3] explains qualitatively all the problems associated with mixed mode large scale
bridging delamination. However, the model makes strong assumptions which could affect the solutions
quantitatively, namely it schematizes the specimen as a one-dimensional structure, it neglects the influence
of the elastic material in front of the crack (built-in ends assumption) and it deals only approximately with
regions of contact between the delaminated faces and the effect these regions may have on crack propagation
driven by mode II loading.

In this paper a nonlinear fracture mechanics model is formulated for analysis of delamination crack growth
which removes the above mentioned assumptions, assumes a two-dimensional deformation field and
accounts for the orthotropy of the material. The problem is solved through an integral equation approach in
terms of stress intensity factors at the crack tip. Since the crack closure phenomenon is controlled by the
mode I response of the laminate, focus in this initial work is restricted to this problem.

FRACTURE PARAMETERS IN ORTHOTROPIC DOUBLE CANTILEVER BEAMS

Stress intensity factors
An exact solution for the stress intensity factor KIP due to a pair of concentrated forces P applied per unit
width onto the crack faces of a double cantilever beam at a distance d from the crack tip has been obtained
by Foote and Buchwald [4]. They solved the problem by applying the Wiener-Hopf technique to an isotropic,
arbitrarily loaded infinite strip and representing the concentrated loads in terms of the Dirac delta function. A
simple formula approximating the exact solution, which has an accuracy of 1.1% and can be applied to
double cantilever beams with an uncracked ligament c > 2h, is also given in [4]:
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where h is the half thickness of the specimen. For d/h ≥ 0.3 the exact KIP is well represented (error always
lower than 4%) by Gross and Srawley’s boundary collocation solution, approximately given by the first
bracket term on the right hand side. The same limit solution is given by the modified beam theory of
Kanninen, which removes the assumption of built-in ends to account for the elasticity of the uncracked
ligament. For very large d/h, Eq. (1) approaches the elementary beam theory solution of a double cantilever
beam with built-in ends, KIh0.5/P = 12 d/h [3]. For very small d/h the dimensionless KIP of Eq. (1)
approaches Irwin’s solution for a semi-infinite crack in an infinite sheet, KIh0.5/P = (2/π h/d)0.5. A lower limit
for the normalized crack length a/h of the double cantilever beam specimen must be set for Eq. (1) to be
valid for all d/h, 0 < d/h  ≤ a/h. Irwin’s solution for very small d/h is correct only if a >> d, and should be
replaced by Tada’s solution [5] for a finite crack of length a in a semi-infinite sheet when a/h also becomes
very small. A conservative lower limit for a/h can be set as a/h ≥ 0.3, so that when d/h = a/h = 0.3, the beam
theory solution is already approached.

The stress intensity factor due to a pair of concentrated forces Pi applied on the crack faces of an orthotropic
double cantilever beam at the coordinate x1 = x1i (Fig. 1.a) can be deduced from the expression of the strain
energy release rate GI obtained by Suo et al. [6] making use of the orthotropic relationship KIi = '

1I EG .
Plane stress conditions are assumed along with a principally orthotropic material with

'
1E = ρλ +1/)2( 4/1

31EE , λ = E3/E1 and 31133131 2G/ ννρ −= EE  the orthotropic ratios [6], E1 and E3

the Young’s moduli in the x1 and x3 directions, G13 the shear modulus and 3113  and νν  Poisson’s ratios. The
dimensionless stress intensity factor is then given by:
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and n = 2/)1( ρ+ .  For an isotropic material (λ = ρ = 1), YI(ρ) = 0.677 and Eq. (2) coincides with Gross
and Srawley’s solution. The last term on the right hand side of eq. (2) describes the influence of the elasticity
of the uncracked ligament ahead of the crack tip and it vanishes for large (a-x1i)/h, when the solution for an
orthortropic beam with built-in ends is recovered. Equation (2), has 0.5% accuracy for all (a-x1i)/h ≥ 2 λ-1/4

and 0 ≤ ρ ≤ 4.

An exact solution for the stress intensity factor KIi when (a-x1i)/h < 2λ-1/4 is not available in the literature.
However, the method of orthotropy rescaling, the examination of Eqs. (1) and (2) and the observation that
Irwin’s solution for very small d/h = (a- x1i)/h maintains its validity also in orthotropic sheets [7], suggest the
following formula [10]:
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which has the right asymptotic behaviors for large and small (a-x1i)/h. The validity of Eq. (4) for intermediate
values of (a-x1i)/h has been checked through finite element calculations for a range of λ and ρ typical of
composite laminates, 0.025 ≤ λ ≤ 1  and 0 ≤ ρ ≤ 5, and the relative error has been found to be always lower
than 2%. The lower limit for the normalized crack length for which Eq. (4) is valid can be defined by
referring to the limit for an isotropic material and exploiting orthotropic rescaling of lengths [6], which yields
a/h ≥ 0.3 λ-1/4 with a 4% error in the case ρ = 1. When a reason exists for studying very small cracks as well
as non-small cracks in numerical work, Eq. (4) can be combined very easily with Tada’s result for the
appropriate domains of a/h.

Figure 1: Schematic of the DCB specimen under different loading conditions.

Crack opening displacement
The crack opening displacement u3 at the coordinate x1i due to a pair of opening forces Pj acting at x1j, Fig. 1,
is obtained from the localized compliance λij =  u3(x1i) / Pj which can be defined through an energy balance
or Castigliano’s theorem as shown in [8] for an isotropic body. The localized compliance is given by:
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where '
1E  is the orthotropic constant defined above, Pi is a pair of fictitious forces acting at x1i, and KIi and

KIj are the stress intensity factors at the crack tip due to Pi and Pj, respectively, given by Eq. (4), [10].

ORTHOTROPIC DOUBLE CANTILEVER BEAM WITH LARGE SCALE BRIDGING

The stress intensity factor at the crack tip of a double cantilever beam with tractions p acting along the
bridged portion of the crack as shown in Fig. 1.b is given by:
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where a0 is the unbridged length of the crack, KIP is the stress intensity factor due to the external loads Pi
acting at x1i = 0, and KIp is the stress intensity factor due to opening tractions p; KIi/Pi represents the Green’s
function of the problem and obtained from Eq. (4). The tractions p depend on the crack displacement and are
a priori unknown in Eq. (6).  If u3(x1i) > 0, then p[u3(x1i)] = p3[u3(x1i)] is the closing traction developed by the
bridging mechanisms. The value of p3 as a function of u3 is defined through the bridging traction law, p3(u3),
which is one of the data of the model. If u3(x1i) = 0, then p[u3(x1i)] = - pc[(x1i)] is the opening traction
depicting the effect of the contact pressure. The contact pressure and the size of the regions of contact are
unknown a priori and can be determined through a compatibility condition for the crack opening
displacement.

The crack opening displacement u3(x1i) is obtained by applying the superposition principle and Eq. (6):
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Note that the dimensionless KI’s appearing in Eq. (8) and in the equations that follow depend also on the
orthotropic ratios, λ and ρ, as shown in Eq. (4).

Crack propagation in large scale bridging
At the onset of crack propagation the crack tip stress intensity factor of Eq. (6) is equal to the intrinsic
fracture toughness, KI = KIc, and the dimensionless critical load for crack propagation takes the form:
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where p30 is a normalizing value of the crack face tractions, p3, given for instance by their maximum value.
The dimensionless number on the right hand side of Eq. (9), Ic

5.0
30 / Khp , is a measure of the brittleness of

the structure. Recalling the expression for '
1E  and that KIc = '

1IcEG , Eq. (9) can be modified to allow direct
comparison between isotropic and othotropic cases:
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The normalized crack opening displacement at the generic coordinate x1i is obtained substituting P = Pcr into
Eq. (8):
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The statically indeterminate problem defined by the nonlinear integral equations (9) and (11) is solved for
general bridging laws, p3(u3), through a discretization. A self-consistent solution for the crack profile is
obtained iteratively through a numerical procedure following the approach of [8,9].

Dugdale type bridging law, p3 = p30

In the special case of bridging mechanisms described by a Dugdale type bridging law, p3 = p30, Eqs. (9) and
(11) simplify and Eq. (9) alone gives the dimensionless critical load for crack propagation.  Beam theory
predicts the absence of regions of contact for this case and this qualitative characteristic is confirmed by the
more accurate calculations of the integral equation approach.  Setting aside for this paper the interesting
question of the nature of contact regions when they do occur (e.g., for linear bridging laws), a detailed
assessment is made here of the limitations of elementary beam theory for predicting crack propagation in the
presence of large scale bridging.

Figures 2.a, 2.b and 2.c show dimensionless diagrams of the critical load for crack propagation as a function
of the normalized crack length in a double cantilever beam specimen with a0 = 0. Three different values of p3
are considered, as marked. The curves named (a), (b) and (c) in each diagram describe the response of an
isotropic material, an orthotropic material with λ = 0.1 and ρ = 3 (e.g. a graphite epoxy laminate) and an
orthotropic material with λ = 0.05 and ρ = 5 (e.g. a boron-epoxy laminate), respectively. The dashed curves
depict the elementary beam theory solution (built-in ends, negligible shear deformations). The dotted curve
in Fig. 2b, obtained using Timoshenko beam theory for an isotropic material and marked as γ≠0, highlights
the influence of the shear deformations.

Figure 2: Dimensionless critical load versus normalized crack length in orthotropic DCB specimens. (a) No
bridging. (b) Bridging tractions p3 = 0.1 hE /1IcG . (c) Bridging tractions p3 = 0.3 hE /1IcG .

Figure 2.a confirms the validity of elementary beam theory in unreinforced specimens when a/h is
sufficiently high. The anisotropy of the material affects the response only for relatively small values of a/h.
The influence of the anisotropy of the material on the structural response apparently seems to be more
marked in members reinforced through the thickness (Figs. 2.b and 2.c). In this case, two different regimes of
behavior are delineated by a transition value of a/h = 1/(1.73p30 hE /1IcG )0.5, corresponding to the point
where all curves cross each other. If a/h is smaller than the transition value, the anisotropy of the material
strongly affects the response and the elementary beam theory solution does not describe the actual behavior
even qualitatively. For a/h larger than the transition value, all curves tend to become parallel with a common
slope given by 1/2 p30 hE /1IcG  and the deviation between the correct solution and the elementary beam



theory solution becomes independent of the crack length and given by 1/2YI(ρ)λ-1/4 p30 hE /1IcG .  However,
the fractional error is YI(ρ)λ-1/4/(a/h), which is independent of the intrinsic fracture toughness of the
laminate, GIc, and the magnitude of the bridging tractions and coincides with the analogous fractional error of
the case with no bridging.  It depends only the crack length and the degree of anisotropy. This error is due to
the assumption of neglecting the influence of the elastic material ahead of the crack tip and could be removed
by using a modified beam theory (Kanninen’s, Williams’s).

CONCLUSIONS

An approximate weight function has been proposed and validated numerically for a pair of point forces
acting on the surfaces of a delamination crack in a possibly thin orthotropic body. The weight function
allows mode I large scale bridging problems in beams and plates to be formulated as integral equations
without the limitations imposed on accuracy by beam theory approximations.  In particular, the crack tip
singularity will be properly represented.  The integral equations can be solved using well-known,
computationally efficient and accurate methods. The weight function strongly depends on the anisotropy
ratio. This is a feature of the plate or beam geometry.

The first application of the new weight function to the problem of a large zone of uniform bridging tractions
(the Dugdale bridging model) shows the ranges of crack lengths over which beam theories of different order
succeed and fail.  The presence of large scale bridging is found not to significantly increase the sensitivity of
the solutions to the degree of anisotropy with respect to the case with no bridging.

While elementary beam theory will always be correct for sufficiently large crack lengths, a/h, there is a
regime of small crack lengths, a/h <~  2, where rigorous solutions are required, e.g. based on integral equation
methods. Moreover, there is a regime of practical interest for laboratory specimens, 2 <~  a/h <~  10, where
elementary beam theory yields only qualitatively correct trends and solutions based on integral equation
methods or on modified beam theory are required for quantitative accuracy.
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ABSTRACT 
 
Oily wastes are usual byproducts generated by oil industry. New and stricter environmental regulations had 
established that a permanent and sound solution must be found to these residues storage. Bentonite powder 
has been used to microencapsulate oily residues. However this new material containing residues cannot be 
buried or just piled up. The new material was found to be useful for the ceramic industry, therefore 
mechanical properties must be known. Several 10x10 mm cylindrical pellets containing residues amounts 
from zero up to 20% of the mixture were manufactured by forming pressure around 25 MPa and fired at 950 
°C. Due to its geometry the only test that can be performed in order to determine strength and fracture limits 
is Brazilian Disk, which yields tensile strength by means of diametrical compression. A total of 25 pellets 
are tested and ultimate compressive strength and linear shrinkage for the different compositions presented. 
The effects of different contamination levels over fracture properties are discussed. A brief discussion on the 
uncertainty measurement is also presented.  
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INTRODUCTION 
 
Campos dos Goytacazes County, located at State of Rio de Janeiro (Brazil), holds extensive clay quarries 
presenting kaolinite as its main clay mineral [1]. Local ceramic plants exploit these clays as raw material for 
producing mostly hollow construction bricks and roofing tiles. On the other hand, Campos County has the 
largest Brazilian oil basin, which is responsible for more than 75% of the national oil production. However, 
during the process of oil extraction, transportation and storage, great amounts of toxic wastes are generated, 
among them an oily sludge residue. This waste in particular is sealed in tanks and brought to land to be 
mixed with an encapsulation substance, organophillic bentonite. Yet less harmful, the resulting material 
cannot be simply disposed in landfills or just pilled up. As a consequence, efforts have been made to find a 
permanent solution for the management of the referred waste, without causing major risks to the 
environment. 
The Advanced Materials Lab, from Northern Fluminense State University (UENF) has tried to make the oil 
sludge waste inert by adding it in clayey ceramic pastes and firing it. Some of the most environmentally 
aggressive components are expelled during fire process. It is expected that the vitreous phase formed during 
the firing process completely inactivates the residue, and permits the use of this mixture as raw material for 



the local ceramic industry, which will be paid by local oil companies to handle oily wastes. One possible use 
for this bentonite-oily wastes-clay mixture is as structural clay products. For this purpose, material is 
submitted to compressive pressures to take shape and density and fired afterwards. This work simulates 
manufacturing conditions by producing pellets under identical conditions. Important physical properties as 
ultimate compressive strength and linear shrinkage are determined to verify if the presented mixture is useful 
and the variations brought by means of different percentages of oily slurry addition.  
Testing for mechanical properties present a challenge due to the pellet geometry. The height to diameter 
ratio is very close to one, eliminating the possibility of compressive testing use. The use of the Brazilian 
Disk [2,3] test solved the problem of consistent geometrical dimensions [4], but brought another one, namely 
localized fracture. The solution was to add an elastomeric foundation to the contact region and verify if the 
new stress field and uncertainty analysis correctly reproduces the test. 
 
 
EXPERIMENTAL PROCEDURE 
 
The clay sample employed in this work belongs to a quarry from Campos dos Goytacazes-RJ (Brazil). 
Previews characterization showed that the ceramic mass is kaolinitic, with illite, quartz and gibbsite as main 
impurities [5]. Chemical analysis revealed that the clay consists basically of SiO2, Al2O3, and Fe2O3, the 
latter conferring a reddish color after firing, and TiO2, MnO, MgO, CaO, K2O and Na2O in smaller amounts. 
The oil sludge waste chemical composition before bentonite encapsulation in average consists of 21% water, 
62% solid material, 16% oil and 1% sulphur [6]. Waste granulometric analysis reveals that this material is 
essentially sandy silt. 
Raw materials were crushed and sieved until the 60 mesh screen fraction passed. Ceramic masses containing 
clay and 0, 5, 10, 15 and 20wt% waste were prepared (5 each). The masses were mixed and homogenized, 
and 7wt% water was added in order to provide plasticity. Afterwards, the pastes were formed in a 10mm 
diameter steel die. The resulting 10 x 10mm cylindrical pellets were dried (110ºC for 24h) and fired at 950ºC 
for one hour. Heating and cooling rates have been controlled. Linear shrinkage (ABNT MB-305 [7]) and 
diametrical compressing strength [2] of the ceramic bodies were determined. Microstructure of the fracture 
surface was investigated using a DSM 962 Zeiss scanning electron microscope coupled with an Energy 
Dispersive Spectroscopy device. 
A model 5582 INSTRON universal testing machine was used and both contact plates were covered with 
latex sheet. Crossbar speed was kept 0.5 mm/min for all tests. Specimens were placed between contact plates 
and a PC displayed a real time load x displacement graphic. At fracture load dropped very visibly, making 
quite easy to determine the ultimate compressive load. All pellets dimensions, after been fired, were 
recorded and used to determine individual ultimate compressive strength. 
 
 
BRAZILIAN DISK TEST (DIAMETRICAL COMPRESSION) 
 
Diametrical Compression Testing 
 
Fired pellets presents an average 10 mm diameter and height. To correctly evaluate compressive strength 
limit, a compressive test is necessary but the pellets geometry do not allow the traditional compressive 
testing use, for it requires a height of 2 to 3 times the diameter size [8]. The solution is to use the Brazilian 
Disk Test, exploring diametrical compression as means to cause specimen fracture failure. In this test load is 
applied in two diametrically opposing points [9]. 
 
Stress Field 
 
It is assumed that fracture initiates at the central point. Stresses acting over the horizontal diameter have the 
following form [10]: 
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Where P is the applied load, D is the disk diameter, t is thickness and x is the horizontal position along disk 
diameter. For crack opening, only σx matters, because σy is a compressive type of stress. σ1 component 
acting over the x direction and under the load line (x = 0) expression (1) is reduced to: 
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Above expression ignores the existence of contact stresses acting near the points where loads are applied. 
Expression (4) is used in this work to determine Ultimate Compressive Strength (Suc). 
 
 
LOCALIZED FRACTURE  
 
In the preliminary tests was observed that due to existence of contact stresses plus the fact that the contact 
area in this case is very small considered the body shape, localized stresses will fracture contact regions, thus 
altering stress distribution, crack initiation region and rendering useless expression (4) [11,12].  
 
Controlling Localized Fracture 
 
To avoid fracture initiation at the contact areas it was used an elastomeric rubber layer, applied to the contact 
region, to reduce magnitude of localized acting stresses. In this study latex was used and eliminated the 
problem. The used layer thickness measured 0.2 mm.  
 
New Stress Distribution At Contact Area 
 
The presence of that rubber layer is modeled as an elastic foundation and its presence alters stress 
distribution at contact region by increasing contact surface thus loading distribution area. Johnson shows that 
the new contact pressure distribution is paraboloidal rather than ellipsoidal as given by Hertz theory. 
Although localized stress field changes, at the center of the disk, where fracture is supposed to have started, 
no influence is felt, once contact stresses, regardless its shape, are expected to act at no more than up to 
0.15D from the contact surfaces [13]. 
 
 
UNCERTAINTY MEASUREMENT 
 
Uncertainty measurements, related to existing errors associated with the measurement system and material 
properties dispersion, for the proposed tests, are determined as described by ISO standards [14]. For the 
measurement system, these errors are originated from the load cell (ultimate compressive load) and the 
caliper (pellets dimensions). Both uncertainty sources combined and expanded to yield a 95% confidence 
level are called U95 and are represented by error bars on the following figures. 
 
 
RESULTS AND DISCUSSION 
 
Waste addition to the clayey ceramic mass clearly influences the ceramic pellets properties. Figure 1 shows 
the ceramic pellets Ultimate Compressive Strength (Suc) variation as a result of the oil sludge waste addition.  
As can be noticed from this figure, the addition of oil sludge waste reduced the strength of the ceramic 
pellets. As shown in Figure 2, the pellets linear shrinkage is decreased with waste addition. Error bars size is 



determined by U95, as described before. According to the waste composition, the non-plastic materials 
present such as quartz may be contributing to these phenomena. Figure 3 (a) shows the fractured surface of a 
waste-free fired pellet. Comparing with the microstructure of waste containing pellets, Figure 3 (b) and (c), 
the present phases are relatively well distributed and inserted in a continuous matrix. A quartz particle found 
in a waste-containing pellet is outlined in Figure 3 (d), confirming the presence of non-plastic components. 
Moreover, quartz particles are likely to induce flaws to the sintered microstructure, acting like stress 
concentrators. 
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Figure 1: Compressive strength as a function of waste addition for the ceramic pellets. 
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Figure 2: Linear Shrinkage as a function of waste addition for the ceramic pellets. 

 



 

 
(a) 

 

 
(b) 

 
(c) 

 
(d) 

 
 

 
Figure 3: MEV micrographies showing (a) a waste-free pellet, (b) a 15% waste pellet, (c) a 20% pellet and 
(d) a detailed quartz particle bearing cracks. (a) through (d) magnification is 200x. 
 
 
CONCLUSIONS 
 
The chosen thickness for the elastomeric layer did not change significantly the stress field far from the 
contact region and solved the problem of fracture initiation in the contact area.  
 
As the amount of waste increased, Suc decreased. SEM pictures reveal an increasing amount of quartz 
crystals as waste amounts also increase and cracks initiating from their edges area are also observed.  
 
Linear shrinkage reduces as waste amount increases, a desired effect for the tile industry. Although a limit 
for waste addition must be set, as to avoid a sharp decrease in Suc. 



 
The determined expanded uncertainty (U95) shows that result dispersion for Suc tends to be smaller for 
contaminated clay. 
 
ACKNOWLEDGEMENTS 
 
Authors gratefully thank FINEP (ref.: 77.98.0172.00) and FAPERJ (ref.: E-26/171.474/99 and E-
26/171.475/99 – APQ1) for the financial support. 
 
REFERENCES 
 
1. Vieira, C.M.F. (1997). MSc Thesis, Northern Fluminense State University, Advanced Materials Lab, 

Campos dos Goytacazes-RJ, Brazil. (in Portuguese). 
2. Fett, T. (1998). International Journal of Fracture. 89, 1: L9-L13. 
3. Liu, C., Huang, Y., Lovato, M.L. and Stout, M.G. (1997). International Journal of Fracture. 87, 3: 

241-263. 
4. Krishnan, G.R., Zhao, X.L., Zaman, M. and Roegiers, J.C. (1998). International Journal of Rock 

Mechanics and Mining Sciences. 35, 6: 695-710. 
5. Santos, R.S. (2001). MSc Thesis, Northern Fluminense State University, Advanced Materials Lab, 

Campos dos Goytacazes-RJ, Brazil, 97p. (in Portuguese). 
6. Petrobras (1999). Oily Sludge Waste Treatment, Internal Report, Macaé-RJ, Brazil. (in Portuguese). 
7. ABNT, NBR MB-305 (1984). Linear Shrinkage Determination. (in Portuguese). 
8. ASTM (2000). In: Annual Book of ASTM Standards, Section Three, pp. 99-106, American Society 

for Testing and Materials, Conshohocken. 
9. Liu, C., Huang, Y., Stout, M.G. (1998). Acta Materialia, 46, 16: 5647-5661. 
10. Dally, J.W. and Riley, W.F. (1991). In: Experimental Stress Analysis, pp. 461-462, McGraw-Hill, 

Inc., New York. 
11. Peterson, I.M., Pajares, A. Lawn, B.R., Thompson, V.P. and Rekow, E.D. (1998). Journal of Dental 

Research, 77, 4: 589-602. 
12. Peterson, I.M., Wuttiphan, S., Lawn, B.R. and Chyung, K. (1998). Dental Materials, 14, 1: 80-89. 
13. Johnson, K.L. (1996). In: Contact Mechanics, pp. 104-106, Cambridge University Press, Cambridge. 
14. ISO (1995). In: Guide to the Expression of Uncertainty in Measurement, International Organization 

for Standardization (ISO), Genève. 



ICF100368OR 
 
 
 
 
 
 

BIFURCATION ASSESSMENT OF MIXED CRACK IN ELASTIC-
PLASTIC MATERIALS 

 
Xiao-Bing ZHANG, Naman RECHO, Jia LI 

 
Laboratoire d’Etudes et de Recherches en Mécanique des Structures 

Blaise Pascal University of Clermont-Ferrand 
Avenue Aristide Briand, 03100 Montluçon, France 

 
 
ABSTRACT 
 

It is well kwon that the near-tip asymptotic stress field of an elastic-plastic crack in plane strain can be 
defined by two parameters, the J-integral and the plastic mixity parameter Mp (Shih, [5]). These two 
parameters for general yielding cracks can rapidly be calculated using a recently developed method based on 
the calculation of two associated J-integrals, J*I and J*II (Li, [3]). Many experimental studies showed that the 
crack growth under mixed mode loading can take place either in cleavage manner or in slip manner (Tohgo 
and Ishii [1], Aoki et al. [2]). Therefore, it is necessary to study the competition between these two kinds of 
crack growth in the frame of the J-Mp system. 

 
In this paper, we carry out detailed numerical calculations of crack-tip fields in elastic-plastic materials in 

order to assess the bifurcation angle based on the calculations of the parameters J and Mp. Some specimens 
used by Aoki et al. [2] have been analysed by finite element modelling. The loading varies in order to 
produce fracture range from Mode I to Mode II. By using the numerical method developed recently (Li et al 
[3][4]), the J-integral and the plastic mixity parameter Mp were calculated and the theoretical HRR near-tip 
fields were obtained. The bifurcation angles were estimated then according to the maximum σθθ  
(circonferential opening stress) and the maximum τrθ (shear stress) rules. The initial crack in the specimen 
was supposed to extend a small length in the two possible bifurcation angles. The competition between the 
cleavage growth and the slip one of cracks is discussed comparing with experimental tests carried out by 
Aoki et al. [2]. 
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ABSTRACT 
 
    Many experimental studies showed that the crack growth could take place either in cleavage manner 
(Tensile-type fracture) or in slip manner (Shear type fracture), see Tohgo and Ishii [1], Aoki et al. [2]. The 
purpose of this work is to study the competition between these two kinds of crack growth. We carry out the 
detailed numerical calculations of crack-tip fields in order to assess the bifurcation and propagation of the 
cracks in elastic-plastic materials. Some specimens used by Aoki et al. [2] have been analysed by finite 
element modelling. The loading varies in order to produce complete fracture range from Mode I to Mode II. 
By using the numerical method developed recently, the J-integral and the plastic mixity parameter Mp were 
calculated and the theoretical HRR near-tip fields were obtained. The bifurcation angles were estimated then 
according to the maximum σθθ  (circonferential opening stress) and the maximum τrθ (shear stress) rules. 
The initial crack in the specimen was supposed to extend a small length in the two possible bifurcation 
angles. The competition between the cleavage growth and the slip one of cracks is discussed comparing with 
experimental tests carried out by Aoki et al. [2]. 

 
 

KEYWORDS 
 
crack bifurcation, crack propagation, mixed mode, stress analyses, J-Integral, energy release rate, elastic-
plastic behaviour 
 
 
1. INTRODUCTION 
 
    An elastic-plastic material can present two failure mechanisms. The first one, cleavage failure, is due to 
maximum circonferential opening stress σθθ or to the maximum energy release rate G (which can be 
presented as the J-integral). The failure occurs when the maximum σθθ ( at certain distance rc from the crack 
tip), G or J reach their critical values, respectively, σc, Gc or Jc. The second failure mechanism, slip failure, is 
due to very high local strains involving slip bands in the direction of the maximum shear stress τrθ. The 
failure mechanism occurs when τrθ at certain distance rc reaches τc. In order to analyse these two failure 

mechanisms, one has to know the near-tip stress field. The ratio 
σ
τ

θθ

θr
 near the crack tip compared to 

σ
τ

c

c
 will 

determine the type of failure. Shih [5] showed that the near-tip asymptotic stress field of an elastic-plastic 
crack in plane strain can be defined by two parameters, the J-integral and the plastic mixity parameter Mp. A 
numerical method has been recently developed in order to determine these two parameters (Li et al [3][4]). 
This method is founded on the basis of the calculation of two associated J-integrals, J*I and J*II by 
introducing two auxiliary fields, a symmetric one and an anti-symmetric one with respect to the crack axis. 
Some studies have shown the validity of this method [4][6].  



    In the present work, we determine, using our numerical method, the near-tip stress fields in the 
specimens tested under mixed loading by Aoki et al. [2]. The experimental results are interpreted by the use 
of calculation results. The competition between the tensile-type fracture and the shear type fracture is 
discussed. 

 
 

2. METHOD OF EVALUATION OF THE PARAMETERS J AND Mp 
 

Shih [5] showed that, for a mixed mode crack lying in a power-law hardening material, the stresses, 
strains and displacements fields near the crack tip are dominated by the HRR singularity, and can be 
characterized by two parameters, the J-integral and a mixty parameter Mp. The later is defined as follows: 

 

M p

r r
=

=
=→

−lim tan
(
( )0

12 0
0π

σ θ
σ θ

θθ

θ

)
   (1) 

 
The method to evaluate the parameter Mp  has been reported in [3] [4] that we resume briefly. First, one 

defines an associated J-integral, the J*-integral as follows: 
 

J w n n
u

x
dsij j

i* *
*

= −



∫ 1 σ

∂
∂

Γ

   (2) 

 
where Γ is an arbitrary path around the crack tip; σij are the stress components of the actual field; u*i  are 

the displacement components of an auxiliary field;  w* is the associated energy density defined as: 
 

dw dij ij* = σ *ε    (3) 
 

The auxiliary field can be constructed in terms of the actual field. Following the approach of Ishikawa et 
al. [8], one can decompose the actual field into symmetrical and anti-symmetrical parts with respect to the 
crack axis: 

[ ]u x y u x y u x y i M Ii
M

i
i M

i* ( , ) ( , ) ( ) ( , ) , ; ,= + − − = =+1
2

1 1 2     II  (4) 

 
    With these two auxiliary fields, we obtain two associated integrals J*I and J*II. It is clear that J*I and J*II 
are path independent. An equivalent elastic mixity parameter M*e can be defined from J*I and J*II, namely: 

 

M J
J

e
I

II* tan *
*

= −2 1

π
   (5) 

 
By carrying out an asymptotic analysis near the crack tip, one can find the relationship between the M*e 

and Mp. This relationship was given in [3]. Moreover, one can calculate the J-integral from J*I and J*II: 
 

J J JI= II+* *    (6) 
This method is valid for any yielding cases. 

 
 
3. EXPERIMENTAL RESULTS 
 
    An experimental investigation has been carried out by Aoki et al (1990 [2]). They used A5083-O 
aluminium alloy that the mechanical properties are given in Tab.1. A compact-tension-shear specimen 
attached to a special device, developed by Richard and Benitz [7], was employed (Fig.1). A mixed or pure 
mode fracture is obtained by applying the load in different hole numbers. A Mode I loading was performed 
using the No. 1 and No.1’ holes in the loading device shown in Fig. 1.(b), and a Mode II loading was carried 



out using the No. 7 and No. 7’ holes. A fatigue crack was introduced up to a0 / w 0.5 (a≈ 0 is pre-cracked 
length, w is specimen width) (Fig.1.(a)). 
 

Young’s modulus E (GPa)   68.65 
0.2% Yield strength σ0 (MPa) 142.1 
Tensile strength σB (MPa)  308.6 
Ultimate strength σf (MPa)  284.2 
Reduction of area Ψ (%)  35.01 

 
    Tab.1 Mechanical properties of aluminium alloy A5083-O 
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Fig.1.(a) Configuration of the specimen  Fig.1.(b) Device for mixed mode loading 
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Fig. 2 Crack initiates in two directions (loading hole No. 6)            Fig. 3 Loads applied to a specimen  
    It was found that for the Mode I specimen (loading hole No. 1), the crack initiated from the centre of the 
blunted tip of the fatigue pre-crack and extended to the direction perpendicular to the loading axis. And for 
the Mode II specimen (loading hole No. 7), a crack due to shear type fracture is observed to extend in a 



direction almost parallel to the fatigue pre-crack surface. Under mixed mode loading (loading hole No. 3-6), 
cracks due to shear type fracture (in slip manner) initiate at the sharpened corner of the pre-crack tip near the 
surfaces of a specimen, and then another crack due to tensile-type fracture (in cleavage manner) occurs at the 
midthickness. It develops more rapidly than the shear cracks and causes final fracture of the specimen. The 
cracks due to tensile-type fracture extend in the direction perpendicular to the loading axis (Fig.2).  
 
 
4. NUMERICAL ANALYSES 
 
    Elastic-plastic finite element analyses are carried out by using a general-purpose finite element program, 
named CASTEM 2000 developed by CEA (Commessariat à l’énergie atomique – France). The analysis is 
based on small strain assumption and employs the flow theory of plasticity. Eight-nod and six-nod elements 
were used in the calculations. The finite element mesh is shown in Fig. 4. The loading conditions were 
approximated in such a way that the loads P1, P2 and P3 were applied to the holes in the specimen as shown 
in Fig. 3. The magnitude of load was determined from following equilibrium equations: 

 
Pcosα = P2,    Psinsα = P1 + P3 ,  P1 l1 + P2 l2 = P3 l3                 (7) 

 
    Where P is the load applied to the loading device shown in Fig.1 (b), and the lengths l1, l2 and the loading 
angle α are defined as shown in Fig. 3 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 4 Finite element mesh 

 
 
 
5. NUMERICAL RESULTS AND DISCUSSIONS 
 
    After calculation of the two associated J-integrals J*I, J*II and the plastic mixity parameter Mp, the 
theoretical HRR near-tip stress fields are obtained for each specimen. The distributions of the stress 
components σθθ, τrθ near the crack tip and the J-integral value allow us to analyse the bifurcation angle and 
the propagation of the cracks.  
 
    According to bifurcation criteria, the tensile-type crack will propagate in the direction of maximum σθθ , 
noted θσ (angle of bifurcation due to tensile-type fracture) and the shear type crack will propagate in the 
direction of maximum τrθ, noted θτ (angle of bifurcation due to shear type fracture). The Tab. 2 shows the 



numerical results of the specimens under different loading: loading angle α = 0°, 15°, 45° and 90°. σθθ  and 

τrθ  are the maximum stress components at a distance r = 2J/σ0 from the crack tip,  J being the J-integral and 
σ0 the yield stress.   
 

Hole No. 7 6 4 1 
Load P (N) 4850 4900 3500 2900 

α (°) 0° 15° 45° 90° 
σθθ (ΜPa) 395 467 426 497 
τrθ  (ΜPa) 292 266 177 153 
σθθ /τrθ   1.35 1.76 2.41 3.24 

J*I (N/mm) 0 14.2 14.5 14.6 
J*II (N/mm) 46 44.6 3.1 0 
J (N/mm) 46 58.7 17.6 14.6 

Mp 0 0.38 0.76 1 
θτ (°) 0 11 40 81 
θσ (°) -71 -61 -35 0 

 
Experimental 
observation 

Shear type 
fracture 

Shear type fracture at the beginning 
and tensile-type fracture after 

Tensile-type 
fracture 

 
   Tab. 2 Crack bifurcation angle versus loading angle 
 
    From experimental results, the critical values of JIC  and JIIC are known. JIc is equal to 14.6 N/mm (loading 
angle α = 90°). In order to obtain the value of JIc, the calculation shows that the load P has to be equal to 
2900N.  Under this load, the stress field is determined and the ratio σθθ /τrθ  is than obtained (σθθ /τrθ  = 3.24). 
The critical value σc = σθθmax in this case. Similarly, from JIIc = 46 N/mm, the ratio σθθ /τrθ  = 1.35 is 
obtained. The critical value τc = τrθmax in this case. The ratio σc /τc is then equal to 2.16 for this material. The 
criterion will be:       

           
σ
τ

θθ

θr
 > 

σ
τ

c

c
 => tensile-type fracture , and          

σ
τ

θθ

θr
 < 

σ
τ

c

c
 => shear-type fracture 

    The table 2 shows that the ratio σθθ /τrθ   is less important for α = 0° than for 15°, 45° and 90°. This can 
explain the shear type fracture observed in this case in which the crack bifurcation angle is equal to zero. In 
the case of α = 90°, the ratio σθθ /τrθ   becomes very high, so the crack will propagate in the direction of θσ 
=0 in a cleavage manner. 
 
    Now, in order to understand the growth behaviour of the crack when the two types of fracture are in 
competition, we assume that the crack extends simultaneously in two directions (θτ and θσ )(Fig. 5). This 
assumption is based on the observation of the experimental results (Fig.2). Let suppose that aσ  and  
aτ  lengths of small cracks due to tensile-type fracture and to shear type fracture respectively. These cracks 
are supposed to follow the bifurcation angles determined in Tab. 2. 
   
    The J-integrals, the mixity parameter Mp and the maximum stresses σθθ and τrθ for each type of crack are 
shown in Tab.3 for different extended lengths of crack under the loading corresponding to α = 45° and  
α = 0°. θθτ

σ , rθτ
τ , are the maximum values of σθθ and τrθ near the aτ crack tip, θθσ

σ , rθσ
τ , are maximum 

values of σθθ and τrθ near the aσ crack tip. Jτ , Jσ are the J-integral values for the aτ crack and aσ crack 
respectively.  
 
    Let suppose that the shear crack aτ extends (experimental observation) and the extended length is 1mm. At 
the same time, the tensile crack aσ initiates and then extends. Giving aσ  crack a extended length of 0.3, 0.4 
and 1mm, we analyse the competition of aτ crack growth and aσ crack growth.  



 45°, loading hole No.4), the value of 
    From Tab.3, one can observe that, in the mixed mode case (α =

is important when aτ τθr σ is small (aσ=0.3mm) and it decreases as aσ grows. This can explain the fact that the 

shear type crack extends at first and stop after (experimental observation). In the other hand, θθσ
σ increases 

when aσ grows. So the tensile-type crack grows until the final fracture of the specimen. In the Mode II case 
(α = 0°, loading hole No.7), rθτ

τ  is more important for all length of aσ. It is way the crack extends always in 
shear manner until the final fracture of the specimen. 
 
    α =45°  α = 0° 

crack length aτ 1 1 1 1 1 
(mm) aσ 0,3 0,4 1 0,3 0,4 
stresses near aτ 

θθτ
σ  430 420 310 340 300 

(MPa) 
rθτ

τ  170 160 140 270 260 

stresses near aσ 
θθσ

σ  550 580 700 370 420 

(MPa) 
rθσ

τ  165 170 180 160 180 

J at aτ (N/mm) Jτ 14.1 12.4 5 18.5 17 
J at aσ (N/mm) Jσ 21.3 25 40.7 7.5 10.9 

 
 

aτ 

aσ 

θτ 

θσ 

 
 
 
 

Fig. 5 Two cracks in competition 
Tab. 3 Maximum stresses near the tips of    

two cracks in competition and J values  
 
5. CONCLUSIONS  
 
    The numerical method developed recently allows us to obtain the theoretical HRR stress fields near the tip 
of  a crack in elastic-plastic material under mixed mode loading. The numerical results obtained by using 
this method can explain the experimental results. The crack growth depends on the competition between the 
ratio σθθ /τrθ  compared to the ratio σc /τc . this ratio could lead to a critical mixity parameter Mp. 
    Based on experimental observations, this competition was evaluated by numerical studies. More 
experimental and numerical studies will be necessary to establish suitable bifurcation criteria for a mixed 
mode crack in elastic-plastic materials. 
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ABSTRACT 
 
Hard soil - soft rock materials tend to fail along well-defined discontinuities.  However, in the common 
practice of geotechnical engineering, such failure is implicitly modelled as uniform behaviour by smearing, 
and either based on elastoplasticity or empirically determined from laboratory test results.  A model is 
presented herein which addresses the problem as one of brittle fracture of a three-phase material, where the 
matric suction exerted by the pore air/water phases on the solid phase is disrupted by tensile or shear 
loading, or a combination of both.  There is therefore the added complication that the fracture toughness of 
the material medium would vary according to changes in the matric suction which is brought about by the 
application of test loading.  Furthermore, it would be necessary to predict the development of non self-
similar crack extension from a sharp corner in accordance with the observed behaviour of test specimens. 
 
Accordingly, the problem of plane strain compression testing has been analysed using a hybrid BEM based 
on a combination of the displacement discontinuity and fictitious stress methods.  The model has, moreover, 
been established for confirmation against the results of laboratory testing on unsaturated kaolin clay. 
 
 
KEYWORDS 
 
Brittle fracture, hard soil - soft rock, hybrid BEM, matric suction in plane strain, corner crack, unsaturated 
kaolin clay. 
 
 
INTRODUCTION 
 
Brittle hard soil - soft rock is often found in geotechnical engineering works such as tunnels, slopes, etc.  
These soils contain fissures or cracks which are the result of mechanical, thermal and volume-change-
induced stresses.  As a result of gravity, earthquake or water-pressure-induced loads, these flaws can 
develop stress concentrations which result in the non-uniform mobilisation of strength and ultimately lead to 
the catastrophic failure of the soil body as they propagate.  Conventional failure criteria [1] of soils may be 
appropriate to plastic-yield-dominant behaviour, but not, in principle, to this category of brittle fracture.  In 
view of the existence of fissures and cracks, such soils are non-uniform and therefore not amenable to 
analysis by continuum mechanics alone.  On the other hand, fracture mechanical theory may be used to 
advantage to replicate their behaviour. 
 
The first quantitative data on the role of fissures on the strength of clay appears to have been presented by 
Terzaghi [2] from a study of the instability of gentle slopes in fissured clay.  Such failure occurred despite 



the very high compressive strength of intact clay fragments.  Terzaghi established that the overall strength 
of the fissured clay represented a fraction of the strength of the same clay without fissures.  On the other 
hand, Bishop [3] and Skempton et al. [4] were apparently the earliest to suggest that fracture-mechanical 
concepts might shed light on the progressive failure of slopes made of stiff, fissured clays, although Bjerrum 
[5] also discussed progressive failure in terms of stress concentration at the tip of a slip surface.  Saada [6] 
and Vallejo [7] subsequently applied the concepts of LEFM to investigate the mechanism of crack 
propagation in stiff clay. 
 
A basic concept of fracture theory is that crack-like imperfections are inherent in engineering materials.  
These flaws act as stress raisers that can trigger fracture when subjected to critical loading.  Unsaturated 
hard soil-soft rock materials, on the other hand, are three-phase media comprising air, water and solid.  As 
such, the degree of saturation S of the material, and hence its matric suction (ua - uw), could vary as it was 
loaded.  Thus, it would be necessary to keep track of changes in the parameters at all stages of loading, since 
for brittle fracture to take place, the fracture toughness which is available would depend on their ambient 
values.  In other words, unlike the generally-accepted material behaviour of fracture mechanics, during 
crack development, the applied loading would not only raise the level of total stresses required to cause 
further crack extension, but also influence the properties of the soil-rock medium which would determine 
whether the crack would extend. 
 
In the following discussion, a model will be proposed for the brittle fracture of hard soil-soft rock, which is 
based on the above considerations.  The model will be verified by conducting plane strain biaxial 
compression tests on a pre-cracked specimen, and thereafter comparing the test results with those obtained 
by using a hybrid BEM based on a combination of the displacement discontinuity and fictitious stress 
methods.  Furthermore, it will be shown how the development of a secondary crack may be predicted in 
accordance with observed behaviour. 
 
 
PROPOSED MODEL 
 
Determination of Matric Suction  
 
The matric suction (ua - uw) is defined [8] as the difference between the pore air pressure ua and pore water 
pressure uw, which varies with load.  It is required in order to determine the fracture toughness of the hard 
soil-soft rock test specimen.  The pore pressures may, in turn, be deduced from their respective pore 
pressure parameters Ba and Bw, based on the following relationships: 
 
 aveaa dBdu σ=  (1) 
and 
 aveww dBdu σ=  , (2) 
where 
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and �1 and �3 are the major and minor principal stresses respectively.  The pore pressure parameters are 
given by 
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h is the proportion of dissolved air in the water, au  the absolute air pressure, n the porosity, Cw the water 

compressibility and ww
p

ss
p mandm,m,m 2121  the volumetric deformation coefficients which may be evaluated 

from the compressive indices Ct, Cm, Dt and Dm obtained from the constitutive surfaces of the hard soil-soft 
rock, as follows: 
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in which (�ave - ua)mean and (ua - uw)mean are the averages of the initial and final net normal stresses and 
matric suctions over a load increment. 
 
Determination of Fracture Toughness 
 
At any given stage of crack development, it is necessary to obtain an update on the value of the fracture 
toughness Kc, which is generally dependent on the matric suction, or alternatively the degree of saturation of 
the soil medium, by way of the pore size distribution index �.  It is noteworthy that this dependency may be 
established fundamentally on the basis of Griffith’s analogy of the critical rate of energy release Gc and the 
surface tension � for glass, in which it may be shown that a relationship may be obtained between Gc, the 
matric suction (ua - uw) and characteristic pore size Dp, given by 
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where k is a parameter which reflects the mode of fracture.  On this basis, the fracture toughness versus 
matric suction plot of Figure 1 has been determined by fracture testing of brittle kaolin clay specimens in 



the mode I of deformation. 
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Figure 1:   Fracture toughness versus matric suction. 
 
Fracture Criteria 
 
The fracture analysis of tensile loading of materials has been greatly aided by developments in fracture 
mechanics over the last 40 years or so.  However, applied stresses are usually compressive rather than 
tensile in a geotechnical environment, and the fundamental fracture response of soil structures loaded in 
compression differs in a number of respects from its counterpart in tensile loading.  
 
In the discussion which follows, the unified model [9] will be used as the basis of analysing how a crack 
would develop in this situation.  Accordingly, the modes I and II stress intensity factors with respect to the 
generalised � plane would be given by 
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while the criterion of fracture may be stated as 
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In mixed mode loading where compression is applied, the stress field due to KI� and KII� can be tensile in 
the vicinity of the crack tip so that fracture can occur in a manner similar to the case of tensile loading, 
although if KIC > 1.15 KIIC shear or mixed mode fracture would in principle be possible too.  However, 
unlike the case of the stress-free crack surface due to tensile loading, under combined shear and 
compressive stresses, the crack tip would develop a singularity due to relative shear displacement of the 
adjacent crack faces.  Hence, some provision would have to be made to prevent the overlap of the material 
medium at the interface, and friction could also play a part in the fracture of the soil. 
 
 
VERIFICATION OF PROPOSED MODEL 
 
The problem adopted for verification consisted of a plane strain specimen of brittle kaolin clay, 72mm x 
72mm in plan and 36mm thick, which was initially consolidated at 200kPa and then extruded and trimmed 



to the required size.  Thereafter, a pre-crack of length 20mm was formed centrally within the test specimen, 
and inclined at an angle of 45� as shown in Figure 2, following which the specimen was desaturated under a 
matric suction of 500 kPa by the application of cell pressure �3 = 550 kPa, back-pressure uw = 50 kPa and 
pore-air pressure ua = 550 kPa in a triaxial cell.  Subsequently, the specimen was loaded monotonically by 
applying a constant rate of displacement of 0.5 mm/min under a constant cell pressure of �3 = 0.2N/mm2.  
This rate of loading had been established from the consolidation stage to be sufficient to maintain an 
undrained condition in the test specimen. 
 

 
 

Figure 2:   BE analysis of plane strain compression testing of a highly brittle soil. 
 
During loading, the volume change of the soil skeleton, �Vs, was monitored continuously by laser sensors 
and the axial displacement at the top of the specimen recorded automatically via a Wykeham Farrance 
AT2000 data-logger.  Furthermore, the extension of the pre-crack was monitored in tandem with the applied 
loading.  The loading was applied until the test specimen attained its ultimate condition. 
 
A BE analysis was carried out on the extension of a pre-crack in the soil specimen, based on a combination 
of the displacement discontinuity and fictitious stress methods (Figure 2).  The simulation, which was 
conducted over a total of 12 steps, employed the proposed soil-rock model, and was confirmed against the 
results of laboratory testing on unsaturated kaolin clay. 
 

 
 

Figure 3:   Opening and corner cracking of unsaturated kaolin clay. 
 

Furthermore, it may be shown that the development of non self-similar crack extension from a sharp corner 
in accordance with the observed behaviour of test specimens (for example, Figure 3) may be determined 
from the mixed mode criterion 
 

 1
K

K

K

K
2

IIC

2
IIè

2
IC

2
Iè =+

a

a

a

a  , (20) 

 
where K�IC and K�IIC are the modes I and II fracture toughness at the corner, where the corresponding 



generalised stress intensity factors, K�I� and K�II�, would be given by 
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and 
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respectively, in which 
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and � the included angle of the sharp corner. 
 
 
CONCLUSIONS 
 
 
Present-day geotechnical models in common usage tend to view the stress-strain behaviour of soils in terms 
of uniform point-to-point response of the material medium, implicitly.  This is reflected in the use of 
continuum models of elastoplasticity coupled with the effective measurement of stress-strain parameters of 
soil specimens, when loaded, as smeared values.  In an alternative approach, an empirical fit is made to the 
experimental data although the constraints of uniform behaviour and smeared values still persist. 
 
However, it is a well-observed phenomenon that discontinuities, and hence the departure from uniform 
behaviour, often do develop in soils (that is, apart from highly plastic soils which exist on the “wet” side of 
critical state) when subject to loading, and may be expected to influence their stress-strain behaviour 
significantly.  The fracture of brittle hard soils-soft rocks is an important case in point.  Accordingly, a 
model has been proposed to deal with such materials which is based on LEFM, where the fracture toughness 
is related to the matric suction of the air-water-solid medium.  As such, there is a departure from the 
generally-accepted material behaviour adopted in fracture mechanics, in that the fracture toughness is state-, 
and hence, load-dependent.  The model has been applied to a laboratory test specimen which was subjected 
to biaxial compression with reasonably good agreement with observed behaviour. 
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ABSTRACT  

A certain kind of approximate linear relationship is found between corrosive temperature (T) and corrosive time (H) 
for metal part within a certain range of temperature. It is called the T-H curve in this paper, which is similar to the 
S-N curve in the fatigue field. On the basis of T-H curve, the author deduces the formula of calendar life for 
corrosion damage of metal under many kinds of medium environment. As for the form, it looks like the Miner 
theoretical formula in fatigue field. Using this formula, the calendar life for corrosion damage of metal can be 
estimated simply under varied complicated medium surrounding. 
 

 

Key words  

T-H curve, calendar life, corrosion damage calculation model 
 
 
INTRODUCTION  

Up to now, there is not a applicable model which can be predicted at home and abroad, because the factors effecting 
on aircraft corrosion calendar life are complex. Therefore, the aircraft calendar life is not given scientifically in 
engineering, so that some great accidents often occur. In order to solve this difficult problem, this paper makes the 
study and gets following three respects of conclusion. 
 
 
1.  Approximate linear variation between corrosion damage amount and corrosion time for some of metals 

This linear variation rule can be demonstrated not only by <Faraday law> but also by some tests. For example, 12 
groups of curve shown in fig.1, between corrosion amount and corrosion time are approximate linear rule, which is 
useful for setting up an aircraft calendar life model. 
 
 
2.  A relation of corrosion temperature (T) and corrosion time (H)  

A relation of corrosion temperature (T) and corrosion time (H) for some of metals appears the variation rule shown 
in fig.2. i.e. when some of metals in certain corrosion medium are corroded to the same corrosion amount

 1



 D, increasing corrosion on temperature  T requires decreasing corrosion time H, decreasing corrosion temperatureT 
requires increasing corrosion time H. When the temperature decreases to a critical value Tc, the infinite corrosion time 
(no corrosion) is required, which is called corrosion T-H curve in this paper. This kind of variation rule is deduced by 
<Faraday Law>and also is verified by many groups of curve for high temperature corrosion test and middle-low 
temperature corrosion test, as shown in fig 4 to fig 7, which is useful for setting up an aircraft calendar life model. 

 
Fig 1 Test curve of corrosion amount and corrosion time [2] 
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       Fig.6 T-H test curve for Ly12C2 alloy                Fig.7  T-H test curve for 30CrMnSiA alloy 
 
3.Calculation mathematical model of calendar life for corrosion damage of metal parts. 

3.1 In order to get the calculation mathematical model of corrosion calendar life easily to use in engineering now 
assuming that： 
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①  T1－T4  segment of the T－H curve shown in figure 2 is nearly straight line ,so it can be considered that    
corrosion amount caused at different temperature T can be accumulated linearly； 

    ② any corrosion parts have a critical corrosion amount Dc, which can be corrosion area，volume，deep or 
corrosion loss amount and corrosion increments; 

    ③ a part has a corrosion spectrum of using temperature T -- time H as shown in figure3； 
    ④ when a part is corroded to critical corrosion amount Dc, total cycle block number of corrosion temperature－

time spectrum is λ，i.e．that is under acting at corrosion temperature－time spectrum，after passing λ 
cycles，the critical corrosion amount Dc will reach.  

3.2. Calculation mathematical model for corrosion calendar life of metal parts  

It can be got through analyzing complexly T - H curve shown in figure 2 and using temperature – time spectrum shown 
in figure 3 that in order to get corrosion amount Dc on T – H curve under temperature T1,H1 hours will be required, but 
in using temperature-time spectrum only h1 hours will be exited under temperature T1. Therefore, in according to the 
linear relation of corrosion amount and corrosion time under a certain temperature it only occupies h1/H1 of total 
corrosion damage amount, which is named corrosion damage degree. 
Similarly, the corrosion damage degrees at T2, TI Tk can be got in using temperature - time spectrum, which are 
h2/H2 .hi/Hi, hk/Hk.In according to the assumption of linear accumulation of corrosion damage, the accumulation 
corrosion damage degree of a one corrosion temperature spectrum block is 
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which only occupies 1/λ of total cycle spectrum block damage degree, thus 
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If corrosion parts are acted by using temperature – time spectrum for m kind of mediums at the same time, it can be got 
that 
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where, 

HI is the hour number when corrosion parts are corroded to specified corrosion amount D in a certain medium 
environment under i stage of temperature; 

hi is the hour number corresponding to i stage of temperature in using temperature -time  spectrum; 

λ is the total cycle block number when corrosion parts acted together by m kinds of medium environment are 
corroded to specified corrosion amount D; 
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k is the stage number of a certain using temperature-time spectrum; 

m is the number of corrosion medium 

Formula (1) is a theoretical formula of corrosion damage accumulation which is got in this paper, that is, a calculation 
formula getting corrosion damage calendar life under m kinds of medium environment. A prediction of calendar life 
for two kinds of aircraft is made successfully by using this model and good results. 

 
 
4. Conclusion 

4.1 The linear accumulation theoretical formula (1) of corrosion damage is given through deduction and verification. 
As long as there is the T-H curve of metal corrosion and using corrosion temperature-time spectrum of a metal 
corrosion, the corrosion calendar life of the metal parts is calculated using formula (1).So the problem to predict 
complex corrosion calendar life of metal parts is reconverted into predicting “fatigue” life, which is a significant 
research. It is available and applicable for determining calendar life of metal parts which are in no loading or constant 
loading, for example, it is applicable for determining calendar life of aircraft which place on the earth’s surface for 
long time. 
 
4.2 The study range of this paper only is limited to corrosion conditions where the relation between corrosion time and 
corrosion amount is nearly linear, other conditions will remain to study further. 
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ABSTRACT 
 
Stretch zone measurement on the fracture surfaces is often used for ductile fracture estimations. However, 
it is not clear whether to use the stretch zone width or stretch zone depth for such evaluations. Both these 
dimensions have been used by several researchers for correlation with fracture toughness. While some 
researchers claim the use of stretch zone width, others recommend stretch zone depth for ductile fracture 
estimation. Moreover, a unified procedure for stretch zone depth measurement is not available in the 
literature. In this work, a method is proposed for stretch zone depth measurement and influence of prestrain 
on ductile fracture of two varieties of Cu-strengthened HSLA steels have been examined through both 
stretch zone width and stretch zone depth measurenments. Results are compared with the variation in 
fracture toughness (Ji) with prestrain. It is noted that the stretch zone depth measurements could predict the 
nature of variation in fracture toughness with prestrain for both the steels than the stretch zone width. It is 
therefore concluded that stretch zone depth measurements can be a useful method whenever the trend in 
the fracture toughness variation with respect to material/process parameter is to be examined. However, J 
estimated from stretch zone width provides a better approximation of the toughness and the nature of 
variation would also follow a similar trend as Ji only beyond the inhomogeneous yielding zone of these 
steels. 
 
 
KEYWORDS 
 
Fracture Toughness, Stretch Zone Width, Stretch Zone Depth, HSLA Steels 
 
 
INTRODUCTION 
 
Ductile fracture behaviour of materials is usually characterised by the J-integral − an elastic plastic fracture 
mechanics parameter. The procedure of ductile fracture toughness evaluation involves identifying a critical 
J value corresponding to a specific ductile crack extension on the J versus crack extension plot, known as 
the J resistance (J-R) curve. However, this procedure has been proven to be erroneous for high toughness 
materials when ASTM standards [1] are followed to characterise the critical fracture toughness JIC [2-6]. 
An alternate method for such materials is to measure the extent of plastic blunting of the crack tip on the 
fracture surface of the tested specimen and correlate it to Ji on the J-R curve.  

In an earlier work to study the influence of prior deformation on the ductile fracture behaviour of Cu-
strengthened HSLA steels used for ship building applications [7], it was noted that the critical fracture 



toughness, Ji, was retained up to 2% prestrain beyond which it was observed to be decreasing. This 
observation is significant, since normally one would expect the fracture toughness to decrease with 
prestrain. However, in order to confirm whether the initial retention in fracture toughness is real or the 
method of determination of Ji from the J resistance curve fails to take into consideration the effect of 
prestrain, the alternate method was explored. 

The initiation regime fracture of ductile materials leaves an imprint of the phenomena in terms of a 
characteristic featureless region called the stretch zone followed by tearing which can be observed under a 
scanning electron microscope (SEM). This stretch zone represents the extent of crack tip blunting prior to 
actual crack extension and thus has a correlation with the initiation fracture toughness of the material. The 
size of this stretch zone is a characteristic of the material. Several attempts have been made to measure this 
stretch zone dimension and obtain an appropriate correlation with ductile fracture toughness [8-16]. 
Normally, in highly ductile materials, stretch zone would have two components viz., stretch zone width 
(SZW) and stretch zone depth (SZD). Both SZW and SZD are closely related to fracture toughness. 
However, there is no agreement on which of these stretch zone dimensions should be used for determining 
critical fracture toughness. Some researchers have used SZW [10-14] while others have used SZD [15,16] 
for obtaining ductile fracture toughness. Moreover, while SZW measurements can be made easily under 
SEM, direct SZD measurements are difficult due to complications in observing the specimen end-on under 
SEM. In this work, a procedure for SZD measurement is proposed, and an attempt is made to relate both 
SZW and SZD to ductile fracture toughness. The appropriateness of using SZW and SZD for ductile fracture 
determination is discussed by comparing the nature of variation of respective fracture toughness 
estimations with prestrain and that of Ji obtained from J-R curves. 
 
 
EXPERIMENT 
 
Material 
 
The materials employed in this investigation are two varieties of quenched and tempered Cu-strengthened 
HSLA steels designated as HSLA-80 and HSLA-100. The chemical composition and the mechanical 
properties of the two steels are given in Table 1 and Table 2 respectively. The microstructure of HSLA-80 
was acicular ferrite while that of HSLA-100 was observed to be tempered bainite. The materials were 
available in the form of 20mm (HSLA-80) and 25mm (HSLA-100) thick plates. 
 

TABLE 1 
CHEMICAL COMPOSITION OF HSLA STEELS IN WT. % 

Steel C Mn P S N Si Cr Mo Al Nb Ni Cu 

HSLA-80 0.05 1.00 0.009 0.001 0.01 0.34 0.61 0.51 0.025 0.037 1.77 1.23 

HSLA-100 0.06 0.84 0.011 0.003 0.008 0.25 0.74 0.58 0.023 0.03 3.47 1.54 

 
TABLE 2 

MECHANICAL PROPERTIES OF HSLA STEELS 

Steel σYS 
MPa 

σUTS
MPa 

%El Uniform 
Elong. %# 

%RA n† Hardness 
VHN 

Charpy 
Energy J  

YS/UTS 

HSLA-80 650 715 24.2 10.5 75.8 0.12 250 218 0.91 

HSLA-100 840 884 21.6 8.1 73.5 0.08 300 192 0.95 

† obtained from σ = kεn, σ = true stress, ε = true strain, in plastic range 
# over 25mm gauge length 



Fracture Toughness Test 
 
Specimen blanks of 5mm x 20mm cross-section were cut from the plates and single edge notch bend 
(SENB) specimens were prepared after prestraining them in tension to 1%, 2%, 3%, 4% and 5% of total 
strain. J tests were carried out by employing single specimen unloading compliance method. A location 
independent CCL relation was used for crack length measurements [17]. The J and the crack opening 
displacement, δ, values at each unloading were calculated and a plot of J versus ∆a obtained. The 
departure of the J resistance curve from the experimental blunting line drawn to the initial linear region of 
the J resistance curve is taken as Ji. 
 
Stretch Zone Measurement 
 
Fracture surfaces extracted from the tested specimens are examined under SEM such that the plane of 
fracture is normal to the electron beam. A representative stretch zone feature is recorded at mid-thickness 
of the specimen. The specimen is then tilted through 45o about an axis through the crack front. While 
tilting, care is taken to ensure that there is no lateral shift of the specimen. A record of the stretch zone in 
this tilted view is also made.  

The stretch zone boundaries in both untilted and tilted conditions are traced on to a transparency sheet. 
Horizontal grid lines are superimposed over these tracings and a number of (as many as 35) measurements 
made. Correspondence between untilted and tilted measurements is maintained by noting reference 
features in both the cases. The scheme is shown in Fig. 1. While the untilted view give SZW, SZD is 
calculated from a geometric inter-relation between the untilted and tilted conditions that is derived below 
with reference to Fig. 2. 
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igure 1: Typical stretch zone in (a) untilted and (b) 45o 
ilted view and (c) & (d) the measurement procedure with 
eference locations 

rom Fig. 2, OC = OB cosα = t cosα  
nd  DB = AC = OC − OA = t cosα − w
imilarly, DA = BC = OB sinα = t sinα, 

nd FD = 
DB

tan α  = 
t cos α − w 

tan α   

 denotes the point at which the stretch zone ends and ductile te
. Therefore, it can be written that 

SZD = h = FD + DA
 
Figure 2: Geometrical inter-relation between 
normal and tilted configuration of specimen 

  since OB = t, 
   since OA = w 

aring starts. Hence FA is the SZD of height 

 



 = 
tcos α +t sinα tanα − w 

tan α  + tanα (1) 

If the specimen is tilted through an angle α = 45o the Eqn. 1 becomes 
 SZD = h = 2 t − w (2) 

The measurements made in the untilted and tilted conditions thus refer to SZW, w and t respectively. Using 
Eqn. 2, the SZD, h, is calculated for each pair of w and t measured. Average of all the w and h 
measurements were considered as the SZW and SZD respectively. The exercise was carried out for both the 
steels at all prestrain levels. 
 
Fracture Toughness from Stretch Zone Geometry 
 
As SZW is equivalent to the critical value of ∆a at which ductile fracture initiates, a vertical to the ordinate 
is drawn at ∆a = SZW on the experimentally derived J-∆a plot. Intersection of this vertical with the J 
resistance curve is taken as the initiation toughness from SZW measurements, JSZW. 

For evaluating the initiation toughness from SZD measurements, JSZD, the J-δ plot for the same set of 
experimental data is constructed. A vertical at the ordinate corresponding to δ = 2SZD is drawn. 
Intersection of this vertical with the J-δ curve is noted as JSZD. 
 
 
RESULTS AND DISCUSSION 
 
Effect of Prestrain on Stretch Zone Geometry  

Variation of the mean SZW and SZD of HSLA-80 and HSLA-100 with prestrain is shown in Fig.3. The 
magnitude of SZD, for both the HSLA steels remained constant up to ~2% prestrain, beyond which it 
decreased markedly. This nature of variation is similar to the variation of Ji that was described earlier. 
However, the same is not true for SZW. In case of HSLA-80, SZW showed a decreasing trend while for 
HSLA-100, it showed an increasing trend with prestrain. The nature of variation of SZD with prestrain thus 
strongly qualifies the use of SZD for determining the fracture toughness.  
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Figure 3: Variation of stretch zone dimensions with prestrain 
 
Variation of JSZW and JSZD with Prestrain 
 
The variation of JSZW and JSZD with imposed prestrains is depicted in Fig.4 and Fig. 5 for HSLA-80 and 
HSLA-100 steels respectively. Included in the plots are the Ji values at various prestrains for comparison. 
It may be noted from these figures that the nature of variation of JSZD with prestrain is similar to that of Ji 
for both the steels. The magnitude of JSZD, however, is lower than that of Ji through the entire range of 
prestraining investigated for both the steels. JSZW in both the steel does not reflect the trend exhibited by Ji. 



It decreases with prestrain for HSLA-80 and does not show a systematic variation (at least up to 2% 
prestrain) for HSLA-100 steel. Nonetheless, it is interesting to note that the magnitude of JSZW compares 
well with that of Ji at prestrains greater than  ~2% in both the steels. This is thought to be significant from 
the point of view that both the steels exhibit non-homogeneous deformation up to a strain level of about 
1.5 to 2.5%, which is manifested in the form of Luders stretch (in HSLA-80) or low hardening rates 
(HSLA-100) during tensile deformation of the steels. 
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Figure 4: Variation of JSZW, JSZD and Ji with prestrain for 

HSLA-80 steel 
Figure 5: Variation of JSZW, JSZD and Ji 

with prestrain for HSLA-100 steel 

The failure of SZW or SZD in predicting the trend and magnitude of Ji with prestrain can be attributed to a 
number of reasons. Inaccuracies in identifying the start and end of stretch zone extents may reflect in the 
measurement of w and t. Restricting measurements to the mid-thickness of specimens may produce 
significant contributions to the average stretch zone geometry originating from the flanks of the crack 
front. Minor errors will also be included due to non-consideration of elastic components of 
blunting/stretching that are recovered on unloading. By far the most important source of error can be traced 
to the occurance of secondary cracks within the blunted crack profiles (see Fig. 6) that have been observed 
in both the steels. Such cracks may influence the determination of JSZW and JSZD in the following ways: 

(i) secondary cracks will contribute to the compliance of the specimen and result in the enhancement 
of the crack length measured during testing by the compliance technique. This will lead to a lower 
value of JSZW and JSZD to be read from experimental plots. 

(ii) post test measurements of SZW and SZD are liable to be significantly different to the values 
existing at the time of testing. 

Figure 6: Presence of a secondary crack in the blunted profile of crack 
 
CONCLUSIONS 
 
From the investigation carried out on initiation toughness measurement via stretch zone geometry in HSLA 
steels, it can be concluded that 



(i) use of SZD, in preference to SZW, provides a better appreciation of the trend of variation of ductile 
fracture toughness with external conditioning influence like prestrains. 

(ii) SZW provides a better measurement of ductile fracture toughness when material deformation 
through non-homogeneous processes is absent. 
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ABSTRACT 
 
The challenges in improved mechanistically-based prediction of crack growth kinetics due to hydrogen 
embrittlement are discussed in relation to the local crack-tip environment, which, in context, embraces crack-
tip chemistry and the hydrogen distribution ahead of the tip. Important advances have been made in 
modelling crack-tip electrochemistry and considerable insight obtained but the need for an electrochemical 
database of input parameters is paramount to ensure confidence in prediction. In modelling the crack-tip 
hydrogen distribution the use of generalised boundary conditions which link electrochemical processes and 
hydrogen atom transport in the crack-tip region has been an important advance but must be coupled to more 
realistic crack-tip stress and strain models. A validated model of this form linked with criteria for crack 
advance incorporating material property and microstructural parameters is a necessary precursor to 
meaningful quantitative crack growth prediction.  
 
KEYWORDS 
 
Environment assisted cracking, crack-tip environment, hydrogen embrittlement, modelling.  
 
INTRODUCTION 
 
Stress corrosion cracking and corrosion fatigue (collectively environment assisted cracking, EAC) pose 
major challenges in prediction because the interaction of the environmental, mechanical and material 
variables responsible for cracking occurs at a highly localised level. Cracks tend to initiate at microstructural 
and microchemical inhomogeneities, at stress concentrators, and at sites of local solution chemistry change. 
The latter is reflected for example in the importance of  pitting, crevice attack, or intergranular corrosion as 
precursors to EAC for corrosion resistant alloys. Once a crack has initiated, the growth rate is determined or 
influenced strongly by the crack-tip environment and electrochemical kinetics. This applies also to hydrogen 
embrittlement, but here the concept of the crack-tip environment must be expanded to include the distribution 
of hydrogen atoms in the crack-tip process zone. 
 
There is no mechanistic model for crack growth in aqueous solutions which properly accounts for the range 
of service variables and their time variation in a coherent manner although the simplest models based on slip-
dissolution have had some limited engineering application, albeit with partial fitting [1,2].  Predicting 
threshold and crack growth kinetics for hydrogen embrittlement in an engineering context is a particularly 
formidable challenge [3]. In most service applications, transient variations in stress, temperature or 
environment chemistry will occur as part of normal operational service or be induced by scheduled 
excursions (e.g. shutdown) or unintentional fluctuation in system control (e.g. contamination); the character 
of the metal surface may change with time of operation (e.g. precipitation of a scale or deposit) and welding 



quality may be variable. These pose a challenge to service prediction and would require extensive input data 
gathering representative of the change of conditions. It is perhaps best not to envisage mechanistic model 
development being undertaken for direct engineering prediction. Engineers will base predictions mainly on 
laboratory testing and field experience/measurement. Nevertheless, the value of modelling will be in sensibly 
interpreting short term data, in ensuring that testing is conducted with an informed awareness of the impact of 
operational variables and in providing some framework for prediction when test data are limited. To instil 
confidence in the industry, modelling has to improve and rigorous validation must be undertaken. 
 
The component features of hydrogen embrittlement models are clear: crack-tip electrochemical kinetics,  
hydrogen transport in the stress/strain field at the crack tip, the interfacing between electrochemistry and 
transport, and a crack advance or failure criterion. These are interdependent to a large extent and a crack 
growth model must embrace all aspects in an integral fashion. A brief summary of the present position and 
the challenges in raising such models to the next level of sophistication is now described. 
 
CRACK-TIP ELECTROCHEMISTRY 
 
Characteristics 
 
Conceptually, the crack electrochemistry system is now well understood and the principle processes are 
illustrated schematically for a Mode I crack in Figure 1. For completeness, the dissolution of alloying 
elements and the solubility limit for dissolved metal cations would also be included.  Depletion of reactive 
species such as oxygen confines reduction of this species mainly to the external surface. Under open circuit 
conditions, the net anodic current emerging from the crack causes a depression in the corrosion potential in 
order to provide the balancing net cathodic current on the external surface. The key requirement for EAC 
prediction is to quantify the transient electrode kinetics for the partial anodic dissolution and cathodic 
hydrogen generation reactions at the crack tip. These cannot be determined directly but the functional 
dependency of the parameters, viz. maximum current density on bare surface and the refilming kinetics, can 
be determined from electrochemical experiments in simulated crack-tip environments and the values then 
used as input to the crack electrochemistry model. 
 
Present position in prediction 
 
Over the last two decades, the capability of modelling the various reaction processes in a crack together with 
mass transport by diffusion, ion migration and in the case of corrosion fatigue, fluid flow, has been 
established [4]. Models of crack chemistry of varying level of complexity exist for systems such as low alloy 
carbon steels in seawater, nickel-base alloys and stainless steels in nuclear environments, nickel in H2SO4. In 
relation to hydrogen embrittlement the advances made have led to clarification of several issues. 
 
What we have learned 
 
Relevance of bulk environment 
 
• The bulk environment composition, including the species indicated in Figure 1 (O2, H2S, H+ etc) will 

have an effect on the corrosion potential which can influence crack chemistry and potential for that 
reason, but, depending on crack size may not have a direct effect on crack chemistry because reactive 
species are consumed before they enter far into the crack.  

• In very low conductivity chloride solutions, the potential drop in the bulk solution is often significantly 
greater than in the crack itself since dissolved metal ions increase the crack solution conductivity. A crack 
size effect on crack-tip conditions is predicted for low conductivity solutions but associated with the 
impact of crack depth on net current flow from the crack and the potential drop induced in the bulk 
solution [5]. 

 
 
 
 



Crack size effects 
 
• In corrosion fatigue of low alloy high strength steels in seawater, acidic pH values of 4 can be achieved in 

short cracks compared to near neutral values for long cracks [4]; enhanced crack growth of the short 
crack would then be predicted and has been reported [6].  

• Depletion of reactive species from the bulk solution such as H2S will be greatest for deep cracks. For 
corrosion resistant alloys in the passive state, this may lead to a decrease of crack growth with increase in 
crack size, although testing remains to be done. For steels in the active state, this may result in bulk 
charging becoming the dominant source of hydrogen atoms for deep cracks [3]. 

 
Localised charging vs bulk charging 
 
• As noted above, for alloys in the active state, bulk charging can become the predominant source of 

hydrogen atoms controlling crack growth when reactive species such as H2S or H+ in acid solutions are 
present in the bulk at significant concentrations but consumed readily in the crack and do not reach the 
crack tip. Bulk charging will also tend to be important under cathodic polarisation conditions because the 
potential drop and high pH in the crack limit hydrogen atom generation at the crack tip [4]. 

• For corrosion resistant alloys in the passive state, the oxide film is a major barrier to hydrogen entry at 
ambient temperatures. For that reason, hydrogen entry will be favoured where localised straining ruptures 
the film or where localised corrosion creates a local acidic metal chloride solution and correspondingly 
dissolves the film barrier. In the latter case, cracking may not ensue unless the critical pitting or critical 
crevice temperature is exceeded; simpler tests can then be used as a preliminary indication of cracking 
likelihood.  

 
Fluid flow induced by cyclic loading 
 
Fluid mixing induced by cyclic loading will result in dilution of the crack solution and generally permit more 
influence of bulk solution reactants. Even at a low frequency of 0.1Hz, fluid flow can result in a decrease in 
crack-tip metal ion concentration by more than two orders of magnitude [4]. Because of the lower 
conductivity, anodic polarisation will tend to be more difficult in a corrosion fatigue crack compared to a 
stress corrosion crack (assuming no major change in fracture mechanism which affects crack opening). In 
seawater, cathodic polarisation will be more difficult as buffering species are pulled into the crack by the 
fluid mixing and reduce the beneficial effect of high pH on the ease of polarisation.  
 
Advances required 
 
The limitation in modelling the crack-tip environment and predicting crack-tip kinetics for many systems is 
primarily the limited availability and quality of input parameters, including the transient electrode kinetics on 
initially bared surfaces which must be derived from separate electrochemical experiments using fast fracture 
or guillotine techniques. The establishment of an electrochemical database is essential and validation of 
model predictions by crack-tip chemistry and potential measurements is important. However, in some 
systems the crack-tip reactions may not have a significant effect on the local potential and chemistry and  
demonstration that the predicted crack tip reaction kinetics are valid may not be possible.  
 
More attention to the crack-tip shape and opening for moving cracks and for intergranular cracks would add 
refinement. Concentrated solutions still pose some uncertainty in modelling; nevertheless, progress in being 
made. Modelling is still accessible to only a comparative few because of the complexity of development. A 
future can be envisaged where such models are accessed through the internet and run remotely with an 
individual’s own dataset. Such schemes are already in place for other material performance models.   
 
HYDROGEN TRANSPORT AND TRAPPING AT A CRACK TIP 
 
Characteristics 
 
The kinetics of hydrogen generation and entry will be varying around the crack tip from the highly reactive tip 
area to the crack walls and will be undergoing a complex time variation in response to film rupture and repair. 



The hydrogen atoms generated will be absorbed and transported into the metal by lattice diffusion, grain 
boundary diffusion and by dislocation transport. Although there is some indication of enhanced grain boundary 
diffusion in pure nickel, for most commercial alloys the presence of  impurities and precipitates at the grain 
boundary will provide local traps and hinder grain boundary diffusion. Dislocation transport of hydrogen 
certainly occurs but the relative significance is more hotly debated. However, the effectiveness of this process is 
inevitably constrained by microstructural barriers limiting the mean free path. Long range transport is not 
readily feasible but short range redistribution of hydrogen with possible dumping of hydrogen from dislocations 
to grain boundaries or to interfaces is likely. The hydrostatic stress field at the crack tip will create a gradient in 
chemical potential which will provide a driving force for localisation of hydrogen in the lattice. Trapping at 
microstructural trap sites will influence the diffusion rate through the matrix and may play a critical role in the 
fracture process. In addition, differential strain in the crack-tip region will create variations in dislocation trap 
density, and the varying plastic strain rate in the process zone will determine dislocation trap generation kinetics 
and dislocation transport kinetics.  
 
In some systems, hydrogen atoms absorbed from the external surface will be diffusing to the crack-tip region. If 
that were not complicated enough, the crack advance process will result in a redistribution of crack-tip 
conditions. Cyclic loading will cause dynamic fluctuations in local entry kinetics, through the effect on crack- 
tip reduction kinetics and film rupture rate, and will affect the local concentration through the cyclic variation in 
hydrostatic stress.  
 
Present position in prediction 
 
Modelling of the time variation of the hydrogen distribution at a crack tip is a formidable problem but major 
advances have been achieved through the work of Sofronis and McMeeking [7,8], Turnbull et al [9], and  Krom 
et al [10].  The modelling of Sofronis and McMeeking and of Krom et al represented a important step forward 
insofar as the models were two-dimensional, included elastic-plastic analysis combined with diffusion and 
trapping and accounted for trap generation associated with crack-tip straining. Simplified boundary conditions 
were used with no specific account of the distribution of the electrochemical kinetics between the tip and walls. 
Trapping of hydrogen was dealt with only in relation to low occupancy conditions. Also using a two-
dimensional model, more appropriate boundary conditions were established by Turnbull et al which for the first 
time united the transport and electrochemical processes explicitly by including the reaction processes on the 
crack tip and walls in a generalised flux expression with no a priori assumption about surface or diffusion 
control of entry and transport. Reversible traps of varying occupancy and irreversible trapping were included. 
The other virtue of the model of Turnbull et al was the exploration of the imbalance between crack-tip charging 
rates and bulk charging rates. However, although a two-dimensional approach was used, an important limitation 
was the simplified Prandtl stress field used. The assumed crack-tip mechanics model has a critical impact on 
predictions and contrasting approaches such as that of Lii et al [11] based on a discretised dislocation model 
indicate the potential for very much larger hydrostatic stresses, at least in the single crystal system studied  
 
What we have learned 
 
Hydrogen localisation 
 
Hydrogen atoms in the lattice are localised due to hydrostatic stress but the magnitude of the effect is modest 
for a blunting crack. However, since the crack-tip opening displacement for propagating cracks and for 
intergranular cracks tends to be smaller than predicted by the blunting model, the latter will tend to 
underestimate the crack-tip stresses and localised lattice hydrogen content. Nevertheless, the trapped hydrogen 
content ahead of the crack tip will be large. The trap binding energy will always lead to a local concentration 
significantly in excess of the lattice value, up to trap saturation level. Also, for hydrogen trapped at dislocations, 
the highly deformed nature of the crack-tip region means high trap densities.  
 
Strain rate effects 
 
A key conclusion from the work of Krom et al [10] and of Sofronis et al [8] was the demonstration that 
straining the material will cause depletion of lattice hydrogen because diffusion of hydrogen from the source at 
the tip is not fast enough to replenish hydrogen atoms lost to the newly created traps. This dilution of hydrogen 



atom concentration would lead to the expectation of a reduced crack growth, which would be accentuated by 
increased strain rates. Krom et al give emphasis to the reduced lattice hydrogen concentration and models based 
on such in predicting the influence on cracking but inevitably the local trapped hydrogen concentration would 
be reduced also and a trapping-based model could not be excluded.  Also, dislocation transport would provide 
an explanation for the strain rate behaviour but its inclusion in continuum models is difficult because it is 
inherently an inhomogeneous process. Correspondingly, there will always be uncertainty in the local 
distribution of hydrogen atoms at the microstructural level.  
 
Surface reaction vs diffusion control 
 
In alloys of low lattice diffusivity for hydrogen atoms, e.g. nickel-based alloys,  entry and transport is inevitably 
diffusion control because the diffusion flux of hydrogen will be small compared to the charging and 
recombination fluxes at the crack tip. For iron-based ferritic alloys for which the lattice diffusivity is high, it is 
less apparent and conceptually, it would be expected to depend more critically on the concentration gradient. 
The particular advance of the model of Turnbull et al [9] was to show that the concentration gradient was high 
(and hence the flux high) because of the significant gradients in hydrogen induced by the marked difference in 
hydrogen generation kinetics between the crack tip and adjacent crack walls. Thus, the prediction was that 
crack growth would be surface reaction controlled, although a cautionary comment is required because of the 
simplified stress-strain model adopted. Since many of the models developed for crack growth kinetics are based 
on low alloy steel and often invoke diffusion control using a one-dimensional model this was an important step 
forward.  
 
Bulk charging 
 
The generalised boundary conditions adopted by Turnbull et al, which incorporated desorption fluxes as well as 
absorption fluxes, allowed exploration of the effect of pre-charging. In this case, significant loss of hydrogen 
atoms via the crack tip and walls can occur if the charging conditions at the tip are less significant than that 
associated with the precharging and especially so when testing in air. The latter deduction raises uncertainty in 
the interpretation of crack growth kinetics on cadmium-coated specimens once cracking has commenced and 
the coating barrier film locally damaged.  Bulk charging is an important issue. Long term (150 days) pre-
exposure of an AISI 4340 steel cathodically protected in seawater indicated corrosion fatigue crack growth 
rates much faster than obtained from conventional test (20 days) [3].  
 
Advances required 
 
There has to be integration of the best features of the models of Turnbull et al and those of Sofronis et al and of 
Krom et al but with crack-tip mechanics models more appropriate to growing stress corrosion and hydrogen 
embrittlement cracks. Multi-disciplinary interaction is required. A further step is to deal with the transient 
electrochemical parameters associated with a refilming material (rather than average crack-tip values). This is 
not so difficult to incorporate into a model but obtaining experimental data on the effect of refilming on the 
absorption and desorption input parameters, which determine C0, presents a major challenge.  In principle, it 
should not prove overly difficult to model some features of the effect of cyclic loading on hydrogen atom 
distribution provided we can define the impact on the stress and strain distribution on individual cycles and the 
cumulative impact. However, this would be on the basis of a non-propagating crack.. The biggest challenge is 
to account for the crack growth process itself, assuming that a criteria for the onset of cracking and for crack 
arrest (if crack growth is not a continuous process) has been established. With crack extension, new surface is 
created generating more hydrogen. The crack will have to be treated as a moving boundary and the evolution of 
the hydrogen distribution progressively recalculated. All of these steps are foreseeable with focused resource. 
Perhaps the greatest fundamental difficulty will be the incorporation of inhomogenous localised dislocation 
transport of hydrogen into the model.  
 
These represent some of the challenges in improved modelling. Experimental validation is critical in models of 
such complexity and with so many variables. Direct measurement of crack-tip hydrogen concentration, lattice 
and trapped hydrogen, very close to the crack tip would be a fundamental test but presents major technical 
difficulties. Within the bounds of current test methods it is not easy to envisage how this might be achieved at 
the spatial resolution required. 



 
CONCLUDING REMARKS 
 
The potential exists for significant progress in modelling crack-tip electrochemistry and hydrogen transport 
in an integrated manner but as the complexity increases and the input database enlarges it becomes more 
important to seek direct experimental methods of validation such as crack chemistry or crack-tip hydrogen 
atom concentration measurement.  Clearly, an integrated hydrogen generation and transport model will be a 
necessary input to models of cracking (although such modelling will inevitably be numerically based) but we 
have to build a more effective description of the failure process and its relationship to material properties and 
microstructural parameters.  
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Figure 1: Schematic illustration of crack electrochemistry system indicating reactions in crack, transient 
current densities associated with film rupture at the tip, the possible impact of local material composition in 
determining kinetics (and fracture path) and accumulation of hydrogen ahead of the crack tip. 
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ABSTRACT 
With the help of the examinations described in this paper, possibilities should be shown to assess elastomer 
materials by different fracture mechanics methods. Vulcanizates on the basis of the statistical styrene-
butadiene copolymer SBR 1500 with different sulphur and carbon black contents were investigated. Several 
fracture mechanics examination methods under cyclic, impact-like and quasi-static loading conditions were 
applied for describing the crack initiation and crack propagation behaviour. The so-called Tear and Fatigue 
Analyser was used to determine critical values of tearing energy. The instrumented tensile-impact test (ITIT) 
developed further for elastomer testing is described. By this test, the crack toughness behaviour related to 
resistance against unstable crack propagation can be examined. At last, a quasi-static fracture mechanics test 
was applied to the determination of stable crack initiation and crack propagation behaviour. The results of 
the different tests are discussed in dependence on structure, i.e. sulphur and carbon black content.  
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INTRODUCTION 
Elastomer materials are used for a great number of applications from which defined requirements on mate-
rial properties follow. Among others, for the application properties of tires for example, even under eco-
nomic and ecological aspects, wet-skid stability, rolling resistance and wear resistance are important aspects. 
In the case of passenger car tires, the wear phenomenon mainly appearing is fatigue wear leading to abrasion 
losses within the tire tread. This is caused by initiation and propagation of cracks from which the application 
of fracture mechanics concepts for material assessment is derived. The use of fracture mechanics concepts 
for material characterisation of thermoplastic polymers has been proven to be very helpful in material devel-
opment and optimization [1]. However, the transfer of these fracture mechanics concepts, such as J-integral 
or COD concept, to elastomeric materials is difficult because of their special, non-linear deformation behav-
iour. Therefore, fracture mechanics methods have to be modified partly and it is likely necessary to find new 
ways in analysis of test data recorded. By the experiments described below, it should be shown how usual 
fracture mechanics test methods work for elastomer testing. 
 
 
 



EXAMINATION METHODS 
The material behaviour under cyclic loading conditions was tested by using the Tear and Fatigue Analyser 
(TFA) of Coesfeld GmbH. This is a testing device which was specially developed for the examination of 
elastomers’ fatigue behaviour. Up to ten specimens one-sided cut can be tested at the same time. During the 
experiment, various measuring parameters are recorded, such as current crack length, load and energy, 
which serve for subsequent analysis. From these tests, crack propagation curves for each material were plot-
ted and critical tearing energies as a measure for the materials’ resistance against fatigue crack propagation 
were determined. Instrumented tensile-impact tests (ITIT) can be used to investigate even such flexible ma-
terials like elastomers under impact-like loading conditions. In principle, a specimen is fixed between the 
unsecured crosshead and the secured clamp (see Figure 1). Then the specimen is loaded by the pendulum 
hammer that impacts the unsecured crosshead, and so the specimen is strained in direction of its longitudinal 
axis until it tears. At the same time the load–time curve is recorded, and afterwards through double integra-
tion the load-extension curve is calculated. In analogy to the instrumented Charpy impact test (ICIT) [2], 
characteristic parameters are used for analysis, and J values Jd were determined according to an evaluation 
method of Begley and Landes.  
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Figure 1: Schematic representation of the instrumented tensile-impact test 
 
 

Besides these two methods described above, recording of crack resistance (R-) curves using a quasi-static 
fracture mechanics test took place. Following the stop-block method of the ICIT, the tests on several speci-
mens (multiple-specimen method) were stopped after reaching different strain values to produce different 
amounts of stable crack growth. The fracture surfaces were investigated with a light microscope to deter-
mine the size of stable crack growth. From the recorded load–extension curves, energies for calculation of 
the loading parameter J for the R-curve were determined. Finally, the J–∆a data were plotted and regression 
functions were fitted and then used for subsequent analysis. Ascertainable parameters of the crack resistance 
curves are, for example, technical crack initiation values J0.2 determined according to ESIS TC 4 recommenda-
tion [3] or the slope of the R-curve dJ/d∆a. These parameters supply quantitative criteria for a material com-
parison.  
 
 
MATERIALS 
Basis of the materials investigated is the statistical styrene-butadiene copolymer SBR 1500 with a styrene 
content of about 23 wt.-%. Crosslinking occurred with a sulphur–accelerator system. The sulphur content 
was varied in the range from 0.8 to 2.4 parts per hundred rubber (phr) with a constant sulphur–accelerator 
ratio to examine the influence of the crosslink density on the properties. For assessment of filler influence, 
vulcanizates with a constant sulphur content of 1.6 phr, but with different carbon black contents in the range 
from 0 to 50 phr were produced. Vulcanizates of this kind are used in different areas, for example in tires or 
conveyor belt materials. For these materials, network densities (see Figure 2) were determined on the basis 
of the Mooney-Rivlin equation using stress–strain diagrams. The physical network density shown in Figure 2 
contains a primary network density as a result of chemical crosslinking and elastically active entanglements. In 



the case of filled vulcanizates, a secondary apparent network density of the filler network can be estimated that 
is related to elastically effective filler-polymer interactions and to the contribution of the filler–filler network-
ing above a certain percolation threshold.  
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Figure 2: Network density of the elastomers examined 
 
 

For the fatigue tests, SENT specimens were used with the dimensions of length l = 64 mm, width W = 15 
mm and thickness B = 1.5 mm. The initial crack length was about 1 mm. For the tensile-impact tests and for 
the quasi-static fracture mechanics tests, DENT specimens were used which had the same dimension as for 
the fatigue tests, but the initial crack length was about 4 mm and 6 mm, respectively.  
 
 
RESULTS  
Critical tearing energy values Tc determined by the TFA measurements and the results of the instrumented 
tensile-impact test for the unfilled vulcanizates are shown in Fig. 3. Because Tc remains nearly constant up to 
a sulphur content of 2.0 phr, it can be said that the increasing network density (see Fig. 2) in this sulphur 
content range has no influence on Tc. Only a higher sulphur content decreases the critical tearing energy. The 
J values indicate a constant decrease of toughness, e.g. the resistance against unstable crack propagation is 
decreased with increasing network density.  
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Figure 3: Results of the cyclic and impact tests for the unfilled vulcanizates 



However, the Tc values and the J values of the filled vulcanizates are decisively influenced by changes in 
structure, i.e. by the rising carbon black content. This is attributed to reinforcing effects and the development 
of a filler network and increasing interactions between filler and polymer as well as filler and filler, respec-
tively. For the J values of the filled materials a maximum was found at 40 phr carbon black. From the 
maximum loads and maximum extensions is derived that this maximum is strength-determined and shows 
that only a filler content up to 40 phr leads to an improvement of the crack growth behaviour of the observed 
material system. Possible causes for the decreasing parameter level with 50 phr carbon black are, on the one 
hand, reduction of effective network chain length due to the high filler content and a reduced extensibility in 
the area of stress concentrations within the material, which decrease the energy absorption capacity. On the 
other hand, an incomplete distribution of the carbon black particles and agglomerates, respectively or larger 
filler agglomerates are considered as inhomogeneities and work as crack starter due to unfavourable stress 
circumstances nearby. 
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Figure 4: Influence of carbon black content on Tc and on Jd values related to resistance against unstable 

crack propagation  
 
 
The results of the quasi-static fracture mechanics examination are shown in Figs. 5 and 6. Figure 5 repre-
sents the J–∆a curves, where a significant increase of the slope with rising carbon black content is visible. In 
comparison with the filled materials, only small differences resulted for the unfilled vulcanizates. This is 
reflected by the technical crack initiation values J0.2 and the values of the slope of the crack resistance curves 
dJ/d(∆a) at the point of maximum experimentally determined crack growth ∆amax (exp) (Figure 6).  
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The crack initiation and crack propagation behaviour is only slightly influenced up to a sulphur content of 
2.0 phr, a still higher sulphur content of 2.4 phr leads to a lower crack initiation value, but to a higher resis-
tance against crack propagation (see Figure 6a).  
With an increasing carbon black content up to 30 phr, J0.2 is slightly increased at first, then a strong increase 
of the resistance against stable crack initiation appears. Even the resistance against stable crack propagation 
characterised by dJ/d(∆a) at ∆amax(exp) rises slightly up to 30 phr filler and shows a maximum value at 40 
phr. That means, more energy is necessary to initiate a stable crack within the 50 phr filled material, but in 
comparison with the 40 phr filled vulcanizate, the resistance against stable crack propagation is lower.  
The observed differences of the crack initiation and propagation behaviour show that a multi-parametrical 
description of the fracture behaviour is necessary for an optimal material characterisation.  
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Figure 6 a, b: Influence of sulphur (a) and carbon black content (b) on the technical crack initiation value 
and the slope of the R-curves at the point ∆amax (exp) 

CONCLUSIONS 

 
With the examination methods described here, one can assess the toughness behaviour of the elastomer ma-
terials investigated. An increase of the sulphur content, this means an increase of crosslink density, leads, in 
some cases, to a considerable decrease of the toughness parameters determined under various loading condi-
tions. In dependence on filler content, maximum values for the various toughness parameters, except for the 
technical crack initiation parameter J0.2, were found at 30 and 40 phr filler content, respectively. Therefore, 
the addition of 30–40 phr carbon black shows in our study the optimal improvement of the crack initiation 
and propagation behaviour of this elastomer system in the filler content range investigated.  
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ABSTRACT

Mechanical surface treatments such as shot peening or deep rolling are very effective tools to improve the
fatigue life and endurance strength of cyclically loaded components. By introducing compressive residual
stress and strain hardening in the surface layers, all stages of fatigue are significantly altered, from the first
dislocation movements (cyclic hardening/softening) until the eventual propagation of micro- and macro-
cracks.
Metastable austenitic stainless steels are particularly attractive for mechanical surface treatment as they
exhibit very high strain hardening due to the martensitic transformation and a very complex near-surface
microstructure, e.g. a thin two-phased surface layer of nanocrystallites.
In order to clarify the differences in crack formation of polished and of surface treated (shot peened or deep
rolled) material states, scanning electron microscopy (SEM) studies have been carried out with conventional
and high resolution instruments on samples of austenitic stainless steel AISI 304 fatigued under stress
control.
The results clearly showed a distinct difference in damage mechanism depending on the surface state.
Whereas polished surface states exhibited crack formation preferentially at sites of extensive multiple planar
slip, cracks in mechanically surface treated states were mostly formed in a brittle manner without observable
surface slip. Local loss of coverage during the shot peening process, however, led to microscopically non-
peened regions which exhibited early crack initiation by formation of slip bands.
Interestingly, these preferential microcracks were rarely the crack sites from which fatal cracks originated,
which suggests that the damage process is not only controlled by physical crack initiation but mainly by
crack propagation conditions for microcracks. A slip line-induced microcrack formation can also be
promoted in deep rolled specimens if thin surface layers of approximately 5-l 0 microns are elecrolytically
removed prior to cycling, thus also removing the nanocrystalline surface regions which impede slip line
formation.

KEYWORDS

shot peening, deep rolling, nanocrystallization, crack initiation

INTRODUCTION

Mechanical surface treatments can lead to very complex and depth-dependent microstructues in metastable
austenitic stainless steels, such as AISI 304. A typical deformation mechanism in AISI 304 is deformation-



induced martensitic transformation [1,2,3]  leading to typically 25-45% a’-martensite after deep rolling or
shot peening, respectively, in near surface layers [4,5,6].  The formed martensite is lath-like and heavily
twinned with high dislocation densities in the austenitic matrix. Additionally, deformation bands and
nanocrystalline surface regions are formed with grains as small as 20 rims, extending into a depth of 1-2
microns (Fig. 1) [4].
Fatigue investigations on mechanically surface treated AISI 304 revealed pronounced lifetime and endurance
strength improvements, especially after deep rolling [4].  Since the resultant near-surface compressive
residual stress profile remained only partially stable in low cycle (higher strain) fatigue, in contrast to surface
treatment-induced near surface microstructures which remained stable throughout cyclic loading, the fatigue
life improvement can primarily be attributed to a higher microstructural fatigue resistance in near surface
regions [4,7].  The specific role of different contributing microstructures for fatigue life-improvement of
mechanically surface treated materials has not been defined in the literature. Therefore, in the present work
an attempt is made to characterize the effect on fatigue of the most striking microstructural feature, -namely
the nanocrystalline layer- in mechanically surface treated AISI 304 by investigating deep rolled specimens
and specimens before and after the nanocrystalline layer has been removed electrolytically prior to cycling.

EXPERIMENTAL PROCEDURES

Rotation-symmetrical unnotched specimens of AISI 304, with a gage length of 10 mm and a diameter of 5
mm, were deep rolled with a “ball-point” rolling device, using a hydrostatic spherical rolling element and a
rolling pressure of 150 bar (the composition and microstructure of the steel are given in ref. [4]).  One set of
specimens was then electrolytically polished for 20 seconds with a buthanol/perchloric  acid-electrolyte in
order to remove the surface treatment induced nanocrystalline surface layer. The surface roughness Rz before
and after polishing was around 0.5 microns.
Tension/compression fatigue tests were performed under stress control without mean stresses (R = -1) with a
cycling frequency of 5 Hz and a stress amplitude of 365 MPa.  The fatigue tests were interrupted just before
fracture at the onset of macro-crack propagation; practically this was done at the point where the hysteresis
loops as measured with a clip-on extensometer began to buckle. The surface crack length was then
approximately 1 mm. The specimens were then taken out of the servohydraulic testing device and the surface
crack topography was investigated with a Camscan S4-  and a LEO 1550 Gemini (Field emission)-scanning
electron microscope (SEM).

RESULTS

The fatigue damage mechanisms in the polished, un-surface treated (reference) state is characterized by
extensive slip line formation at the surface (Fig. 2). Typically, in AISI 304 multiple planar slip along (11 l)-
planes occurs at high stress amplitudes. The planar slip character is due to the small stacking fault energy of
AISI 304 which is around 20 rnJmm2  [8].  It has been repeatedly shown that slip line formation is a precursor to
microcrack formation in electrolytically polished AISI 304 [9].  Preferential cracks emanate from the border
between slipped and unslipped material due to strain incompatibilities and stress concentration, as has been
shown in SEM and atomic force microscopy [lo].
In mechanically surface treated (e.g. deep rolled or shot peened) AISI 304 the surface fatigue damage
mechanism is quite different (Fig. 3). Here, only an extremely low amount of surface plasticity (increase of
surface roughness) around crack flanks and crack tips was detected. This lack of plasticity can be attributed
to the surface treatment-induced nanocrystalline layer which effectively impedes dislocation movement and
hence slip line formation. According to [l 11,  dislocation pile-ups in nanocrystallites with a grain size of 20
nm or smaller are not effective enough to promote dislocation movement or Frank-Read-sources in
neighbouring grains, thus only allowing the formation of brittle cleavage cracks [12]  to relieve stress
concentrations. Other characteristic features of fatigue damage in mechanically surface treated
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ABSTRACT

The state-of-the-art for characterizing, analyzing, and predicting delamination growth in
composite materials and structures using a fracture mechanics approach will be reviewed.
Techniques for measuring delamination fracture toughness and fatigue delamination onset
data will be highlighted. The use of these data in finite element analyses utilizing fracture
mechanics will be examined. The virtual crack closure technique for calculating strain
energy release rates will be highlighted. The importance of capturing the physics of
damage formation, accumulation, and growth will be emphasized. Application of this
approach to delamination onset and life predictions for stiffener pull-off behavior in skin-
stiffened regions and fatigue failure of composite rotor hub flexbeams will be  highlighted.
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INTRODUCTION

One of the most commonly observed failure modes in composite materials is
delamination, a separation of the fiber reinforced layers that are stacked together to form
laminates. The most common sources of delamination are the material and structural
discontinuities shown in figure 1. Delaminations occur at stress free edges due to the
mismatch in properties of the individual layers, at ply drops where thickness must be
reduced, and at regions subjected to out-of-plane loading such as bending of curved beams.
Delaminations form due to some combination of three basic fracture modes shown in
figure 2. These include the opening mode (mode I), the sliding shear mode (mode II), and
the scissoring shear mode (mode III). The interlaminar fracture toughness (IFT) associated
with each of the fracture modes must be characterized and the corresponding strain energy
release rates for each mode associated with the configuration and loading of interest must
be calculated to predict delamination onset and growth.

DELAMINATION CHARACTERIZATION

A mixed-mode I & II delamination failure criterion that is used for 2D problems is shown
in figure 3. The IFT is determined as a critical value of the strain energy release rate, Gc,
plotted as a function of the mixed-mode ratio, GII/Gc. For the pure mode I opening case,
GII/Gc=0, whereas for the pure mode II case, GII/Gc=1. These properties are determined
using test methods that are being evaluated and standardized by the American Society for
Testing and Materials (ASTM) and other national standards organizations, as well as the
International Standards Organization (ISO) [1]. The pure mode I data are generated using
a Double Cantilever Beam (DCB) specimen. The pure mode II data are generated using an
End-notched Flexure (ENF) specimen. The mixed mode I&II data are generated using a
Mixed-mode Bending (MMB) specimen. As shown in figure 3, the apparent toughness
increases monotonically between the pure opening mode I case and the pure shear mode II
case. Furthermore, due to the complex micro-mechanisms involved, the scatter is very
large for the mode II case [2]. For cases where a mode III fracture toughness is required,
the Edge-cracked Torsion (ECT) specimen is preferred.

Because delaminations often form and grow under cyclic loads, a fatigue characterization
is also desired. The classical Paris Law for fatigue crack growth has often been generated.
However, the exponents in these power laws are quite high compared to similar
characterizations for metals. Hence, a no growth threshold approach is often proposed
instead [3-6]. Furthermore, for mode I fatigue, fiber bridging typically develops in the
unidirectional DCB specimens [1,4]. Fiber bridging can cause a growing crack to arrest
artificially early yielding a non-conservative threshold value. Therefore, as shown in figure
4, an alternate G versus N onset curve is typically generated to achieve a threshold
characterization for delamination onset [4-7].



DELAMINATION ANALYSIS

The strain energy release rate, G, associated with onset and growth must be determined to
predict delamination. Typically, a plot of  the G components due to the three unique
fracture modes (GI, GII, GIII) and the total G= GI+GII+GIII are calculated as a function of
delamination length, a, using the Virtual Crack Closure Technique (VCCT) in a finite
element analysis (FEA) [8,9]. The VCCT technique, depicted in figure 5, utilizes the
product of nodal forces and the difference in nodal displacements to calculate the G
components for each fracture mode. For predicting delamination onset under quasi-static
or cyclic loading in 2D problems, the peak value of the G as a function of delamination
length is compared to the delamination onset criteria shown in figures 3 and 4,
respectively. The VCCT technique has also been extended to three dimensional problems
[10,11].

DELAMINATION PREDICTION

Skin/stiffener debonding

In reference 12, the pull-off loads associated with separation of a hat stiffener from the
skin of a composite part by delamination were predicted by comparing G’s calculated
from FEA using VCCT to mixed-mode delamination failure criterion. Subsequent studies
led to the development of a simple specimen consisting of a skin bonded to a tapered
flange laminate [13]. By applying various types of loads in a finite element analysis of the
specimen, VCCT may be used to calculate G’s and predict the onset of delamination from
the matrix cracks. From this prediction, a failure criterion for combinations of bending and
membrane loads may be generated.

Flexbeam Fatigue Life Prediction

Composite rotor hubs contain tapered flexbeams with large numbers of ply terminations,
or ply drops, to taper the beam thickness. These ply drops act as initiation sites for
delamination in the flexbeam under high combined tension and cyclic bending loads. In
reference 14, flexbeams were tested and analyzed to determine the fatigue life. Fatigue
delamination onset data were compared to G distributions determined from FEA and
VCCT to predict the onset of unstable delaminations in these complex tapered laminates
(figure 6).



CONCLUSIONS

Delamination fracture toughness and fatigue onset have been characterized using fracture
mechanics. The virtual crack closure technique (VCCT) is commonly used in finite
element analyses (FEA) to calculate strain energy release rates. Characterization data were
used with VCCT in FEA to predict delamination onset and life in composite rotor hub
flexbeams and stiffener pull-off behavior in skin-stiffener reinforced composites.
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Fig. 1  Delamination Sources at Geometric and Material Discontinuities
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ABSTRACT 
 
This paper describes experimental work on cleavage of mica in a double cantilever beam (DCB) 
geometry in which the main crack induced by a wedge driven into one side of the specimen interacts 
with a pre-existing internal crack. The latter is introduced by inserting a fiber between the delaminating 
beams of the same mica specimen during a previous DCB experiment, followed by retraction of the 
wedge, which results in healing of the beams except for an internal crack wedged apart by the inserted 
fiber. The experiment has been simulated numerically using a cohesive zone model, implemented as 
cohesive elements, to represent the separating interface. As the main crack approaches the internal pre-
existing crack, the two interact, resulting in mutual repulsion that manifests as an increase in apparent 
toughness. This feature of the experiment is captured very well by the model, independent of cohesive 
zone parameters other than the work of fracture. At a critical value of wedge displacement, the two 
cracks coalesce unstably, and the simulation captures this event as well. However, the instability 
condition depends on additional details of the cohesive zone law; by matching simulation to 
experiment one is able to extract a characteristic cohesive zone opening or peak cohesive stress. 
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INTRODUCTION 
 
Cleavage experiments on mica by insertion of a wedge, a double cantilever beam (DCB) geometry, go 
back to the work of Obreimoff [1], have been re-visited often [2], and have contributed greatly to our 
understanding of the physics of fracture. Here we report on DCB experiments in mica in which a 
primary crack, induced by the wedge, interacts with a second, internal crack. These experiments build 
on the work of Wan et al. [3-5] on mica where, in particular, a repulsive interaction of co-planar cracks 
was observed. With increasing wedge insertion the two cracks coalesce eventually into one.  The 
experiments have been simulated successfully using a cohesive zone model for the interfacial 
separation process.   They reveal that the instability corresponding to crack coalescence depends on 
details of the cohesive zone model in addition to the fracture energy.  By obtaining agreement between 
the experiments and simulation, one is able to extract a measure of the characteristic cohesive zone 
opening. 



 
The cohesive zone approach to fracture, introduced originally by Barenblatt & Dugdale [6,7], has 
recently received considerable renewed attention [8,9,10]. It is especially powerful when implemented 
for numerical simulation of fracture, and is able to model different forms of inelasticity, crack 
nucleation and propagation. In particular, it has the potential to extend fracture analysis to small 
dimensions, and possibly to be a mechanism to bridge length scales. The cohesive zone approach 
requires the specification of a model that describes tractions resisting separation of material points at a 
crack tip. In an ideal elastic material, the macroscopic mechanics of a propagating crack when the 
cohesive zone is small compared to all dimensions are governed by the work of fracture alone [2]. 
Other cohesive zone parameters affect only the details of the stress and displacement fields near the 
crack tip. In inelastic materials, however, the work of fracture alone is insufficient; at least a second 
parameter is needed, such as peak separation stress or characteristic opening displacement. Even for a 
crack in an ideal elastic material, these details of the cohesive zone model can be important for crack 
initiation or certain instabilities.  
 
 
EXPERIMENTAL PROCEDURE AND RESULTS 
 
Material Selection and Preparation 
Muscovite mica, an aluminum silicate, is a layered mineral with strong covalent intra-layer bonds and 
weak interlayer bonds. Because of this crystallographic structure, mica cleaves naturally.  In addition, 
because muscovite mica is optically transparent, crack length measurements can be made by viewing 
interference fringes through the thickness. DCB specimens, 50 mm x 10 mm x 0.15 mm in dimension, 
were cut from single crystal muscovite mica sheets using a precision saw.  To introduce an internal 
coplanar crack, the specimen was cleaved a distance of approximately 25 mm. A 7 µm carbon fiber 
was inserted across the width of the specimen and the cleaved mica was allowed to reheal.  The fiber 
created a well-defined internal crack at the interface. 
 
Experimental Test Procedure 
Figure 1 illustrates the experimental apparatus.  A crack was initiated in the prepared specimen using a 
270 µm thick blade along the plane of the internal crack.  Specimens with significantly asymmetric 
beams after crack initiation or with cracks on different cleavage planes were discarded.  The cleaved 
mica was placed in the specimen holder and the wedge was adjusted vertically to minimize asymmetric 
displacements. A stepper motor pushed the mica specimen onto the blade in one-micron increments at 
a velocity of 20 microns per second.  The crack propagation was viewed with an inverted optical 
microscope using green light with a wavelength of 550 nm.  Crack lengths, measured from the fixed 
contact point of the wedge, were obtained using a micrometer attached to the microscope stage. 

 
Fracture Energy Measurements 
Based on beam theory, the relationship between the measured crack length c and the mechanical 
energy release rate G in a DCB configuration can be expressed as [11] 
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where E is Young’s modulus, is the effective specimen thickness, and 2d is the 
wedge thickness.  The modulus of elasticity for muscovite mica, as reported in the literature, varies 
from as low as 54.9 GPa [4] to as high as 196 GPa [1]. In this work, the Young’s modulus has been 
taken to be 169 GPa, as measured by McNeil and Gremsditch [12] using Brillouin scattering. 
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Figure 1:  Constant displacement double-cantilever beam experimental apparatus.  The vertical 
alignment knob is used to align the blade to create a symmetric crack.  The stepper motor advances the 
mica specimen at 20 µm per second on the blade (~270 µm thick).  The ensuing crack propagation is 
viewed using an inverted optical microscope. 
 
Define an apparent fracture energy, G*, as 
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based on the length of the primary crack, c1, due to the inserted wedge. G* equals the fracture 
toughness Gc when the two cracks do not interact. When they do, it’s departure from Gc measures the 
repulsion or attraction between the two cracks.  
 
A typical crack interaction sequence is illustrated in Figure 2.  Figure 2(a) shows the propagating DCB 
crack on the left approaching the crack front due to the inserted fiber, on the right.  Note that in Figures 
2(a) and 2(b), the distance between the two crack fronts remains roughly constant, though the crack 
front caused by the fiber has been repelled.  In Figures 2(c-e), the distance between the two crack 
fronts continues to decrease until, just before Figure 2(f), the cracks coalesce.  
 
Figure 3 shows the measured apparent fracture energy versus the wedge position.  Initially, the 
apparent fracture energy G* is approximately 800 mJ m-2,  its value for the healed interface.  As the 
propagating crack front approaches the internal crack, the apparent fracture energy increases, then 
drops abruptly, and finally increases again to a value ≈ 1300 mJ m-2, the fracture energy of virgin, 
uncleaved muscovite mica. 

 
 
NUMERICAL SIMULATION 
 
The experiment has been simulated numerically using the commercial finite element code, ABAQUS® 
[13], augmented with cohesive elements that model the separating interface [10]. The beams were 
modeled using two-dimensional plane strain elements; the simulation has been conducted as an 
implicit dynamic procedure to allow one to capture the instability. The dimensions and material 
properties reproduce the experimental specimen, i.e. length, L = 20 mm,  beam thickness, h1 = 133 µm, 
h2, = 84 µm, wedge half-thickness, d = 133.5 µm, E = 169 GPa, ν = 0.3, G1 = 820 mJ/m2, G2 = 1250 
mJ/m2.   



 

 

(a) (d) 

(b) (e) 

(c) (f) 

 
Figure 2: Series of experimental pictures illustrating crack repulsion.  Crack front due to inserted 
wedge is on the left and crack front due to inserted fiber is on the right.  Wedge positions relative to the 
fiber are (a) –9.51 mm, (b) –9.23 mm, (c) –8.98 mm, (d) –8.69 mm, (e) -8.64 mm, (f) –8.59 mm 

 
 

 
Figure 3:  Measured and simulated apparent fracture toughness as a function of wedge position. 
Coalescence of the two cracks is simultaneous with the significant drop in apparent fracture energy.  In 
the simulation, δcr = 1.1 µm. 

 
The fracture zone has been modeled using a simplified version of the phenomenological cohesive law 
proposed by Xu and Needleman [8].  Tractions, Tn and Tt, resisting relative displacements in opening 
and shear are calculated from a potential function Φ, given as 
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where δcr is a characteristic opening of the cohesive zone, ∆n and ∆t are the normal and tangential 
relative displacements, and φ is fracture toughness. The maximum cohesive stress, σmax, fracture 
toughness, and δcr are related through 
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The geometry used for the simulations was taken from measured specimen dimensions. A value of φ = 
820 mJ/m2 was used for the cohesive elements. This represents the measured fracture energy of the 
healed mica-mica interface, and is lower than that of uncracked mica. The carbon fiber inclusion was 
modeled by a circular rigid surface in contact with the continuum elements representing the beams. 
Wedge displacement was imposed by applying displacement boundary conditions to successive sets of 
nodes on the beams at the appropriate location, remote from the crack tip. 
 
 
DISCUSSION & CONCLUSIONS 
 
A comparison of simulated and experimental results is shown in Figure 3, for a critical cohesive zone 
opening, δcr = 1.1 µm. Also indicated in the figure are five notional stages. In stage 1, the interaction of 
the two cracks is minimal. In stage 5 there is only one crack in the system. In both, the apparent 
fracture toughness does not change with wedge location. Its value in stage 1 is estimated well by the 
simulation; this confirms that the simulation procedure is accurate enough to capture a simple DCB 
experiment. The under-prediction of fracture toughness in stage 5 is likely related to our use of a much 
coarser mesh in that region since the primary interest has been to capture the response prior to the 
instability, and the instability itself. Stage 2 represents the mutual repulsion between the cracks, which 
manifests as an increase in apparent toughness that is captured well by the simulation, although the 
simulated value exceeds the measured value. The simulation captures stage 3, the instability that leads 
to coalescence of the two cracks.  After coalescence, the recovery to the uncleaved fracture energy is 
gradual, not immediate. We find, in the simulations, that the crack retains contact with the cylindrical 
fiber after coalescence, which results in a longer crack length than would be predicted due to the 
wedge alone, and hence a lower apparent fracture toughness. One may surmise that the same occurs in 
the experiment. 
 
The numerical simulation captures all the features of the experiment very well qualitatively, with 
reasonably good quantitative agreement, generally. However, the value of critical opening parameter, 
δcr, required to do so, 1.1 µm, is much larger than might be expected for a brittle material. Figure 4 
shows the effect of δcr on simulation results. Larger values result in earlier onset of the coalescence 
instability. It is interesting to note that whereas all other features of this experiment appear to be 
controlled solely by the energy release rate, the instability itself depends on additional parameters of 
the cohesive zone model. Two questions remain unanswered. Why is the value of δcr required to attain 
agreement between experiment and simulation so large?  How do the conditions for coalescence 
instability scale with cohesive zone parameters? We have not resolved either satisfactorily at this time, 
but consider either capillary condensation or interaction between large charged domains as possible 
explanations for the former.  Progress towards answering the latter question can likely be made by 
approximate analyses of the experiment using beam theory.   
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Present study evaluates fracture in ultra-small volumes utilizing nanoindentation 

combined with the nanoscale in-situ imaging and Acoustic Emission (AE) monitoring.  

Recently developed AE sensor integrated into an indenter tip provided a greatly increased 

sensitivity to contact loading induced transient processes.  This enabled detection of AE 

events for the ultra-light contacts below 1 mN and assured an adequate basis for the AE 

signal analysis.  Evaluated phenomena included fracture initiation in bulk materials,  thin 

film cracking and film/substrate delamination.  Indentation curves and in-situ images of 

the indented areas were correlated with the AE waveforms.  Advanced procedures of AE 

signal decomposition provided additional information on separation of plasticity and 

fracture induced contributions of AE signals.   

 
 



 

 

 

COHESIVE MODEL FOR  THIN FILM/SUBSTRATE INTERFACIAL 

CLEAVAGE FRACTURE 
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ABSTRACT   Film/substrate structure is a basic structure widely used in microelectronic and 
materials science and technology. A modified three-parameter (Γ0,σ/σy,t) cohesive model was used to 
investigate the cleavage fracture under plastic atmosphere. The model was also used to discuss the 
whole process of the initialization and extension of interface crack between uniform and functional 
graded metal thin film and ceramic substrate under residual stresses. This model was also used to 
analyze the interfacial crack extension between enhanced functional graded thin film and substrate. 
The characteristic of the interfacial crack in graded film/substrate was emphasized. 
 
 
KEYWORDS   embedded elastic zone, cohesive model, thin film/substrate structure, interfacial 
fracture  

COHESIVE MODEL FOR CLEAVAGE FRACTURE UNDER PLASTIC ATMOSPHERE 

Film/Substrate structure is a basic structure widely used in microelectronic and materials science and 
technology.. Liplin et al. [1] observed that the maximum separation stress can reach a high level, 
which was about 10 times of the yield stress. Tvergaard & Hutchinson [2][3] proved the results by 
using conventional plastic theory and EPZ model. At the same time, Hutchinson [4] pointed that for 
general metal/ceramic interface, the cleavage fracture toughness is about 1Jm－2,the macroscopic 
fracture toughness is about 400 Jm-2 to1000 Jm-2 and the crack tip keeps atomic scale keenness. There 
is great difference between these two fracture toughness. 

It was considered that the fracture mechanism is atom separation. On the basis of this idea, SSV 
model has been proposed by Suo et al. [5], who assumed a dislocation-free strip present near crack tip. 
The SSV model was used by Wei et al. [6] Wei et al. [7] introduced a cohesive model in cleavage 
fracture process. This method was adopted and developed in this paper. 

In EPZ and SSV model, two parameter were introduced to describe the fracture process zone. In 
EPZ model, the parameters are fracture toughness Γ0 and maximum separation stress σ̂ ,In SSV 
model, they are Γ0 and the thickness of elastic strip, t. In cohesive model introduced by Wei [7] and 
used in this paper, SSV model and EPZ model were combined and three parameters, Γ0,σ̂  and t, were 
introduced to discuss the fracture process, which was shown in Fig.1.  
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Fig. 1 Cohesive model for embedded elastic zone 

 
INTERFACIAL FRACTURE OF UNIFORM FILM/SUBSTRATE STRUCTURE 
 Model for the residual stress induced interfacial fracture 

In the machining process of film/substrate, the residual stress is often produced for the change of 
the temperature. The temperature of the film and the substrate is t0 either. Aparently , there are 
residual stresses in the film, and the stress can induce the interface crack to initiate and propagate. It 
was assumed the film keeps plane strain restriction in x-y plane. Taking T＝t1-t0, the residual stress 
can be express as 

/(1 )ET vR x zσ σ σ α= = = −         (1.) 

Energy release ratio can be expressed as 
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Taking δ1/δc=0.15, δ2/δc=0.5, E/σy=300, k=σ̂ /σy and N=0.1, we can got the initial residual stress 
and initial temperature difference of crack propagation as below 
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In brief,  the module mismatch of film and substrate was ignored and we take Em= Ec and ν  

m=ν c=0.3. In the computation, we introduce nondimensional method for fracture process. When the 
results were changed to dimensional value with Γ0=1Jm-2 and E=6×1010

m

Pa, we can acquire 

δc=7.407Å, R0=0.1749µ , t=8.74nm and h=0.3498um. 

Resistance curve of crack propagation and the influence of the parameter on crack propagation 
With t/R0=0.05, σ̂ /σy=10 and h/R0=2, the resistance curve can be calculated from the curve that 

Γs/Γ0 approximately equals to 88.36. Compared with the results of infinite medium in which Γs/Γ0 
approximately equals to 400~1000, the plastic zone was restricted and can’t develop completely for 
the scale of the thin film and the free upper surface.  
The slopes of the two curves only have minor difference. The main differences are the critical σR

c and 
the critical length of crack propagation. The values of h/R0=4 are much larger than that of h/R0=2 
because the plastic zone can more fully develop when the thickness of the film is larger. It can be 
concluded that when h>>R0, the value of Γs will reach to the macroscopic fracture toughness of the 
interface between metal film and ceramic substrate. 

 

INTERFACIAL FRACTURE OF GRADED FILM/SUBSTRATE STRUCRURE 
Functionally graded structure is an important structure widely used in microelectronic and materials 



science and technology. The continuous changes of materials’ nature can greatly decrease the thermal 
and mechanical mismatch between different materials. In this paper, the enhanced thin graded film on 
ceramic substrate and the weakened graded film on metal substrate were discussed. The main purpose 
is to investigate the character of the propagation of interfacial crack under the drive force of residual 
stress and to make sure the effect of decreasing the mismatch. And the cohesive model and embedded 
elastic zone were used in the computation.  
  
Enhanced graded film on ceramic substrate 

The similar model showing above was introduced  in this section. The process that residual stress 
induced crack to propagate was simulated. First we assume that the value Em equals to Ec and vm 
equals to vc. T was taken as drive force for crack propagation. The T0 was taken as the initial 
resistance force.  

We take the calculation under  plane strain conditions and δ1/δc=0.15, δ2/δc=0.5, E(x)/σy(x)=300, 
v=0.3, t /R0=0.05, σ̂ /σy=10, h/R0=4. For comparing with the result of the uniform film, the same T0 
in uniform film was taken. The relations between the true T0 and the T0 used in uniform film will be 
discussed later. We have 
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  The linear change  of the mechanical and thermal parameter in the direction of thickness was 
assumed .For enhanced graded film ,we have Em>Ec, α m> α c,, σm>σc and take 
Em=2Ec,α m=2α c,σm=2σc, and can get the results of stress distribution near crack tip. 

We take Em=3Ec, α m=3α c, σm=3σc (signed 2), and compared the stress distribution near crack 
tip with the results of Em=2Ec, α m=2α c, σm=2σc (signed 1), which was shown in Fig. 2. It can be 
seen that there is only minor different between these two curves. On the basis  Fig. 2, we can draw a 
conclusion that the graded structure in thin film has only a minor influence on the stress distribution 
and the three parameters of cohesive model have major influence on the distribution. 

On the basis of the stress distribution, we can also acquire the displacement distribution. We take 
Em=2Ec, α m=2α c and σm=2σc and plot the distribution in Fig. 3b. The similar conclusion can also be 
drawn that graded structure in thin film has only a minor influence on the displacement distribution. 
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Fig. 2 Stress and displacement distribution near crack tip 
 



The different structures of graded films have influence on the resistance curve of crack propagation. 
First, we compared the results of the two structures, Em=3Ec, α m=3α c, σm=3σc (signed 2) and 
Em=2Ec, α m=2α c, σm=2σc (signed 1). The result was show in Fig. 4. In Fig.4a, the initial resistance 
force was discussed. It can be seen that the two structures have different initial resistance force. For 
structure (1), the true resistance force is about 0.855T0, which is the value in uniform film. For 
structure (2), the true value is 0.456T0. So It can be concluded that the crack between enhanced 
graded film and ceramic substrate is easier to propagate compared with that of the uniform film, and 
the more Em/Ec, the easier to propagate. The reason is that the enhanced structure makes the film more 
difficult to come into plastic and easier to propagate. The similar result was acquired in crack 
propagation, which was shown in Fig. 3b. It can be seen that the graded film can greatly decrease the 
fracture toughness of interfacial crack propagation compared with the uniform film, and the more 
Em/Ec, the more decrease. For example, for structure (1), the critical resistance force is about 40% of 
that of the uniform film. For structure (2), the critical resistance force is about 20% of that of the 
uniform film. 
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Fig. 3 The  influence of graded structure on crack initiation and propagation 
 

In the process of making graded film on substrate, the rate of two materials can be controlled and 
different curve of parameter’s change can be attained. The influence on the resistance curve will be 
discussed. We still take Em=2Ec,α m=2α c,σm=2σc, and take different changing curves which were 
shown in Fig.4. 
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Curve 1 followed the expression below (E(x)/Ec,α (x)/α c and σ(x)/σc are all equal to ( )f x ), 

1
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Curve 3 is symmetrical with curve 1 in point (0, 5, 1.5) and followed the expression below. 
1
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The three crack resistant curves were show in Fig. 5. It can be seen that in curve 1, the crack 
became unstable when initialing and propagating for a short distance. It is because that the elastic 
module and other parameters increase rapidly near the crack in thickness direction and the zone of the 
film near crack is difficult to come into plastic, the crack became unstable when the drive force is a 
little higher than the initial resistance force. But compared with uniform film, the structure expressed 
by curve 3 is difficult to propagate because the zone near crack is easier to come into plastic and more 
work will be dissipated in plastic yielding. But the critical fracture toughness of structure 3 is still 
much lower than uniform film because the upper part of the graded film was harder and more difficult 
to come into plastic and the plastic zone was restricted in a thin zone near crack tip.  

0 1 2 3 4 5 6

1

2

3

4

5

a/R0

2

1

3

T/T0

 
Fig. 5 The  influence of different curves on resistance curve of crack propagation 

 
On the basis of the discussion, we can draw a conclusion that for the enhanced thin film on 

substrate, the most critical fracture toughness and critical propagation length can be attained when the 
mechanical parameters (elastic module and yield stress) vary linearly. This result can do some favor 
for the optimizing the film structure and mechanical property. 

The mechanical and thermal mismatched thin film on substrate was also investigated and 
compared with the graded film. The effect of the graded film on decreasing crack propagation 
between film and substrate was discussed. We also take Em=2Ec,α m=2α c,σm=2σ. The resistance 
curve was plotted in Fig.6. 
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Fig. 6 The effect of graded film on decreasing interfacial crack propagation 

 
It can be seen that because the parameter σ̂  in mismatch uniform film is two times of that in 

graded film, the initial fracture toughness improved largely, which is about two times of the toughness 
in graded film. But the crack propagated in mismatch film became unstable when drive force exceeds 
the initial value very little. Compared with the mismatched film, the crack propagation of graded film 
has a much higher critical fracture toughness and a strong restrain on crack propagation.  
 
CONCLUSIONS 
 
    A modified three parameter cohesive model embedded with elastic core was introduced to 
investigated  
    This model was used to analyze the interfacial crack extension between enhanced graded thin film 
and substrate. Compared with the uniform film/substrate structure mismatched in mechanical and 
thermal parameter, the graded film/substrate increased the critical fracture toughness and critical 
length of crack extension largely. The distribution of stress and displacement in fracture process zone 
are mainly determined by the parameters of process zone  model and the deferent variation of the 
graded film has a minor influence on  them.. The highest critical fracture toughness and critical length 
of crack extension can be acquired when the material parameters  vary linearly on the graded thin 
film/substrate structure. 
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Abstract 
 
       In this study, a node-release algorithm based on a linear traction separation law was 

implemented in a test-bed finite element code that was developed to simulate normal (Mode I) 

and tangential (Mode II) crack growth at the interface.  The combined effects of nonlinear 

viscoelasticity, temperature cycles, and moisture diffusion in the adhesive layer and their 

influence on crack-growth rates are included in the model. The particular values of the parameters 

of the traction-separation law can be determined through comparison with crack opening 

displacement data from test specimens following an iterative procedure previously established. 

The effect of crack length on mode mix and the existence of asymmetric shielding mechanisms 

can be accurately assessed using this procedure. Some preliminary benchmark results are 

presented. 

 Bond Durability Modeling Approach 
 
  One of the primary objectives of the current study is to be able to model the synergistic 

bond degradation mechanisms at the adhesive-composite interface. The following sections 

describe the details of the synergistic modeling approach. 

Diffusion Controlled Crack Growth  

Environmental cracking in a polymer typically occurs in the presence of a penetrant, such as 

moisture, and stress. It has been postulated that the mechanism involved in environmental crack 

growth in a polymer involves a small zone of craze formation and/or plasticization at the crack tip 

due to stress-enhanced moisture ingress.  For the case of craze formation, Darcy’s law for 

diffusion in porous media can be used to predict crack (or craze zone) growth. However, for 

thermoset resins, such as epoxy, energy absorption at the crack tip is primarily by a shear yielding 

process and not by crazing. Consequently, for a thermoset epoxy, the zone of plasticization ahead 

of the crack tip must be determined using a diffusion law for non-porous media, such as Fick’s 

law. In the event of synergistic interaction between several processes, a crack will grow at the rate 

determined by the slowest controlling process and when this is diffusion, then there is diffusion-

controlled crack growth.  
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Free Volume Constitutive Model 

The free volume constitutive model [1,2] is based on the premise that the mechanical 

response of a viscoelastic polymer is dependent on the ability of its molecular chains to 

accommodate imposed deformations. Free volume may be conceptualized as the volume that is 

not occupied by the molecular chains in the material. Free volume is typically considered an 

indicator of molecular segmental mobility, where greater free volume provides the extra mobility 

needed to accommodate imposed deformations quickly.  

Studies of the variables influencing the time scale of viscoelastic materials have shown 

that temperature, solvent concentration  and mechanical dilatation all influence the time scale of 

the material in a similar manner. Hence the shift factor a(T,c,θ) can be represented as a function 

of temperature (T), solvent concentration (c) and mechanical dilatation (θ). Doolittle [3] defined a 

shift factor relating the fractional free volumes of a material at the current and reference states 

through the expression, 
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where,  B = a constant, f  = fractional free volume at the current state, f0 = fractional free volume 

at the reference state. Knauss and Emri [1,2] postulated the fractional free volume to depend on 

temperature (T), solvent concentration (c) and mechanical dilatation (θ). Therefore the fractional 

free volume can be expressed as, 

dctCtMBdTAff kk *)(.*)(.*.0 γσα +++=    (2) 

where, α(t) and γ(t) are the volume coefficients of thermal and moisture expansion. In general, 

α(t) and γ(t) are functions of T, c, the creep compliance M(t) is a function of θ(t), V0 is a reference 

volume, σkk is the first stress invariant, and A, B, C are constants to be determined. Note that the 

(*) notation used in eqn. (2) denotes Stieltjes convolutions representing the time history of the 

respective variables. For small changes in variables below the glass transition temperature of the 

polymer and the boiling point of the penetrant, it is assumed that α(t), γ(t) and M(t) are constants 

with respect to time. Further under such conditions, simple multiplicative relations can replace 

the convolutions in eqn. (2), giving, 

,0 δθγα +∆+∆+= cTff where kkεθ = , and δ  is a material constant  (3) 

Substituting eqn. (3) in eqn. (1) gives the nonlinear shift factor,  
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For negligible solvent concentrations and dilatation eqn. (4) reduces to the WLF equation. It was 

found from experimental data [4] that the value of δ was very close to unity, so henceforth the 

model assumes that δ = 1. In this model the nonlinear shift factor definition in eqn. (4) 

incorporates all the nonlinearity in the linear viscoelastic constitutive description of an isotropic 

solid under infinitesimal deformations. At reference conditions, the constitutive equations for a 

viscoelastic material are, 
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where sij and eij are components of deviatoric stress and strain tensors. The nonlinear set of 

equations (3) - (5) account for the temperature, solvent concentration, and dilatation histories and 

essentially comprise the free volume constitutive model. 

Cohesive Zone Model 

The cohesive zone interface model was developed by Needleman [5] in order to provide a 

unified description of crack initiation from initial debonding through complete separation and 

subsequent crack growth. The interface constitutive equation developed in the model was such 

that, with increasing interface separation, the traction across the interface of the crack reaches a 

maximum, decreases, and eventually vanishes so that complete decohesion occurs. The 

subsequent mechanical response of the crack is dependent on the strength of the interface, which 

is specified by the critical stress measure near the tip of the crack, and the work of separation per 

unit area. This interface model is based on the cohesive zone model developed by Dugdale and 

Barenblatt. Needleman introduces a characteristic length in order to determine the size of the 

cohesive zone where the tractions are to be applied, the equivalent of which is defined as the 

crack tip opening displacement in the Dugdale-Barenblatt model. The tractions at the interface are 

therefore a function of the crack tip opening displacement. Further investigations of crack growth 

in thin film blistering of polyimide film on aluminum substrate by Shirani and Liechti [6] made 

use of a simplified version of the Needleman interface model. In this case, the decay of tractions 

with the result of the traction separation law was simulated as non-linear softening springs 

attached to the nodes of the crack interface in the finite element model.  This method has been 

referred to as “nodal relaxation” by several authors [7,8,9] due to the gradual decrease in traction 

force rather than the immediate release of the node due to debonding. The dependence of the 
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tractions on the crack tip opening displacement is considered invariant with respect to quasi-static 

propagation in a controlled environment as specified by Ungsuwarungsri and Knauss [10].  The 

use of the traction separation law as improvised by Shirani and Liechti has been successfully 

incorporated into a test-bed (NOVA-3D) finite element code to analyze tensile decohesion for 

elastic structures in two and three-dimensional cases. In this model, attention is directed towards 

the interface close to the crack that supports a nominal traction field T (force/unit reference area), 

which in general, has both normal and shearing components. Two material points A and B may 

be chosen which were initially on opposite faces of the interface and the interfacial traction is 

taken to depend only on the displacement difference vector across the interface, . Thus at 

each point on the interface, we may define normal and tangential components of displacements 

and tractions,  

ABu∆

ABAB ut,un ∆⋅=∆⋅= tn uu          (6) 

Tt,Tn ⋅=⋅= tn TT           (7) 

where, Tn = normal component of traction, Tt = shear component of traction, and positive un 

corresponds to increasing interfacial separation. This dependence of the traction magnitude on the 

amount of the separation between the interfaces can be expressed in terms of a potential 

),( tn uuφ , which is defined as, 

][),(
0
∫ +−=
u

ttnntn duTduTuuφ           (8) 

 As shown in Fig. 1, Needleman defined the model in such a way that as the interface 

separates, the magnitudes of the tractions increases, achieves a maximum and ultimately falls to 

zero when complete separation occurs. The model shown is defined for pure normal tractions on 

the interface with ut being zero. Needleman has proposed to define the traction-separation curve 

in terms of the potential as, 
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 where, σmax= maximum traction carried by the interface undergoing pure normal 

separation, and, δ  is a characteristic length. When un > δ  then sepφφ ≡ , where sepφ  is the work 

of separation. The interfacial tractions for pure normal separation may be obtained by 

differentiating eqn. (9) and setting ut=0 to give, 
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           Figure 1. Normal tractions across the crack interface as a function of normal displacements 
    

  The fracture energy (work of separation) is defined as the area under the curve in Figure 

1 and is given by, 

169 max δσφ =sep            (11) 

 For a given fracture energy based on the material and stress at the crack tip, the value of δ may 

be computed using eqn. (11).  

 Preliminary Benchmark Results 

Figure 2 depicts the strain energy release rate as a function of incremental crack length 

obtained from the analysis of an elastic Double Cantilever Beam (DCB) specimen employing the 

cohesive-zone crack growth model. The benchmark plot shows good agreement of the test-bed 

code (NOVA-3D) results when compared with crack growth data obtained from the commercial 

finite element code ABAQUS.  Synergistic interfacial crack growth modeling in the presence of  

diffusing penetrants, material nonlinearities, and adhesive viscoelastcity is currently underway.   
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Figure 2. Strain energy release rate vs. incremental crack length, DCB steel specimen, constant                                 
load test, P = 600 lb. 
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ABSTRACT 
 
Coincidence Doppler broadening (CDB) method in positron annihilation spectroscopy has been 
applied to chemical state analysis of the vacancy-impurity complexes in silicon and iron implanted 
with various ions.  In Si implanted with oxygen 2x1015/cm2 at 180 keV and hydrogen 1x1016/cm2 at 
60 keV, the defect structure has been discussed.  CDB spectra reflect the character of elements 
coupled with vacancies very well, and enables us to estimate the number of impurities in the defects 
with combination of positron lifetime measurement.  In Cu ion (5x1015/cm2 at 140 keV) implantation 
to Fe, it has been directly proved that vacancies and Cu atoms aggregate and that the inner wall of 
V-Cu complexes is covered with Cu atoms. 
 
KEYWORDS 
 
Positron annihilation spectroscopy, Coincidence Doppler broadening, Vacancy-impurity complexes, 
Chemical analysis, Silicon, Iron 
 
INTRODUCTION 
 
Positron annihilation spectroscopy is one of the most powerful techniques for studying the defects in 
solids and gives information on size and quantity in open-volume type defects.  It is very important 
to observe the behavior of defects coupled with impurities because it is strongly dependent on a kind 
of impurity.  Positron lifetime and shape of annihilation γ-rays spectrum strongly depend on them, 
although it is very difficult to extract the information of impurity from their measurements.  A 
coincidence Doppler broadening (CDB) method in positron annihilation spectroscopy has been 
recently developed to carry out the chemical analysis of defects [1,2,3].  The positrons trapped at 
vacancy-impurity (V-I) complexes annihilate electrons due to impurity.  Annihilation with core 
electrons gives larger Doppler shifts compared with valence electrons, so that it is possible to identify 
the impurity by analyzing the high electron momentum region.  The CDB method improves the peak 
to background ratio in the annihilation spectrum to around 105 and fine structures due to core electrons 



from impurity atom can be discussed.  In this paper, with a combination of positron lifetime 
measurements, CDB method has been applied to study the defects in silicon and iron implanted with 
various kinds of ions.   
 
EXPERIMENTALS 
 
The samples were subjected to ion implantation and the subsequent annealing, and the defective layer 
was formed near the surface.  The O ion implantation to CZ-Si wafer substrate was carried out at 180 
keV with a dose of 2x1015 /cm2, and the H ion at 60 keV with a dose of 1x1016 /cm2.  The iron sheet 
were implanted with Cu at 140 keV with a dose of 5x1013, 1014, 1015 /cm2.  These implanted samples 
were annealed at various temperatures for 30 min. in a vacuum of 1 x 10-5 Torr.  CDB measurements 
were performed using the low energy positron beam facility at NIRIM providing 1x105 e+/s in the 
energy from 0 to 30 keV.  Around 1.5x107 counts were accumulated for each spectrum, which was 
the diagonal cross section of the two-dimensional spectrum with a width of 2m0c2 – 1.2 keV < E1 + E2 
< 2m0c2 + 1.2 keV.  The data are exhibited in terms of ratio-differences curves, in which the small 
change at high momentum region can be distinguishable.  As a reference in Si, a spectrum of 
divacancy, V2, induced by self-ion implantation (2x1014 /cm2, 100 keV) to Si, was used, while one of a 
defect-free Fe was used in Fe.   Conventional Doppler broadening (S parameter) measurements and 
positron lifetime ones using a positron beam were also employed.  The S parameter is defined as the 
ratio of the counts in a central region of the annihilation photopeak to those in the whole one and 
normalized to the value for bulk Si or Fe.  The value of S generally increases due to an increase of 
the overlap of the positron density with (low-momentum) valence electrons when the positrons are 
trapped at vacancy-type defects. 
 
RESULTS & DISCUSSION 
 
Si implanted with O ions 
An understanding of the behavior on oxygen-related defects in Si is essential to the fabrication of 
CZ-Si wafers, in which an oxygen concentration of around 1018 /cm3 is introduced from the SiO2 
crucible used in the crystal-growth process.  And the novel semiconductor substrate named SIMOX 
wafer has been proposed and the internal SiO2 layer is formed between thin single crystal Si layer and 
Si substrate.  Heavily ion implantation 
more than 1017 /cm2 is employed in SIMOX 
fabrication, so that much attention has been 
paid to oxygen-related defects in Si.  Some 
positron studies on them has been carried 
out and it has been reported that very low S 
value and short lifetime are responsible for 
oxygen-related defects in Si [4,5,6]. 

Figure 1 shows S-E curves for Si 
implanted with 2x1015 O ions/cm2 at 180 
keV and the samples after annealing.  The 
mean projected range is around 380 nm, so 
that positron lifetimes at 5 keV stand for the 
information on the most defective layer.  In 
the as-implanted sample, larger S is 
observed and the positron lifetime of 298 ps 
is longer that that, 219 ps, of the bulk and 
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Figure 1: S-E curves for the O ion (180 keV, 2x1015

/cm2) implanted Si and the samples annealed. 
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corresponds to that of divacancy in Si.  
In annealing at 600°C, drastic change 
takes place.  Value of S is still large 
below positron energy of 2 keV, while 
that of S decreases in the region of more 
than 2 keV, and becomes lower than that 
of the bulk.  If positrons annihilate 
electrons of matrix Si atoms, S value 
should not be lower than that of the bulk.  
This result suggests that a part of 
positrons annihilates electrons of the 
different kinds of atoms with matrix 
ones.  The origin of lowering in S is 
considered to be due to the formation of 
V-O complex defects.  The positron 
lifetime at 5 keV is estimated to be 330 
ps (intensity: 97%), which corresponds 
to V4, indicating that the defects formed 
are open-volume type.  An anneal at 800°C gives rise to the minimum S, 0.93, at 6.5 keV and the 
long lifetime of 322 ps (97%).  These results show that the size of open-volume is unchanged, while 
a fraction of positrons which annihilate electrons of non-Si atoms increases.  The value of S strongly 
depends on the dose of oxygen implanted, so that it is concluded that vacancy-oxygen complexes are 
formed, and that positrons trapped at them give very low S due to electrons of oxygen. 
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Figure 2: CDB spectra for the O ion (180 keV, 2x1015

/cm2) implanted Si and the samples annealed. 

To clarify their defect structures, CDB measurements at the positron energy of 5 keV have 
been carried out and the results are exhibited in Fig. 2.  The CDB spectrum of the as-implanted 
sample does not coincide with that of V2 in Si.  The intensity in the range from 10 to 20 mrad due to 
oxygen atoms becomes larger, while that around 0 mrad is nearly unity.  It is found that oxygen 
atoms are involved in the defects induced only by ion implantation and the size of the defects is 
almost same to V2.  As the annealing temperature rises, their intensity is increased, indicating that the 
number of oxygen atoms involved in the defects increases more and more.  In combination of 
positron lifetime and CDB spectra, the following model on V-O defects can be summarized. 
(1) Up to 500°C :  The positron lifetime is around 300 ps and the CDB spectrum shows a slight large 

intensity in the range of 10 to 20 mrad.  It is known that, in the relation of positron lifetime with 
the defect size, the lifetime of VxIy complex is same to that of Vx-y clusters and the lifetime of 300 
ps coincides with that of V2 in Si.  It is, therefore, concluded that the formation of V3O is 
dominant in the as-implanted sample and the samples annealed up to 500°C.   

(2) 600°C :  The lifetime is around 320 ps, which coincides with V4 in Si, and the intensity in10-20 
mrad in the CDB spectrum is increased.  Hence the defects formed are considered to be V6O2 
complexes, in consequence of a combination of two V3O. 

(3) 800°C :  The lifetime is unchanged, compared with that of the sample annealed at 600°C, and the 
intensity in 10-20 mrad in the CDB spectrum is further greater.  The magic numbers of vacancy 
cluster are well known to be 4, 6, 10, etc., so that the formation of V10O6 is acceptable. 

 
Si implanted with H ions 
The behavior of H atoms is very complicated in any materials.  Hydrogen atoms are easily 
terminated at the dangling bond of defects in Si and stabilize them.  These H property is utilized in 
amorphous Si:H and delamination of Si wafer.  From the fact that S value for the Si implanted with 
H is similar to that for the bulk, it had been said that positrons were insensitive to H-related defects in 



Si [7].  But the authors have found that the lifetime for the H-terminated defects is longer than that 
for the bulk and that positrons are trapped at them [8].  In this section, the behavior of H-related 
defects in Si is discussed from the CDB spectra
 

. 
The S-E curves for the H-implanted 

f 6 keV are exhibited in Fig. 4.  

structure in this
tem 

l size, the implantation-induced defects may be attributed 

It is very difficult to discuss the chemical state of defects coupled with impurities from only 
the posit

Si (1x1016 H+/cm2 at 60 keV) and the 
annealed samples are shown in Fig. 3.  For 
the as-implanted sample, large S and long 
lifetime of 280 ps (100%) at the positron 
energy of 7 keV are observed and the 
open-volume type defects are induced.  
The S-E curve for the sample annealed at 
400°C returns to that for the virgin Si.  This 
result can be interpreted with no defects in 
the sample, although the lifetime is still long 
and estimated to be 283 ps (100%).  By 
annealing at 600°C, S value increases again 
and long lifetime component of 445 ps 
(62%) is taken, indicating that large vacancy 
clusters such as V10 are formed. 
 The CDB spectra at the positron 
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Figure 3: S-E curves for the H ion (60 keV, 1x1016

/cm2) implanted Si and the samples annealed. 

For the as-implanted sample, the intensity 
in the region of 5 to 15 mrad is larger than 
that for V2 in Si.  Annealing up to 400°C 
results in appearance of broad peak around 
8 mrad.  It is, therefore, considered that 
the H-terminated defects in Si are 
responsible for this peak and that the 
number of H coupled with vacancy is 
increased up to 400°C. 
 The defect 
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Figure 4: CDB spectra for the H ion (60 keV, 1x1016

sys is considered.  The 
above-mentioned results indicate that the 
defect size is almost unchanged and H 
atoms are terminated to vacancies up to 
400°C.  Divacancy in Si is mobile around 
230°C, but H termination prohibits the 
migration and the clustering of defects.  
If H terminated to defects do not affect the 
positron lifetime very much due to the smal
to be V2H or V2H2 complexes, and the defects formed at 400°C V2H6. 
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/cm2) implanted Si and the samples annealed. 

ron lifetime and line shape parameter such as S, but it has been found that CDB technique 
enables us to estimate the number of impurities in the defects.  For more detail discussion, theoretical 
calculation is required.  
 



Fe implanted with Cu ions 
The presence of impurity also results in the complexity in defect behavior in metal and CDB method 
is useful to study the interaction with impurity aggregations and vacancy.  In this work, the reaction 
of Cu with vacancy, induced by Cu ion implantation to Fe, has been investigated.  Hori et al. [9] 
suggested from the lifetime measurement the nucleation of copper precipitates was coupled with 
vacancy.  Nagai et al. [10] reported that very-dilute Fe-Cu system irradiated by fast neutrons was 
studied by CDB technique and that ultrafine Cu precipitates were responsible for irradiation-induced 
embrittlement of RPV steels.   

Figure 5 show the S-E curves for the Fe samples implanted with 5x1013, 5x1014, and 5x1015 
Cu+/cm2 at 140 keV and the samples annealed at 300°C.  S value near surface is large in all of the 
samples, indicative of the formation of vacancy-type defects.  Little difference between 5x1013 and 
5x1014 Cu+/cm2 samples is observed, while S is lowered in 5x1015 Cu+/cm2 sample.  Annealing at 
300°C gives rise to the sudden 
lowering of S and it seems that the 
defects anneal out. 

The CDB spectra of these 
samples at the positron energy of 3 
keV are displayed in Fig. 6.  No 
peaks appear for the 5x1013 and 5x1014 
Cu+/cm2 samples.  In less than 5x1014 
Cu+/cm2 samples, the behavior of 
defects is very similar to that in pure 
Fe and we may consider only the 
simple vacancy-type defects in these 
systems.  The broad peak around 22 
mrad is observed in both of the 5x1015 
Cu+/cm2 sample and the annealed, and 
coincides with that of pure Cu [10], 
indicating that positrons annihilate 
electrons due to Cu.  Further, the 
intensity of the peak increases by 
annealing at 300°C.  These results are 
interpreted by the aggregations of 
vacancies and Cu atoms.  Vacancies 
in Fe easily diffuse even at room 
temperature, and are consequently 
trapped with Cu.  Due to the high 
binding energy between vacancy and 
Cu in Fe, V-Cu complexes migrate and 
are stabilized by a formation of large 
clusters.  It is considered that the 
inner wall of micro voids is covered 
with Cu atoms, since Cu has a lower 
surface energy than Fe. 
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Figure 5: S-E curves for the Cu ion (140 keV, 5x1013 ,
5x1014, 5x1015 /cm2) implanted Si and the samples
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ABSTRACT

We compare extremely detailed experimental studies of “plane strain” crack tip deformation fields for
two symmetric crack orientations in a ductile single crystal of low hardening copper with new asymptotic
analytical solutions employing single crystal elasto-plasticity.  The experimental studies were motivated by
the pioneering analysis of Rice [1] of crack tip fields in nonhardening ductile single crystals.  Rice showed
that, in contrast to crack tip fields in isotropic (polycrystalline) ductile materials, the single crystal crack tip
fields consist of angular sectors of constant Cartesian stress components that are joined by rays of stress and
radial displacement discontinuity.  Rice’s solutions assume yield is attained at all angles about the crack tip,
which requires radial shear bands of both slip and kink type.  The new experiments confirm several of Rice’s
predictions;  however, there are several important differences.  Our experimental observations and
measurements show:  an absence of kink-type shear bands; some sector boundary locations differing
significantly from Rice’s predictions;  different near-tip fields for a 90° crack orientation change (in contrast
to the theoretical prediction);  and angular regions exhibiting no evidence of plastic slip and very low strain
(as measured by Moiré microscopy).  Based on these observations, we have derived new asymptotic
analytical solutions that relax Rice’s assumption that yield is attained at all angles about the crack tip;  this
permits derivation of solutions that do not require rays of kink-type shearing and that possess near-tip sub-
yield angular sectors.  Direct comparison of these solutions with the experimental observations and
measurements show that the new asymptotic solutions agree quite well with the experiments. The result is
enhanced fundamental understanding of ductile single crystalline crack tip fields as well as quantitative
predictive capability.

KEYWORDS

crack tip fields;  single crystal plasticity;  optical interferometry;  asymptotic analysis.



INTRODUCTION

Nonlinear fracture mechanics in its current state deals largely with isotropic materials;  a main application is
ductile polycrystalline materials whose grains are sufficiently small and randomly oriented that a
macroscopic isotropic continuum theory suffices.  However, structural components are increasingly being
fabricated in single crystal form, for reasons including the avoidance of grain boundary defects and superior
creep resistance.  The fracture behavior of ductile single crystalline materials is as yet not well understood.
Also, the fracture of more commonly employed polycrystalline materials involves, at the microscale, crack
growth through (single crystalline) grains or along grain boundaries.  To understand and predict the fracture
behavior of such materials from a fundamental perspective, it is necessary to understand and be able to
characterize the stress and deformation fields present at the tip of a crack in a single crystal.

In a pioneering paper, Rice [1] published an asymptotic study of crack tip stress and deformation fields for
plane strain tensile cracks in elastic-ideally plastic single crystals.  He showed that, unlike crack tip fields in
isotropic elastic-ideally plastic materials, the single crystal crack tip fields in at-yield regions are comprised
exclusively of angular sectors of constant Cartesian components of stress.  For the stationary crack case, he
showed that these are joined necessarily by stress and displacement discontinuities when, as he assumed, the
stress state is at yield at all angles about the crack tip.  Rice’s solutions address the specific cases of a crack
on the (0 1 0) plane pointing in the [1 0 1] direction, and a crack on the (1 0 1) plane pointing in the [0 1 0]
direction, for both FCC and BCC crystals that flow according to the critical resolved shear stress (Schmid)
criterion.  Saeedvafa and Rice [2] extended Rice’s [1] asymptotic analysis to incorporate Taylor power-law
hardening.

The analyses of Rice and co-workers just summarized employed continuum elastic-plastic modeling of
ductile single crystals, and analyzed crack tip fields via asymptotic analysis within an infinitesimal
displacement gradient formulation.  Rice et al. [3] performed full-field “small strain” numerical finite
element calculations, using continuum crystal modeling;  these solutions were in accord with Rice’s [1]
asymptotic analytical ones, confirming that the latter have a significant radius of validity.  Mohan et al. [4]
and Cuitino and Ortiz [5] employed finite deformation continuum theory to analyze (numerically) these
crack tip fields, accounting for the full three-dimensional crystal geometry.

Several extremely careful and fascinating experimental studies of “plane strain” tensile crack tip fields have
recently appeared, notably those of Shield and Kim [6], Shield [7], Crone and Shield [8] and Bastawros and
Kim [9].  Also, very recently, numerical studies of plane strain tensile crack tip fields using discrete
dislocation dynamics to model ductile materials containing substantial initial distributions of dislocations and
dislocation sources have been conducted, the most recent by Van der Giessen et al. [10].

The solutions of Rice [1] involve rays of concentrated plastic shearing, of both slip (parallel to slip systems)
and kink (perpendicular to slip systems) type, emanating from the crack tip.  The recent experimental studies
confirm Rice’s predictions of the presence of discrete sectors near the crack tip, and also exhibit rays of slip-
type concentrated plastic shearing.  However, they do not appear to show kink-type concentrated plastic
shearing.  This motivated Drugan [11] to construct asymptotic solutions for stationary crack tip fields in
elastic-ideally plastic ductile single crystals that do not contain kink-type rays of concentrated plastic
shearing.

In the present paper, we provide direct comparisons of certain of Drugan’s [11] solutions to the experimental
measurements of Crone [12] and Crone and Shield [8] for cracks having two different orientations in FCC
ductile single crystalline copper.



COMPARISON OF EXPERIMENT AND THEORY

Experimental Results
Single crystals of copper were grown with the Bridgman technique [13] and prepared as four-point-bend
specimens [8].  The two crystallographic orientations were investigated with the interferometric method of
Moiré microscopy to obtain detailed information about the surface strains [14] and the optical method of
differential image contrast (DIC) to obtain general information about the surface deformations. Samples
having a notch on the (101) plane and its tip along the   [ ]101  direction are identified as Orientation I, while
samples with a notch on the (010) plane and its tip along the   [ ]101  direction are identified as Orientation II.

The formation of persistent strain localization bands, observed optically on the sample surface during testing
and after unloading as shown in Figure 1, provide insight into the active slip systems within a sector and
delineate the sector boundary angles. Slip band observations, refined by detailed Moiré microscopy strain
measurements, suggest that certain sectors of the near-tip field may remain elastic.  Although the details of
the Moiré results [7, 8] are not presented here, they inform the discussion that follows.

The theoretical slip plane trace angle between the slip plane trace and the x1 axis (see Figure 1) is of
particular interest for comparison to the persistent strain localization band angles observed in experiments.
Because FCC copper slips on {111} planes in <110> directions, the slip plane trace angles are 35°, 90°, and
145° from the x1 axis for Orientation I.  The related kink-like shear trace angles are 55°, 125°, and 180°.  The
slip and kink angles for Orientation II are interchanged.  All of the persistent strain localization bands
observed on the sample surface occur at orientations corresponding to the plane strain slip systems available.
Thus all of the persistent strain localization bands observed are categorized as slip bands.  No evidence of
kink-type shear bands was observed in either orientation.   If kink is not exhibited in these orientations, then
the angles at which two plastic sectors may adjoin are greatly diminished.

       
Orientation I             Orientation II

Figure 1.  Optical micrographs were taken using a DIC microscope of FCC copper bend samples with
Orientation I (left) [7] and Orientation II (right) [8].  The notch enters from the left.

The lines in the sectors emanating from the notch tip are slip lines.  Changes in
color/shade indicate small changes in surface tilt.  The black regions very near the tip

are regions with larger out of plane deformation and thus larger tilt.
 The field of view is 2.7 by 1.8 mm.

x1

x2



Figure 1 shows slip bands at 90° (for Orientation I) and 180° (for Orientation II) occur ahead of the notch.
However, Rice [1] proved that in nonhardening material, plastic sectors must have constant Cartesian stress
components, and since we must have σ12 = 0 on θ = 0 (i.e., the crack plane ahead of the tip) from symmetry,
one expects σ12 = 0 in the entire sector ahead of the crack.  However, it was observed during the experiments
that these slip bands did not form until the final stages of loading;  therefore, we hypothesize that they are the
result of material hardening.  Indeed, the results of Saeedvafa and Rice [2] show that even a low level of
hardening permits nonzero σ12 everywhere in the front sector except at θ = 0. Thus, for comparison to the
perfectly plastic crack tip field solutions, the slip bands directly ahead of the notch will be ignored.

Rice’s Fully Plastic Asymptotic Solutions
Rice’s [1] solutions are illustrated in Figure 2 for the crack orientations shown in Figure 1.  The near-tip
sector assembly, the stress and displacement jump locations, and the stress field, are all identical for the two
orientations.  The solutions have rays of stress and displacement discontinuity at the following angles,
measured counterclockwise from the crack plane ahead of the crack tip:  θ = 54.74°, 90°, 125.3°.
Importantly, the character of the deformation fields differs between the two orientations:  In the Orientation
II case, the rays at θ = 54.74° and 125.3° are sites of radial displacement discontinuities (concentrated plastic
shearing) produced by slip on the crystal’s slip plane traces, while  θ = 90° is the site of a radial displacement
discontinuity produced by a kinking mode of concentrated shear, since this direction is perpendicular, not
parallel, to one of the crystal’s slip plane traces.  The situation is reversed for Orientation I: θ = 90° is the site
of a slip-type concentrated shearing, while θ = 54.74° and 125.3° are sites of kink-type concentrated
shearing.  A comparison of Figure 2(a) with Figure 1 shows that neither of the experimental images appears
to match completely Rice’s [1] solution.  [Since the experiments used notches, sharp-crack asymptotic
solutions are expected to apply outside a radius of 2-3 times the notch radius.]  Orientation II does seem to
agree with Rice’s solution for, say, 0 ≤ θ < 90°, but the experimental image shows slipping on both of Sector
B’s slip line traces significantly beyond  θ = 90°, as opposed to changing to Sector C behavior at  θ = 90° as
predicted by the analytical solution.  Orientation I looks quite different from Rice’s solution, except perhaps
for the apparent sector boundary at  θ  ≈ 54°, but the experiments show no evidence of kink-type plastic
shear there, as the analytical solution predicts.

(a) (b)

Figure 2.  (a)  Rice’s [1] fully plastic stationary crack near-tip solutions for FCC crystals for the crack
orientations discussed.  The dark rays are sites of stress and displacement discontinuity;  the

angular sectors have constant Cartesian stress components corresponding to the points labeled
on the yield surface shown in (b);  τ  is the critical resolved shear stress on {1 1 1}<110>.

New Elastic-Plastic Asymptotic Solutions Without Kink-Type Shear
Based in part on the observations and comparisons described above, Drugan [11] derived new asymptotic
near-tip solutions that do not contain kink-type concentrated plastic shearing for cracks in nonhardening
ductile single crystals.  In contrast to Rice’s [1] solutions, these new solutions necessarily contain sub-yield
regions near the crack tip (treated as isotropic for simplicity).  Here we select two of Drugan’s [11] solution
families that appear to agree well with the experimental images of Figure 1.  These solutions are illustrated in
Figure 3.  Significant constraints exist on permissible near-tip elastic-plastic solutions;  see Drugan [11].
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We begin with Orientation II, as this appears to agree reasonably with Rice’s [1] solution for 0 ≤ θ < 90°;
however, for  θ > 90°, the experiments of Crone and Shield [8] clearly show the persistence of a Type B
sector beyond 90°, after which there is an angular span of no apparent slip activity, and then finally some
single slipping adjacent to the crack flank, as can be seen in the lower half of Figure 1.  A simple solution of
Drugan’s [11] that is in accord with these observations is that illustrated in Figure 3(a).  A constant stress at-
yield sector of A type directly ahead of the crack joins by a stress and slip-type displacement jump to a B-
type sector at  θ = 54.7°;  this B-type sector extends until 98°, at which angle it joins, via full stress and
displacement continuity, a sub-yield elastic sector.  This extends to θ = 125°, where it joins, with full stress
and displacement continuity,  a D-type sector, which persists to the crack flank.  The sub-yield sector has
Cartesian stress components that vary with angle, as illustrated in the stress plane.  (This is actually one
extreme member of a family of closely-related solutions, in which the angular extent of the elastic sector
decreases until it becomes an elastic stress jump at  θ = 112°, which is the other extreme member of the
family;  see Drugan [11].)

 (a)

(b)

Figure 3.  Drugan’s [11] solutions that show good agreement with the experiments on:
(a) Orientation II;   (b) Orientation I.

Orientation I differs significantly from Rice’s [1] solution even ahead of the crack tip.  As Figure 1
illustrates, the Crone [12] and Shield [7] measurements indicate a slip-type sector boundary at  θ ≈ 35°,
another sector boundary at about  θ ≈ 54°,  and a third at about  θ ≈ 111°.  A solution family of Drugan’s [11]
that agrees well with this experimental image is shown in Figure 3(b).  This has a Sector A directly ahead of
the crack tip, joined by a slip-type stress and displacement jump at  θ = 35.3° to a Sector AF (whose stress
state lies somewhere along the yield surface segment joining vertices A and F).  This sector then joins a B-
type plastic sector via an elastic stress jump.  We illustrate the specific example having x = 1/4 in the stress
plane of Figure 3(b), for which the solution shows  θ2 = 51°.  Sector B then persists until  θ = 112°, at which
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angle it joins, via an elastic stress jump, a sector of D type.  See Drugan [11] for details of the calculation.
Figure 3 shows the stress states in each of the near-tip constant stress sectors.  We emphasize that the
experimental results do not provide definitive information about the near tip field behavior beyond about
θ ≈ 111°, and thus that other asymptotic analytical solutions are possible having, for example in the solution
of Figure 3(b), the material from the Sector B boundary all the way to the crack flank below yield.  Further
discussion of the possibilities, and constraints on these, is given in Drugan [11].

CONCLUSIONS

The combined investigation of new asymptotic analytical solutions and detailed experimental studies of
“plane strain” crack tip deformation fields for symmetrically oriented cracks in a ductile FCC single crystal
has produced interesting and encouraging new results.  The absence of kink-type shear bands, and angular
regions exhibiting no evidence of plastic slip and very low strain, in the experimental observations and
measurements have guided the development of new analytical solutions employing single crystal elasto-
plasticity.  Direct comparison of these solutions with the experimental observations and measurements show
that two new solutions agree quite well with the experiments on two crack orientations.  Thus it appears that
asymptotic crack tip field analysis within a “small strain” formulation of continuum single crystal
elastoplasticity is capable of characterizing actual single crystal crack tip fields.  The result is enhanced
fundamental understanding of ductile single crystalline crack tip fields and quantitative predictive capability.
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ABSTRACT   
 
Laboratory measured results from a broad-based experimental program have been combined with cohesive 
cracking simulations to determine the size-independent fracture toughness of two batches of concrete.  The 
two batches of concrete used aggregate with a nominal maximum size of 22 mm.  The batches had average 
compressive strengths of 36 and 52 MPa.  The laboratory experimental program consisted of three sizes 
each of single edge (75 – 305 mm high) and round double beam specimens (305 – 1220 mm high).  The 
two-parameter, size effect, Barker and inverse analysis data reduction methods were used to obtain 
measured values of fracture toughness from the test data.  Each of the data reduction methods makes 
different assumptions about the effects of the process zone.  Therefore, differences in measured fracture 
toughness values from the various data reduction methods are possible.  The comparison shows that the 
single edge and round double beam specimens, up to 305 mm high, with the two-parameter, size effect and 
Barker data reduction methods do not produce fracture toughness values within 10% of the size-independent 
value.  As expected, the accuracy of the various combinations of test specimen geometry, size, and data 
reduction method improved with larger test specimen sizes.  Only the inverse analysis data reduction 
method produces accurate values in the range of specimen sizes that can be lifted by a single person.     
 
 
KEYWORDS   
 
concrete, fracture toughness testing, single edge specimen, round double beam specimen, two-parameter 
method, size effect method, inverse analysis, cohesive crack simulation 
 
 
INTRODUCTION   
 
At the scale of most civil engineering structures, macrocrack processes in concrete can not be predicted 
accurately using linear elastic fracture mechanics, LEFM.  Fortunately, several models have been developed 
for use when there are non-linear fracture mechanics, NLFM, conditions.  The size-independent fracture 
toughness, KIc, is a parameter common to all of these models for crack propagation.  The size-independent 
fracture toughness is the value that would be obtained from a test specimen large enough that it experiences 
LEFM conditions.  Testing specimens that large is not practical for most concrete mixes.  Therefore, several 
data reduction methods have been developed based upon the models for crack propagation under NLFM 
conditions.  In theory, the fracture toughness value obtained using one of these NLFM-based data reduction 



methods, KIc
method, is the same as the size-independent value, KIc.  In practice, the variation of KIc

method values 
for different test specimen geometries, specimen sizes, and data reduction methods indicates that at least 
some of the KIc

method values are not KIc.  A difference in values occurs when assumptions made about the 
fracture process zone by the data reduction method are violated.   
 
A broad-based experimental program has been undertaken in conjunction with cohesive cracking 
simulations in order to determine the size-independent fracture toughness, KIc, of two mixes of concrete.  
With the known values for KIc, the accuracy of the KIc

method values has been evaluated for the various 
combinations of test specimen geometry, size, and data reduction method.   
 
Concrete Mixes   
Both of the concrete mixes used in this investigation had a nominal maximum aggregate size of 22 mm.  
One of the batches, referred to as “Normal Strength”, had an average compressive strength of 36 MPa at the 
time when fracture toughness tests were performed.  The second batch, referred to as “High Strength”, had 
an average compressive strength of 52 MPa.  Detailed descriptions of the mix design and material properties 
for the batches can be found in [1].   
 
Test Specimen Geometries   
In order to determine the size-independent fracture toughness of a mixture of concrete without testing 
extremely large specimens, more than one test specimen geometry must be used.  Different geometries 
result in different stress states around the crack front.  Different stress states might cause the process zone to 
develop differently.  Therefore, certain combinations of test specimen geometry and data reduction method 
might be more likely to produce the size-independent fracture toughness for a given size of specimens.   
 
Two test specimen geometries were selected for this study: the single edge loaded in bending, SE(B)      
(Fig. 1), and the round double beam loaded in bending, RDB(B) (Fig. 2).  The single edge specimen has 
been used extensively with concrete [2].  It is the geometry chosen for three proposed standard test methods 
for measuring fracture properties of concrete [3-5].  The specimen is rectangular with a straight notch.  As 
the specimen is loaded, it exhibits linear elastic response until the process zone begins to develop ahead of 
the notch.  The peak load is reached close to when the crack begins to propagate.  Data reduction is 
performed on data obtained around the peak load.  Therefore, the determining data is acquired after the 
process zone has begun to develop but before crack propagation has occurred.   

 
Figure 1.  Single edge specimen loaded in bending, SE(B) 

 
The round double beam is a specimen geometry used in a standard for measuring the fracture toughness of 
rock [6] and ceramics [7].  The specimen is cylindrical with a chevron shaped notch.  Because of the 
chevron notch, the crack initially propagates in a stable manner during testing.  When the crack reaches the 

ao

S
t

L

F

W

b

= 79 mm

= 3.3 mm

b

t

= 4.0W

= 4.6W

S

L

= 0.33Wao

W = 80, 155, 310 mm

ao

S
tt

L

F

W

b

= 79 mm

= 3.3 mm

b

t

= 4.0W

= 4.6W

S

L

= 4.0W

= 4.6W

S

L

= 0.33Wao = 0.33Wao

W = 80, 155, 310 mm



critical length, around mid-height, the peak load is reached and propagation becomes unstable in load 
control.  Data reduction is performed on data obtained around this transition point.  Therefore, the 
determining data is acquired after the process zone has begun to develop and stable crack propagation has 
occurred.   

 
Figure 2.  Round double beam specimen loaded in bending, RDB(B) 

 
Data Reduction Methods   
Each NLFM-based data reduction method makes different assumptions about the effect of the process zone 
when the determining data is acquired.  Therefore, four data reduction methods were used in this study.  The 
two-parameter data reduction method was used on each SE(B) result to obtain KIc

TP values.  The method is 
based upon the two-parameter model for crack propagation [8].  The two-parameter method asserts that the 
global response of a structure with a crack experiencing NLFM conditions can be reproduced by 
considering the structure to have an effective crack experiencing LEFM conditions.  Compliance is used to 
determine the effective crack length.   
 
The size effect data reduction method was used on groups of SE(B) results to obtain KIc

SZ values.  The 
method is based upon the size effect model for crack propagation [9].  The method assumes that the nominal 
strength of geometrically similar specimens is only a function of one specimen dimension.  Linear 
regression is used to obtain the fracture energy or fracture toughness.   
 
The Barker data reduction method was used on each RDB(B) result to obtain KIc

BR values.  The method is 
based upon the Griffith energy criterion for crack propagation [10].  The method uses compliance to convert 
an LEFM-based KIc

method value into an NLFM-based value.   
 
An inverse analysis data reduction method was used on groups of SE(B) and RDB(B) results to obtain KIc

INV 
values.  The inverse analysis data reduction method used in this study is based on a cohesive crack model 
for crack propagation.  The method selects the optimum cohesive zone properties to reproduce the behavior 
of all sizes of both specimen geometries for a single mix of concrete.   
 
 
SIZE-INDEPENDENT FRACTURE TOUGHNESS VALUES   
 
Determination of the size-independent value of fracture toughness, KIc, for concrete mixtures has been a 
significant challenge for the research community.  Consistent results for a single size or single geometry or 
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single data reduction method do not ensure that the result is the size-independent value.  To determine KIc 
with reasonable certainty requires consistent results from a variety of combinations of test specimen 
geometry, size and data reduction method.   
 
In order to determine the KIc values for the two concrete mixes in this study, all of the measured KIc

method 
values were compared.  The results are summarized in Figures 3 and 4.  The KIc

TP values increased with 
SE(B) specimen depth for the range of specimens tested.  The KIc

BR values increased with RDB(B) 
specimen depth until the 610 mm deep specimen results and possibly after.  The KIc

SZ values are included; 
however, the scatter in the measured peak loads severely limits the precision of the data reduction method.  
The KIc

INV values are similar across all specimen sizes and geometries investigated for both mixes.  For the 
Normal Strength mix, the KIc

BR values appear reach and remain near the KIc
INV value.  In addition, the KIc

BR 
values are approaching the KIc

INV values for the High Strength mix.   

 
Figure 3.  Measured fracture toughness value for specimens from the Normal Strength batch 

 
Figure 4.  Measured fracture toughness value for specimens from the High Strength batch 
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Although such comparisons can not conclusively show what the KIc values are for these two mixes, one can 
reasonably argue that the KIc value for each mix is within 10-20% of the KIc

INV value.  Therefore, for the 
purpose of comparing measured and size-independent fracture toughness values, the KIc value for the 
Normal Strength mix is taken to be 1.9 MPa√m.  The KIc value for the High Strength mix is taken to be 2.7 
MPa√m.   
 
 
COMPARISON WITH MEASURED FRACTURE TOUGHNESS VALUES   
 
The individual KIc

method values can now be compared to the size-independent KIc values.  The accuracy of the 
measured values is calculated as the ratio KIc

method/KIc.  The accuracies for the Normal Strength specimens 
are plotted versus specimen height in Fig. 5.  The accuracies for the High Strength specimens are plotted in 
Fig. 6.  The accuracy of the KIc

INV values is approximately 100% and was therefore omitted from the figures.   
 

Figure 5.  Accuracy of measured fracture toughness value for specimens from the Normal Strength batch 

 
Figure 6.  Accuracy of measured fracture toughness value for specimens from the High Strength batch 
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CONCLUSIONS   
 
The poor accuracy of the KIc

TP and KIc
SZ values from the three sizes of SE(B) specimens clarifies the 

observations of Elices and Planas [11].  The results of their study implied that the critical energy release rate 
obtained from the two-parameter or size effect data reduction methods would be different from the energy 
release rate obtained from inverse analysis using a quasi-exponential tension softening diagram for typical 
laboratory sized SE(B) specimens.  They predicted the difference would be approximately a factor of two.  
They were unable, however, to determine which of the data reduction methods would be more accurate.  
The results presented in Figs. 3 and 4 show that the inverse analysis data reduction method has produced the 
more accurate result.   
 
The laboratory measured fracture toughness results from the Normal Strength batch of specimens appear to 
have converged to KIc with specimens that are 610 mm high.  For the High Strength specimens, the results 
for the 1240 mm high RDB(B) are approaching KIc, but even larger specimens would be required to obtain 
KIc directly.   
 
A practical test for measuring the fracture toughness of concrete will use specimens small enough to be 
carried by one person.  Of the six sizes of specimens tested in this study, the largest that can be moved by a 
single person are the specimens 305 mm high.  The average measured fracture toughness values for these 
and the smaller specimens are 20 – 60% below KIc.  The systematic inaccuracies of the measured fracture 
toughness values have important implications for predicting crack propagation in concrete structures.    
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ABSTRACT 
 
A basic problem within the safety assessment of flawed components is the question of how to deal with 
large amounts of ductile crack growth. Conventional fracture mechanical concepts fail as their validity is 
restricted only to small amounts of ductile crack growth. The assessment tools for the elastic plastic mate-
rial and component behaviour have been significantly improved by the development of micromechanical 
material models. Advantages of these models are geometry independent material parameters and their va-
lidity even with large amounts of ductile crack growth. 
In the present study the micromechanical damage model of Gurson, Tvergaard and Needleman imple-
mented in the FE code ABAQUS was applied to predict the complex crack growth and leakage behaviour 
of a large thinwalled pipe with 90°-external circumferential surface flaw under fourpoint bending (nomi-
nal pipe dimensions: length × outer diameter × wallthickness = 2000 × 273 × 17 mm³). The threedimen-
sional elastic-plastic numerical simulation of the pipes failure behaviour including ovalization and leakage 
was performed up to ductile crack growth of about 200 mm in circumferential direction. A series of ex-
perimental pipe tests was carried out up to final cleavage failure after significant stable leak growth in 
order to gain detailed data on the failure behaviour for the verification of the FE simulation.  
The numerically determined results were nearly identical to the respective experimental results. That es-
pecially applies to the crack front shapes, crack length, displacements and the leakage opening area. 
Therefore, it is outlined that even complex failure mechanisms of components with large ductile crack 
growth can be well assessed by application of damage models. 
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Component failure, large ductile crack growth, damage mechanical simulation, experimental verification 
 
 
INTRODUCTION 
 
A wellknown and basic problem within the safety analysis of components is the lack of valid crack resis-
tance curves for large amounts of stable crack growth due to the validity limits in the relevant standard 
procedures and the uncertainty of how to extrapolate the curves correctly. Therefore, the present study 



deals with the question of how to describe and predict complex component failure behaviour with large 
ductile crack growth by means of application of micromechanical damage simulation. 
 
 
EXPERIMENTAL AND NUMERICAL INVESTIGATIONS 
 
Material  
 
The material under investigation was the german 15NiCuMoNb5 ferritic-bainitic high-temperature struc-
tural steel (WB36) in the form of thinwalled seamless pipes with nominal dimensions of length × outer 
diameter × thickness = 2000 × 273 × 16 mm³. Table 1 shows mechanical and fracture mechanical proper-
ties of the investigated material at ambient temperature together with Charpy impact energy values. Crack 
initiation toughness values Ji were determined on the basis of the critical stretch zone width from crack 
resistance curves of fatigue precracked and 20%-sidegrooved C(T)6.25 specimens in L-S orientation with 
an initial crack length ratio of 0.5 according to the ESIS P2-92 guideline [1] (L – axial direction in the 
pipe, T – tangential direction, S – wallthickness direction). 
 
 

TABLE 1 
MECHANICAL AND FRACTURE MECHANICAL PROPERTIES OF THE INVESTIGATED 15NiCuMoNb5 STEEL AT 

AMBIENT TEMPERATURE 
 

 Rp0,2 [MPa] Rm  [MPa] A [%] KV  [J] KVH [J] Ji [N/mm] 
L- direction 515 672 27 - - - 
T-L-position - - - 105 1)  (20 °C) 

98 2)  (20 °C) 
159 - 

L-S-position - - - 133 ± 15 
(22 °C, 8 specimens) 

176 126 

1) mean value of 3 specimens,  2) lowest single value 
 
Pipe Bending Tests  
 
The pipe test program [2] covered tests on a pipe with no flaw and pipes with 90°- as well as 60°-external 
circumferential surface flaws each of which with an initial flaw depth ratio of 0.5 (Figure 1). Figure 1 
gives a schematic outline of the test setup for pipe bending tests that was built up in a 20 MN servohy-
draulic testing machine. The pipes had been extensively instrumented with inductive linear position trans-
ducers and clip gages in order to provide a large set of purposefully determined data of deflection, ovaliza-
tion and crack opening displacement (COD) that was needed for the development and verification of finite 
element models. Furthermore, a number of non-destructive testing methods were applied focussing on the 
investigation of the crack growth and leakage behaviour of the pipes. Ultrasonic testing, acoustic emission 
testing, direct current potential drop technique and an optical analysis delivered detailed data on the ex-
perimental pipe failure. Additionally, several engineering approaches were used to provide and to compare 
analytical predictions of the experimental pipe failure: Plastic Limit Load Concept, Concept of Local Flow 
Stress, R6 Procedure and Engineering Treatment Model. These investigations are reported in detail in [2]. 
 
Finite Element Analysis 
 
All simulations of the component failure behaviour were performed by three-dimensional elastic plastic 
finite element analysis (FEA) with the FE code ABAQUS using the damage model of GURSON modified 
by NEEDLEMAN and TVERGAARD [3] for the simulation of ductile crack growth. With BAM division 
V.3 this model has been used very successfully for the simulation of ductile crack growth within a variety 
of problems during the past few years such as for instance different specimens geometries, structures and 
materials [4]. 
 



Table 2 summarizes the geometry independent material parameters of the applied damage model for the 
investigated steel 15NiCuMoNb5 at ambient temperature. These parameters were determined by fitting to 
experimental results of tensile tests on notched bars with different notch radii as well as to one fracture 
mechanics test on a C(T)6.25 specimen. 
 

f 6o‘clock 

Dimensions 
in mm 

300 

 

 
Figure 1: Schematic outline of the test stand for pipe bending tests and position of selected 

gauging points (f – deflection, COD – crack opening displacement) 
 

TABLE 2 
MATERIAL PARAMETERS DETERMINED FOR DUCTILE DAMAGE AND FAILURE OF 15NiCuMoNb5 STEEL 

AT AMBIENT TEMPERATURE 
 

fa fn εn sn fc ff 
0.0001 0.008 0.25 0.1 0.022 0.19 

 
The geometry of the pipe and the bearings had to be modelled very exactly to achieve the experimentally 
measured forces and displacements and had therefore been optimized by experimental data of the test with 
an unflawed pipe. Due to the absolutely up-to date but limited available computer capacity the pipe with 
the 90°-flaw had to be meshed by relativ large elements compared to the model of the C(T)-specimen. The 
pipes mesh consisted of 14208 nodes and 10713 three-dimensional elements with linear shape functions 
and approximate edge length of 0.25 mm in radial (y) as well as axial (x) direction and 2.2 mm in tangen-
tial direction (z), see Figure 2. 

Figure 2: Finite element mesh of pipe no. 2 with 90°-external circumferential  

loading 

f 6 o‘clock 

symmetry planes 

bearing

y

x
z

free 
edge 

surface flaw, rigid bearings and contact 



RESULTS AND DISCUSSION 
 
The experimental failure behaviour of the pipes in the displacement controlled tests was characterized by 
ductile crack growth until full penetration of the wall thickness (leakage), stable growth of the leak and 
final instability by brittle fracture. The analysis of the fracture surfaces proved that stable crack growth in 
circumferential direction beyond the angle of the machined initial flaw did not occur. The cleavage frac-
ture initiation region was always located in the area in front of the initial flaw angle.  
 
The finite element analysis of the pipe with an 90°-external circumferential surface flaw was performed 
until a maximum displacement of about 18 mm at which the experimental failure by cleavage fracture was 
observed, see Figure 3. Due to the relativ stiff FE-mesh in the flaw region the simulation slightly overes-
timates the experimental maximum force. The experimental and numerical force records nearly coincide  
after the leakage had been initiated and thereby most of the comparable stiff elements in as well as near 
the ligament have failed. Furthermore, the start ot the leakage is remarkably well predicted by the simula-
tion. 

 

0

200

400

600

800

1000

1200

1400

1600

0 2 4 6 8 10 12 14 16 18

deflection at 6 o'clock position  [mm]

fo
rc

e 
 [k

N
]

Experiment

FE analysis
with modified
Gurson model

 Pipe dimensions
True measured wallthickness:  15.97 ... 17.52 mm

 Mean weighted wallthickness in the FE analysis:  16.94 mm
 Outer pipe radius in the FE analysis:  136.84 mm

Experiment:
Start of 
leakage

Finite Element 
analysis:
Start of leakage

Figure 3: Experimental and numerical force - deflection at the 6 o’clock position - records 
 
Within the FE analysis limits the simulated ductile crack growth led to a total leakage angle of about 70 ° 
in circumferential direction what equals the experimental result. It was proven by this that the experimen-
tal crack initiation and crack growth behaviour as well as the leakage behaviour of the flawed pipe was 
very well reproduced by the finite element analysis both in terms of the amounts of crack growth and the 
crack front shape. Figure 4 shows the leakage opening at the internal surface of the pipe in dependence on 
the circumferential angle at several levels of deflection at the 6 o’clock position. Under the conditions of 
increasing deflection the maximum of the leakage opening at 0 ° (6 o’clock position) increases up to a 
value of about 1.8 mm and the leakage enlarges up to an angle of 35 ° in circumferential direction. The 
numerically determined leakage opening profile in the moment of experimental failure at 
f6o’clock = 17.94 mm corresponds very well to the experimentally determined profile.  
 
At a numerically determined leakage size of 36 ° (f6o’clock = 17.94 mm) there was the very high level of 
stress triaxiality in the ligament of about 4 determined in front of the end of the crack in the area of a 
circumferential angle of 40 to 45 °.  This value of stress triaxiality was only determined at this position in 
the simulated structure and not until this stage of the simulation of the test. All other values determined are 



significantly lower. As can be seen from Figure 5, the position of the highest stress triaxiality perfectly 
coincides with the area on the fracture surface, where cleavage fracture was initiated as indicated by the 
performed fracture surface analysis. Therefore, it is concluded that on the applied side the high stress 
triaxiality is responsible for the cleavage fracture that was initiated in the area in front of the crack at a 
circumferential angle of 40 to 45 °. 
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Figure 4: Pipe no. 2 with 90°-external circumferential surface flaw,  

leakage opening profiles at different load levels in terms of deflection at the 6 o’clock position 
 

stress triaxiality h:     black: h ≈ 4      darker grey: h ≈ 2 ... 3.5 
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Figure 5: Pipe no. 2 with 90°-external circumferential surface flaw, maximum stress triaxiality in the 
ligament σh / σv at a deflection of  f6o’clock = 17.94 mm, where experimental cleavage failure was observed 
 



CONCLUSIONS 
 
In the present investigations it could be shown by finite element analysis of large ductile crack growth that 
even complex failure of components can be modelled with high quality by use of damage mechanical 
simulation. It is pointed out that the problem could only be solved by damage models with geometry 
independent material parameters as conventional fracture mechanics concepts are not suited to be applied 
to large ductile crack growth. The high quality of the finite element analysis is underlined because 
experimental and numerical results are nearly identical, which applies especially to the crack opening 
area. For instance, this is regarded as an important prerequisite for the realistic assessment of effusion 
rates in damage cases and for the safety assessment of components in the field of power generating plants. 
 
 
NOMENCLATURE 
 
A elongation at rupture 
COD Crack Opening Displacement 
f6o’clock deflection at the 6 o’clock position 
ϕ circumferential angle (half of the total flaw angle) 
Ji crack initiation toughness 
KV Charpy impact energy 
KVH  upper shelf of Charpy impact energy 
L axial direction (x-direction) 
Rp0,2 0.2% offset yield strength 
Rm ultimate tensile strength 
S wall thickness direction (y-direction) 
hσ   hydrostatic stress 

vσ  Mises effective stress 
T tangential direction (z-direction) 
fn volume fraction of void nucleating particles 
εn average plastic equivalent strain at which the nucleation of new voids reaches its maximum  
sn standard deviation of the distribution which controls the nucleation of new voids  
fa initial void volume fraction 
fc critical void volume fraction 
ff final void volume fraction 
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ABSTRACT

This paper demonstrates the use of fracture mechanics based strength criteria and optimization tech
niques in the design of �brereinforced laminate con�gurations against cracking� The optimum con�g
urations are sought for multidirectional �brereinforced composite laminates under combined inplane
mechanical and thermal loads� The design objective is to enhance the value of the loads corresponding
to the �rstplyfailure as judged by a transverse failure criterion which contains the in situ strength
parameters proposed by the authors� The highly nonlinear optimization problems are solved using
nonlinear programming incorporating a localglobal algorithm of Elwakeil and Arora� It is found that
the optimum designs under combined mechanical and thermal loads are not the same as those under
pure mechanical loads for three of the four loading cases studied� For all cases the cracking loads are
increased several fold in comparison with randomly chosen initial designs� The localglobal algorithm
can generally improve the computational e�ciency of the pure multistart method for the considered
optimum strength design of composite laminates�

KEYWORDS

Composite material� laminate� in situ strength� optimum design� thermal load� failure criterion� �rst
plyfailure� transverse cracking

INTRODUCTION

Most matrices of the advanced composite materials are brittle� They are prone to cracking under very
low applied stresses� Cracking not only reduces the overall sti�ness� but it can lead to disastrous fail
ure of containers due to leakage� Another characteristic of these composite materials is their design
tailorability� For this reason� a composite material or structure can be optimized� for given load condi
tions� in terms of one or a combination of the following properties� weight� sti�ness� strength� toughness�



g p p g � g
maximization for given material properties and volume� inevitably involve complicated fracture me
chanics and�or failure analysis of heterogeneous materials� For this reason� the strength maximization
of composite materials has not been as widely studied rigorously as the weight minimization� although
optimum strength designs of continuous �brereinforced composite laminates have been pursued since
the early days of these materials ���
�������� Daniel and Ishai �	� give an optimum design example of a
composite material structure � the design of a pressure vessel based upon TsaiWu failure criterion and
�rstplyfailure�

The current failure criteria for �brereinforced composite laminates use the basic strength parameters
that are measured using a unidirectional lamina �e�g� Daniel and Ishai �	��� Thus the con�guration of a
multidirectional laminate only in�uences the stress distribution in the multidirectional laminate� How
ever� it is found that the transverse tensile and shear failure stresses of a unidirectional lamina depend
upon the laminate con�guration and the lamina thickness� This means that the conventional failure
criteria need to be modi�ed� They need to include the in situ strength parameters ������ Moreover� in
measuring the in situ transverse strength of unidirectional laminae in laminates� it was found by Flaggs
and Kural ��� that the thermal residual stress resulting from the manufacturing process might consist
of a large portion of the in situ strength �more than half for ������n�s and �������n�s for n � �� 
� ���� ���
A composite structure will also experience temperature variations in service� Because of the remarkable
di�erence in the thermal expansion coe�cients as well as the sti�nesses of a unidirectional lamina in
its longitudinal and transverse directions� the stresses caused by temperature variations may be quite
signi�cant in practice� It is obvious that the thermal stresses in a multidirectional laminate are functions
of the laminate con�guration� that is� functions of the ply angles in the laminate�

Given that most advanced �brereinforced composite laminates are prone to cracking and delamina
tion but that the properties of laminates can be tailored� the present authors have attempted to apply
fracture mechanics and optimization techniques to the optimum strength design of �brereinforced
multidirectional composite laminates �Wang and Karihaloo ����������
����� It is wellknown that op
timization problems of composite laminates are highly nonlinear� The consideration of the in situ

strength parameters complicates the problem� In the present paper� we shall demonstrate the optimum
in situ strength design of multidirectional composite laminates subjected to combined mechanical and
thermal loads� We shall �rst introduce the in situ strength parameters� and then incorporate them
into the formalism of optimization problems� The optimization problems will be solved by a nonlinear
mathematical programming technique incoporating the localglobal algorithm proposed by Elwakeil and
Arora �����

IN SITU STRENGTH PARAMETERS

It has been observed in tests that the transverse tensile and shear strengths of a continuous �bre
reinforced unidirectional lamina� when situated in a multidirectional laminate� are functions of the
thickness of the lamina itself and the ply angles of its neighbouring laminae �e�g� Flaggs and Kural
���� Chang and Chen ������ These strengths of a lamina in a laminate are generally larger than those
measured using a thick unidirectional laminate� As a consequence� it is recognised that the transverse
and inplane shear strengths of a lamina cannot be regarded as its intrinsic property� Because of this
observation� these strengths of a lamina are referred as in situ strengths� when the lamina is situated
in a multidirectional laminate�

Chang and Lessard ��� proposed two formulas to calculate the in situ transverse and shear strengths by
�tting experimental data
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c
are the transverse tensile strength and inplane shear strength measured with a thick

unidirectional lamina� A� B� C and D are to be determined by experiments� N is the number of
unidirectional laminae in a multidirectional laminate� �� represent the minimum di�erence between
the ply angle of a lamina and those of its neighbouring plies�

Wang and Karihaloo ���� studied the physics of the phenomenon of in situ strengths using fracture
mechanics� Based upon the fracture mechanics analysis� they proposed two formulas to calculate the
in situ strengths

Yt
Y �

t

� � �
A

NB
ft���� ���

Sc
S�

c

� � �
C

ND
fs���� ���

Here� the two functions ft���� and fs���� represent the in�uence of the neighbouring laminae on the
strengths of a lamina� They are given by

ft�����min

�
sin����a�

� � sin����a�
�

sin����b�

� � sin����b�

�
���

fs�����min
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sin��
��a�
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��a�
�

sin��
��b�

� � sin��
��b�

�
�	�

The parameters A� B� C and D in eqns� �� are to be determined from experimental results� As these
formulae also contain the ply angle in�uence functions� i�e� ft���� and fs����� the investigation of the
dependence of A� B� C and D on the laminate con�guration is very important� Their dependence upon
the laminate con�guration is discussed by Wang and Karihaloo �����

In Figure �� the in situ transverse strength predicted by eqns ��� and ��� are compared with the ex
perimental results of Flaggs and Kural ��� for the material T�������� In �tting the experimental data�
di�erent values of A are used in eqns ��� and ��� ���� and ���� respectively�� Chang � Lessard ��� used
A � ��� and B � ��� previously to �t the experimental data� It is seen that both of the theoretical for
mulas �t the experimental data reasonably well� The most important conclusion drawn from Figure � is
that for the material and laminate con�gurations studied by Flaggs � Kural ���� the parameters A and
B appear to be independent of the laminate con�guration� They can therefore be treated as material
constants� On the other hand� due to lack of experimental data� the dependence of the parameters C
and D on the laminate con�guration can not be judged� Chang � Lessard ��� found that formula �
� �ts
the experimental data well for T������	 crossply laminates with D � 
�� and C � ��� In the sequel�
we shall use formula ���� which has a fracture mechanics basis� to calculate the in situ shear strength
of laminae in multidirectional laminates with C � ��� and D � ����

In most cases� transverse cracking is the �rst noticeable damage in a laminate� Although the transverse
cracks generally do not result in the immediate failure of the whole laminate� they have the potential
to induce failure by stress concentration and delamination� In the optimum strength design to follow�
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Figure �� Comparison of theoretical and experimental results of the in situ transverse tensile
strength� A � ��� and B � ��� are used in formula ��� �after Wang and Karihaloo ������

we shall use a transverse tensile failure criterion ��� to judge the transverse failure of a unidirectional
lamina in a multidirectional laminate� This criterion� into which the in situ strengths are incorporated�
is written as

q�
i
�

�
Y

Yt

��
i

�
�
S

Sc

��
i

� �� �i � �� 
� ���� L� ���

where Y and S are the inplane transverse and shear stresses in the lamina� L is the total number of
unidirectional laminae in the laminate�

OPTIMUM DESIGN

For a composite laminate under given inplane loads� if the ply angles and thicknesses of the constituent
laminae are so chosen that the values of q�

i
for all laminae are reduced� then the loads corresponding

to the transverse cracking or failure will be enhanced� This objective is achieved by minimizing the
maximumvalue of q�

i
� Following the procedure in the work byWang and Karihaloo ����� the optimization

problem is formulated as

Min

�i� ti� �

� ���
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qi � � � � ���

�
�
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The optimization problem ��� is highly nonlinear with multiple local minima making the search for
the global minimum di�cult� Therefore� the above optimization problem is solved using nonlinear pro
gramming �constrained variable metric method� in conjunction with the socalled domain elimination
method for global optimization proposed by Elwakeil and Arora �����

The above optimization procedure was applied to the optimum design of an �ply symmetric multidi
rectional laminate �����������s� The sti�ness and strength constants used in the calculation of the in situ

strengths are adapted from the work by Chang and Lessard ��� on T������	� The thermal expansion
coe�cients are taken as those of T������� ���� i�e� �L � �����strain�oC� �T � 
����strain�oC� The
thickness of a single ply is assumed to be ���� mm� The temperature variation is taken as �T � ����oC�
i�e� the temperature drop in the manufacturing process ���� It can be arbitrary otherwise� Given a
mechanical load �N�

�
� N�

�
� N�

�
�� the improvement in the design is represented by

k �
�

max qi
� �i � �� 
� ���� �� ����

The results of optimization with respect to the failure criterion ��� are shown in Figure 
 and Table ��
Figure 
 shows the changes of the load factor k during the optimization process for four inplane
loading combinations� Table � shows the initial� pseudorandomly chosen guesses to ply angles� their
�nal optimum values� and the optimum load factor kmax�
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It is seen from Figure 
 that for each of the loading cases �a�� �b� and �c�� the mechanical load corre
sponding to the �rstplyfailure in the optimally designed laminate is increased several fold compared



y g y�
reached from many initial designs� It is hard to compare the results with and without thermal e�ect�
However� the authors have previously found that for loading cases �a�� �b� and �c�� the same initial
designs lead to di�erent �nal designs for pure mechanical load and mixed mechanical and thermal load
�Wang and Karihaloo ������ For loading case �d�� there is a global optimum design� namely� the con�gu
ration where all the ply angles are in the ��� direction� When the plies are so arranged� for the transverse
criterion ���� the absolute global minimum value of the objective function is identically zero� This min
imum value is captured by the optimizer� In all designs� in order to reduce the value of the objective
function� the optimizer aims at reducing the transverse and inplane shear stresses and distributing the
stress in the �bre direction of a lamina in the laminate� The optimizer always distributes the stresses
according to the strengths in di�erent directions of the anisotropic material� An examination of the
elimination procedure described above shows that the e�ciency of the localglobal algorithm depends
upon the number of design variables� the elimination factor and the time taken to �nd a local minimum�

TABLE �
SUMMARY OF OPTIMIZED PLY ANGLES IN A SYMMETRIC ��PLY LAMINATE

without thermal e�ect with thermal e�ect
loading Initial design Final design Initial design Final design
case ��� ��� ��� �� ��� ��� ��� �� kmax ��� ��� ��� �� ��� ��� ��� �� kmax

a ����
����� ����	��
��� ��	
 ����
����	� �	�	���
��� ���
b �������	��� ����
��	��
 
�� �
��������� �
�	������
 ���
c 	
�	���
�	� �	��������
 ��� ���	������� ����������� ��

d ������	��� ����������� � ���
��
���� ����������� �
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ABSTRACT 
 
The compressive strength and failure mechanisms are investigated for a wide range of filamentary 
composites. Static uniaxial compressive tests are performed on both notched and unnotched specimens made 
from four carbon fibres and three epoxy resins combined to give six different composite systems. In all cases 
the dominant failure mechanism is by fibre microbuckling (fibre kinking). An infinite band-kinking model is 
used to estimate the unnotched strength and a linear softening cohesive zone model is applied to estimate the 
open hole compression (OHC) strength. 
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INTRODUCTION 
 
The compressive strength of long, aligned carbon fibre-reinforced plastics (CFRP) is significantly lower than 
the tensile strength of the material due to kink-band formation introduced by fibre instability 
(microbuckling). In contrast, the compressive strength of metallic materials equals or exceeds their tensile 
strength (by an order of magnitude for ceramics). From the literature on compressive fracture it is easy to get 
the impression that fibre microbuckling and kinking are two different competing mechanisms. In fact, the 
kink band is the outcome of fibre microbuckling failure, as observed experimentally in [1-3]. Fibre 
microbuckling occurs first, followed by propagation of this local damage to form a kink band. Many 
analytical models attribute the low compression strength and the mechanism of kink-band formation to 
initial fibre misalignment (waviness) but fibre and fibre-matrix interface properties may also play an 
important role. In a multidirectional laminate the supporting ply orientation on the stability of the 0° layer 
(ply-ply interaction) and the location of the 0° ply through the laminate thickness can also have a significant 
effect on the initiation and final failure. For instance, the failure strain of a laminate with 0° outer layers can 
be more than 10% lower than a similar lay-up with ±45° outer plies, due to out-of-plane fibre microbuckling 
[4]. The outer off-axis plies provide better lateral support to the 0° layers, permitting them to fail by in-plane 
microbuckling, which is a higher strain failure event.   
 
In the present paper, compressive tests are reported for several carbon fibre-epoxy systems and lay-ups with 
and without holes; the failure mode is fibre microbuckling in all cases. 
 
 



FRACTURE ANALYSIS 
 
Unnotched Compressive Strength 
It is now well established that the unnotched strength, σc, of unidirectional carbon fibre-epoxy laminates is 
governed by fibre microbuckling which is associated with non-linear shear of the polymer matrix initiating 

from regions of pre-existing fibre waviness (of magnitude only 
few degrees). For a rigid-perfectly plastic body Budiansky [5] 
showed that 
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where τy and σTy are the in-plane shear and transverse yield 
stresses of the composite, respectively. φ0 is the assumed fibre 
misalignment angle in the kink band, φ is the additional fibre 
rotation in the kink band under a remote stress σ∞, and β is 
the band orientation angle, Fig.1. The critical stress σ=σc is 
achieved at φ=0 in equation (1).  
 
By using the above kinking theory, the unnotched strength of 
the unidirectional laminate can be obtained in terms of the 
shear properties of the composite and the initial fibre 
misalignment. Once the failure stress of the 0°-ply is known, 
the compressive strength of any multidirectional 0°-dominated 
lay-up can be estimated by the stiffness ratio method,  
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where σun is the unnotched laminate strength, σc is the strength of the 0° lamina, N is the total number of the 
laminae in the laminate, E1 is the 0° ply stiffness in the fibre direction, n is the number of plies of a given 
orientation θ, and Exθ is the modulus of a ply of orientation θ in the loading direction (x).  
 
Open Hole Compressive Strength 
Soutis and co-workers [2, 6, 7] have developed a crack bridging model for the initiation and growth of 
compressive damage from the edge of a blunt notch such as an open hole. The microbuckled region (and 
associated plastic deformation in the off-axis plies and delamination between plies is treated as a 
compressive Mode I crack with a cohesive zone at its tip. A linearly softening spring law within the cohesive 
zone models damage: the crack bridging normal traction T is assumed to decrease linearly with increasing 
crack closing displacement (CCD) 2v from a maximum value (equal to the unnotched strength σun of the 
composite) to zero at a critical crack face displacement of 2vc. The intrinsic toughness at the tip of the 
cohesive zone is taken equal to zero, which is similar to the Dugdale analysis of plastic deformation in 
metals from the root of a notch [8]. Rice [9] has shown that the work done GC to advance the crack equals 
the area under the crack traction versus crack displacement curve, giving GC=σunvc. The cohesive zone 
model may be used to predict the notched strength σn of any multidirectional laminate once the material 
parameters σun and GC have been measured from independent compression tests [2, 6].  
 
Alternatively, the unnotched compressive strength can be estimated from equations (1) and (2) and the 
critical crack closing displacement can be related to the kink band width w [5, 7], i.e., 
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where df is the fibre diameter, Ef is the fibre elastic modulus, Vf is the fibre volume fraction and τy is the in-
plane shear yield strength of the composite. Equation (3) implies that the broken fibres in the cohesive zone 
model rotate completely and do not lock up (2vc=δc, see Fig.1). 
 
 
MATERIALS AND TESTING PROGRAMME  
 
Four carbon fibres and three epoxy resins were combined to give six composites, as shown in Table 1.  The 
materials were supplied in prepreg form by Hexcel Composites, and autoclave cured to produce a variety of 
laminates. 
 

TABLE 1    
COMPOSITE SYSTEMS STUDIED 

 
Composite Fibre Matrix Resin 

1 T800 922 
2 T800 924 
3 T800 927 
4 T300 927 
5 IMS 927 
6 HTA 927 

 
 

T800 (Torayca) and IMS (Tenax) are equivalent intermediate modulus fibres (about 290GPa) with tensile 
strain to failure of about 1.9%.  T300 (Torayca) and HTA (Tenax) are equivalent low modulus fibres (about 
235GPa) with tensile strain to failure of about 1.5%.  The three Hexcel resins increase in tensile strength, 
failure strain and toughness from 922 through 924 to 927 [10, 11]. 
 
Unidirectional specimens were tested in compression according the Imperial College method [10], which 
uses a 10mm gauge length Celanese-style specimen, and according to the modified Celanese method [1, 3].  
Collected results are given later. Notched specimens were tested in compression according to the ACOTEG 
standard ACO/TP/II [10, 11].  Specimens were 36mm wide and contained a 6mm diameter central hole.  The 
laminates were nominally 3.5mm thick with the lay-up [0/45/-45/0/90/0/45/-45/0/90/0/45/-45/0°]s.  
Specimens were supported in an anti-buckling guide to prevent overall buckling[2]. The extent of the 
internal damage in the specimens was assessed by ultrasonic scanning [10]. 
 
 
RESULTS AND DISCUSSION 
 
Unidirectional Compression 
The results from the unidirectional compression tests are presented in Table 2. The measured compressive 
strengths for the six composite systems examined are in very good agreement with the theoretical values, 
predicted by the Budiansky plastic fibre microbuckling model [5].   The model requires the knowledge of the 
initial fibre misalignment (φ0), the shear yield stress (τy), the transverse tensile yield stress (σΤy) and the kink 
band inclination angle (β).  Although the six composite systems demonstrate different ultimate shear 
strengths, their shear yield stresses, which mostly influence the unidirectional compressive response, are 
very similar at 65-70 MPa.  Taking φ0=3° (0.052 rad), τy=70MPa and β=15° (0.262 rad) gives a satisfactory 
overall prediction, as seen in Table 2.  These values are close to values found from experimental 
observations for all materials.  Of course, the effect of fibre strength and stiffness properties, fibre diameter 
and fibre/matrix interface, are not accounted for by the model and they may influence the composite 



strength.  A weak interface may trigger microbuckling prematurely, while a bigger fibre diameter will 
provide higher buckling resistance [4]. 

TABLE 2    
STIFFNESS AND STRENGTH PROPERTIES OF A UNIDIRECTIONAL LAMINATE 

 
Composite 

System 
E1 

GPa 
E2 

GPa 
G12 
GPa 

ν12 
 

σc
th 

MPa 
σc

exp 
MPa 

difference
% 
 

T800/922 143.6 
(158)# 

9.9 3.98 0.29 1440 1410 -2.08 

T800/924 141 
(158) 

8.6 
(9.0) 

4.12 
(6.0) 

0.33 1440 1350 
(1448) 

-6.25 

T800/927 154 8.32 3.75 0.37 1440 1450 - 
 

T300/927 116 
(131)# 

7.5 
(8)# 

3.56+ 0.31 1440 1450 - 

IMS/927 135 
(175)# 

8.2 3.56+ 0.33 1440 1320 -8.3 

HTA/927 118 
(145)# 

6.8 
(8)# 

3.24+ 0.35 1440 1530 5.9 

∑  137.4 8.3 4.02 0.33 1440 1435 - 
 

  Notes: ( ) Experimental data measured by Soutis et al [3,4] 
  + Estimated values from the resin shear modulus and fibre volume fraction 
  # Expected values 
  σc

th Predicted strength 
  σc

exp Measured strength 
 
Multi-directional Compression 
The notched compressive strength (σn) of a multi-directional laminate is assessed with reference to the 
unnotched strength (σun).  Details of the latter are given in Table 3.  In the present study problems were 
experienced in the experiments due to the laminates failing adjacent to the grips, outside the region 
supported by the anti-buckling guides.  The values given in the table will, therefore, be underestimates of the 
true value. 
 

TABLE 3    
PREDICTED STIFFNESS AND STRENGTH PROPERTIES OF A 

[0/±45/0/90/0/±45/0/90/0/±45/0]s LAMINATE 
 

Composite 
System 

Exx 
GPa 

Eyy 
GPa 

Gxy 
GPa 

νxy 
 

σun
th 

MPa 
σun

exp 
MPa 

 
T800/922 75.5 40.2 18.2 0.390 728 640.5 

(±37) 
T800/924 74.08 

 
39.06 17.84 0.398 743.8 

 
636.9 
(±23) 

T800/927 80.1 41.7 19.0 0.403 743.8 660.8 
(±55) 

T300/927 61.17 
 

32.46 
 

14.85 0.386 742.1 n/a 

IMS/927 70.61 
 

37.15 16.9 0.396 739.2 n/a 

HTA/927 61.74 32.35 14.8 0.395 744.6 n/a 
 

 
The theoretical compressive strength has been obtained by using Eq.(1) taking σΤy=100 MPa, τy=70 
MPa, φ0=3° and β=15° and Eq.(2).  The measured unnotched strength is at least 15% lower than the 
predicted value due to premature (grip) failure.  The stiffness ratio method predicts 728 MPa (assuming 



σ0=1440 MPa for all systems), while the result obtained from the maximum stress or strain criterion is 757 
MPa (assuming σ0=1440 MPa, or an average failure strain of 1%). The elastic stiffness properties in Table 3 
are calculated values using ply properties (Table 2) and classical laminate theory. 
 

TABLE 4   
NOTCHED COMPRESSIVE STRENGTH OF A [0/±45/0/90/0/±45/0/90/0/±45/0]s 

LAMINATE (hole diameter=6mm, d/w=0.167) 
 

Composite 
System 

τy 
MPa 

φ0
o

 

 

β
o

 σun
th 

MPa 
σn

th 
MPa 

lc 
mm 

σn
exp 

MPa 
 

T800/922 70 3 15 728 368.1 1.95 370.4 
(±8) 

T800/924 70 
 

3 15 743.8 371.3 
 

1.86 390.0 
(±4) 

T800/927 70 3 15 743.8 371.2 1.86 377.0 
(±6) 

 
 
The theoretical notched strength (σn) and critical microbuckling length (lc) at the hole edges are simulated by 
the Soutis et al [2, 6] cohesive zone fracture model.  For the T800 composite system, using equation (3) and 
material data (Vf=0.65, Ef=294 GPa, τy=70 MPa) a width of about 10 fibre diameters (≈60 µm) is obtained, 
which is representative of observed kink band widths of 60-80 µm [2, 6]. Using the theoretical unnotched 
strength (Table 3) and a value of vc=40 µm appears to predict the notched strength of all three T800 systems 
very accurately, as seen in Table 4; similar good correlation is expected for the three other systems (T300-, 
IMS- and HTA-927). The predicted critical microbuckling length is also included in Table 4. When this 
value is reached the laminate is expected to fail catastrophically. Microbuckling lengths of 2-3 mm, 
depending on hole size and lay-up, have been observed experimentally [2, 6]. Microbuckling of the 0° plies 
nucleates at the sides of the hole at between 75-80% of the failure load and is accompanied by matrix 
cracking of the off-axis plies and delamination between neighbouring plies. This damage reduces the stress 
concentration at the edge of the hole and delays final failure to higher applied stresses. The OHC strengths of 
all these materials lie below the limit of notch insensitivity (where the net section failure stress equals the 
unnotched strength) but above the perfectly brittle limit (where the local stress at the root of the notch equals 
the unnotched strength). Applying the maximum stress failure criterion could underestimate the notched 
compressive strength by more than 30%, especially for small d/w ratios [6].  The material length lc serves as 
a useful measure of laminate damage tolerance. 
 
 
CONCLUDING REMARKS 
 
The fibre kinking model by Budiansky [5] suggests that fibre microbuckling is a plastic rather than an elastic 
failure mode and that the strength of the unidirectional material is governed by the shear yield stress of the 
composite and the misalignment angle of the fibre. Applying the model to six different carbon fibre-epoxy 
systems tested in [10], a very good agreement is found. Although the six systems have different ultimate 
shear strengths, their shear yield stresses are very similar at 65-70 MPa. Once the failure stress of the 0°-ply 
is known, the compressive strength of any multidirectional laminate containing 0° layers can be determined 
on a ply-by-ply analysis using the laminate plate theory and the maximum stress failure criterion. For 0°-
dominated lay-ups the strength can be accurately estimated by the stiffness ratio, equation (2). The 18-30% 
discrepancy observed between predictions and the measured multidirectional unnotched compressive 
strengths for the six systems examined in [10] is due to Euler bending that occurred during testing and 
thickness variation across the specimen width. Unnotched strength data are more difficult to generate than 
tensile data because compression testing is sensitive to factors such as Euler buckling, specimen geometric 
imperfections, specimen misalignment in the test fixture and fibre misalignment in the specimen. 
 



The linear softening cohesive zone model of Soutis et al [2, 6] successfully predicts the effects of an open 
hole and lay-up upon the compressive strength and microbuckle zone size at failure. In the analysis, the 
inelastic deformation associated with fibre microbuckling and matrix plasticity developed at the hole edges 
is mathematically replaced with a line-crack loaded across its faces by a bridging normal traction that 
decreases linearly with the overlap displacement of the microbuckle. The model takes as its input the 
laminate unnotched strength and the critical crack closing displacement, which is related to the in-plane 
compressive fracture toughness of the laminate. A value of 40 µm appears to give an excellent correlation 
between predicted and measured OHC data for all systems and lay-ups examined in [10]. The cohesive zone 
approach offers a technique for the prediction of OHC strength, which is simple and easy to apply and has 
the prospect of being used as a preliminary design tool for laminated polymer composite structures. 
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ABSTRACT

A newly developednumericalmodelis usedto simulatepropagatingcracksin a strainsofteningviscoplastic
medium. The modelallows thesimulationof displacementdiscontinuitiesindependentlyof a finite element
mesh.This is possibleusingthepartitionof unity concept,in which fractureis treatedasa coupledproblem,
with separatevariationalequationscorrespondingto thecontinuousanddiscontinuouspartsof the displace-
mentfield. Theequationsarecoupledthroughthedependenceof thestressfield on thestrainstate.Numerical
examplesshow thatallowing displacementdiscontinuitiesin a viscoplasticVon Misesmaterialcanleadto a
failuremodethatdiffersfrom acontinuum-onlymodel.

KEYW ORDS

Displacementdiscontinuity, viscoplasticity, strainsoftening.

INTRODUCTION

Two distinct stagescanbe identified in the failure of quasi-brittleandductile materials. The first stagein-
volvesthelocalisationof inelasticdeformationsinto narrow zones.Laterin theloadingprocess,macroscopic
displacementdiscontinuitiesacrosssurfacescan be identified. Dependingon the ductility of the material,
this occursat a point betweenthepeakloadandcompleteglobal failure. Computationally, failure is usually
simulatedusinga continuum(regularisedstrainsoftening)or a discontinuous(cohesive zone,LEFM) model.
Continuummodelsarewell suitedfor modellingthe inelasticdeformationsthatdevelopearly in the loading
process,but areunableto representthe free surfacesthat develop in a body prior to completefailure. Dis-
continuousmodelsarewell-suitedfor highly localisedfailure, but lessadeptat representingthe distributed
inelasticdeformationsnearthepeakloadin quasi-brittlematerialsandthesubstantialplasticflow thatoccurs
duringthefailureof ductilematerials.A modelis presentedwhich is ableto capturebothstagesof thefailure
process.Initial inelasticdeformationsarerepresentedin the continuumusinga regularisedstrainsoftening
model,andthe laterdevelopmentof discretesurfaceswithin a bodyis simulatedby insertinga displacement
discontinuity.
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Figure1: Body Ω crossedby asinglediscontinuityΓd.

To simulatestrainsofteningin thecontinuum,a regularisedcontinuummodelmustbeused.In this work, a
Perzynaviscoplasticmodelis used[1]. Whenthe inelasticdeformationat the tip of a discontinuityreaches
a critical level, the discontinuityis extended.A displacementdiscontinuityis addedto the underlyingfinite
elementinterpolationbasisusingthe partition of unity concept[2, 3]. Using the partition of unity concept,
a displacementdiscontinuitycan be modelledby addingextra degreesof freedomto existing nodes. The
displacementfield is decomposedinto a continuousanda discontinuouspart,with ‘regular’ nodaldegreesof
freedomrepresentingthecontinuouspartof thedisplacementfield and‘enhanced’nodaldegreesof freedom
representingthe discontinuouspart of the displacementfield. This methodhasbeenusedsuccessfullyfor
simulatingcracksin elasticbodies[4] andcohesivecracksunderbothstatic[5] andimpact[6] loading.

To elaboratethemodel,thekinematicsof a bodycrossedby a displacementdiscontinuityarefirst discussed.
Aspectsof introducinga displacementdiscontinuityin an inelasticcontinuumare thenconsideredand the
modelis demonstratedthroughseveralnumericalexamples.Thenumericalexampleshighlight the influence
of includinga displacementdiscontinuityon thefailuremodefor aVon Misesmaterial.

INCLUDING A DISPLACEMENT DISCONTINUITY

Theproposedformulationallowsadisplacementdiscontinuityto beaddedto afinite elementmodel,indepen-
dentlyof thespatialdiscretisation.Ratherthanexplicitly modellingadiscontinuitythroughthemeshstructure,
adisplacementjump is describedmathematicallyusingtheHeavisidefunction.

Discontinuousdisplacementfield

Thedisplacementfield u for a bodycrossedby multiple,non-intersectingdisplacementdiscontinuitiescanbe
describedby:

u
�
x � t ��� û

�
x � t ���

k

∑
i � 1

	
Γd 
 i
�
x � ũi

�
x � t � (1)

whereû andũi arecontinuousfunctions,
	

Γd 
 i is theHeavisidefunctioncentredat the ith discontinuityandk

is thenumberof discontinuities.A body, crossedby asinglediscontinuityis shown in figure1. TheHeaviside
jump is definedas

	
Γd

�
x ��� 1� x � Ω  and

	
Γd

�
x ��� 0� x � Ω � , wherethedomainsΩ  andΩ � areshown

in figure1. Themagnitudeof thedisplacementjump at the ith discontinuity � u � i is givenby ũi � x � Γd 
 i. Taking



thesymmetricgradientof equation(1), thestrainfield for thegeometricallylinearcaseis givenby:

εεε � ∇∇∇su � ∇∇∇sû �
k

∑
i � 1

	
Γd 
 i ∇∇∇sũi �

k

∑
i � 1

δΓd � i ũi � ni
s

(2)

with δΓd � i theDirac-deltadistribution centredat the ith displacementdiscontinuityandn is thenormalvector
to thediscontinuity.

Variational formulation

Theproposedmodelcanbeinterpretedasacoupledproblem,with oneequationdescribingthecontinuouspart
of thedisplacementfield, û, anda seconddescribingthediscontinuouspartof thedisplacementfield,

	
Γd

ũ.
Following a Galerkinprocedure,theweakgoverningequationscanbe formedby insertingthedisplacement
decompositionin equation(1) into thevirtual work equation.After somemanipulations,two weakgoverning
equationscanbeformedfor abodycrossedby a singlediscontinuity[5]:

Ω
∇∇∇sη̂̂η̂η :σσσ �

Γu

η̂̂η̂η � � � t̄ dΓ

Ω� ∇∇∇sη̃̃η̃η:σσσ �
Γd

η̃̃η̃η � � � t � 	 Γu Γd

η̃̃η̃η � � � t̄ dΓ
(3)

where η̂̂η̂η and η̃̃η̃η are admissibledisplacementvariations,t is the traction acting at a discontinuityΓd and t̄
are tractionsactingon the externalboundaryΓu. The unboundedDirac-deltaterm hasbeeneliminatedby
changingthevolumeintegral containingthedistribution to asurfaceintegraloverΓd.

Finite elementimplementation

Theweakgoverningequationsin equation(3) aresolvedin a similar mannerto a coupledproblem.Different
setsof nodal degreesof freedomare usedto representthe continuousand the discontinuouspartsof the
displacementfield. In adiscretisedformat,thedisplacementfield is givenby:

u � Na
û

� 	 Γd
Nb

ũ

(4)

whereN is thestandardmatrix containingthe elementshapefunctionsandthe vectorsa andb relateto the
continuousanddiscontinuouspartsof the displacementfield, respectively. The discretisedweakgoverning
equationsareformedby insertingthediscretiseddisplacementfield in equation(4) andits gradientinto equa-
tion (3).

The extra b degreesof freedomareaddedonly to nodescloseto a discontinuity. If thesupportof a nodeis
crossedby a discontinuity, theb degreesof freedomareactivatedto describethediscontinuity. Theaddition
of extradegreesof freedomto nodeswhosesupportis notcrossedby adiscontinuityleadsto aglobalstiffness
matrix which is not positivedefinitesinceover thesupportof thenodetheHeavisidefunctionis equivalentto
aconstantfunction,which is includedin thespanof thestandardshapefunctions.

SIMULA TING THE CONTINUUM-DISCONTINUOUS TRANSITION

A displacementdiscontinuityis extendedwhenthe inelasticdeformationin thecontinuumat a discontinuity
tip reachesa critical level. For the Perzynaviscoplasticmodel,a discontinuityis extendedwhen the yield
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Figure 2: Three-pointbendingbeam.All dimensionsin millimetres(depth= 1mm).

strengthof the underlyingrate-independentmodel is exhausted.At this stage,the materialis consideredto
have lost all coherence.Therefore,no tractionscanbetransmittedacrossanopeningdiscontinuity. Sincethe
rate-dependentconstitutive model remainswell-posed,it is not possibleto draw on linear stability analysis
to determinea discontinuitypropagationdirection. Therefore,a discontinuityis assumedto extend in the
direction in which the effective stressis maximum. This is determinedby a spatialweighting procedure
arounda discontinuitytip [7, 8]. Usinganeffectivestressto determinethepropagationdirectionis dependent
on thechosenyield functionandmakestheprocedureequallyapplicableto bothmode-Iandmode-II failure
problems[8].

NUMERICAL EXAMPLES

To illustratethecombinedcontinuum-discontinuousmodel,a three-pointbendingtest(figure2) is performed
for aVonMisesmaterial.A discontinuitypropagatesfrom a0� 5 mmlonginitial cutat thecentreof thebeamat
thebottomedge.Thematerialpropertiesareinitially takenas:Young’smodulusE � 1 � 102 MPa,Poisson’s
ratio ν � 0� 2, yield stressσ̄ � 1 MPa, viscosityη � 2 s andthehardeningmodulush ��� 200Nmm� 2. The
beamis loadedviaaconstantdownwardvelocityof 1 mms� 1, appliedatthecentreof thebeamonthetopedge.
Theanalysesareperformedunderplanestrainconditionsandthesix-nodedtriangleis usedastheunderlying
finite element.

To illustratethe objectivity of the modelwith respectto finite elementmeshstructure,the beamis analysed
usingtwo differentmeshes.The first is a structuredmeshcomposedof 4750elementsandthesecondis an
unstructuredmeshcomposedof 3631 elements. Figure 3 shows the equivalentplastic strain field and the
discontinuitypathfor the two meshesnearcompletefailure. Thesizeandshapeof theplasticzonesarethe
sameandadiscontinuityhaspropagatedthroughthebeamtowardstheloadingpoint. To examinemoreclosely
thefailuremode,theevolution of theequivalentplasticstrainfield anddisplacementdiscontinuityareshown
in figure4. Thefailuremodeis clearlymode-Idominated.A discontinuitypropagatesthroughthebeam,with
aplastichingeformingonly at thelaststageof failure.

To highlight theinfluenceof includingadisplacementdiscontinuity, thethree-pointbendingtestis re-analysed
with aninitial discontinuitywhich is not allowedto extend.Theequivalentplasticstrainfield for this caseis
shown in figure5. Thefailuremodediffers fundamentallyfrom thecaseof a propagatingdiscontinuity. The
beamhasfailed throughthe developmentof a plastichinge,with the centreof the beamremainingelastic.
Thedifferencein responseis dueto theplasticincompressibilityconstraintfor thecontinuumplasticitymodel.
The introductionof a discontinuityimplies the completefailure of the materialandthereforeno volumetric
constraintcanexist, makingmode-Iopeningpossible.

Thethree-pointbendingtestis againanalysedfor a propagatingdiscontinuity, but now for anincreasedhard-
eningmodulusof h ��� 20 Nmm� 2, ten timesgreaterthanfor the previous example. The evolution of the
equivalentplasticstrainandthe displacementdiscontinuityfor this caseareshown in figure 6. The failure
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Figure 3: Equivalentplasticstraincontoursanddiscontinuitypathfor three-pointbendingtestunderplane
strainconditionsatu ��� 0� 4 mm with (a) structuredand(b) unstructuredmeshes.

u � 0� 05 mm u � 0� 1 mm u � 0� 15 mm u � 0� 2 mm

u � 0� 25 mm u � 0� 3 mm u � 0� 35 mm u � 0� 4 mm

Figure 4: Evolution of equivalentplasticstraincontoursanddiscontinuityfor the three-pointbendingtest
underplanestrainconditions.

modefor this exampleis different than that for the morebrittle beamin figure 4. Ratherthanmode-I, the
failure modeof the ductile beamis mode-II.The discontinuityhasextendedover only a shortdistanceand
a plastichingehasformed. This exampleshows that whena discontinuityis introduced,for a Von Mises
materialthehardeningmodulusinfluencesthefailuremode.

CONCLUSIONS

Numericalexampleshave beenpresentedwhich show the influenceof includinga propagatingdisplacement
discontinuitywhensimulatingfailure in a Von Misesmaterial.Theinclusionof a displacementdiscontinuity
allows cleavageopeningmodeswhich arerestrainedby a continuum-onlymodelthroughthe plasticincom-
pressibilityconstraint.Theinclusionof a discontinuitymakesmode-Idominatedfailurepossiblewhenusing

Figure5: Equivalentplasticstraincontoursfor astationarydiscontinuityatu � 1 mmfor theVonMisesyield
surface.



u � 0� 1 mm u � 0� 2 mm u � 0� 3 mm u � 0� 4 mm

u � 0� 5 mm u � 0� 6 mm u � 0� 7 mm u � 0� 8 mm

Figure 6: Evolution of equivalentplasticstraincontoursanddiscontinuityfor the three-pointbendingtest
underplanestrainconditionsfor aductilebeam.Thehardeningmodulush is equalto -20 Nmm� 2.

acontinuummodelthatobeysaVonMisesflow rule.
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COMPUTATIONAL MODELLING OF RESIDUAL STRESS
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IN DUCTILE MATERIALS
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ABSTRACT

In this work the effect of residual stress on fracture initiation and growth is examined numerically. A
void growth and coalesence model is used to simulate the effect of local damage in the vicinity of a crack
in a ductile material. It is seen that, for the cases examined, a J-based chararacterisation of the crack
growth is still appropriate when residual stresses are present. The significance of the effect of residual
stress on crack growth is examined for two material ductilities.

KEYWORDS

Fracture; residual stress; J-integral; finite element analysis.

INTRODUCTION

The J-integral has been adopted by most current structural integrity procedures for cracked bodies
under combined secondary and primary loadings, e.g. R6 [?], BS 7910 [?] and EPRI [?] methods. The
implicit assumption when applying these approaches is that the effect of the residual stresses may be
accounted for through modification of the driving force, J , and the inherent toughness of the material
remains unchanged. However, this assumption may not be valid in view of the well known effect of
stress state (constraint) on the fracture toughness of materials, e.g. [?]. In this paper a numerical study
is carried out to assess the influence of residual stress on the fracture of a ductile ferritic steel.

COMPUTATIONAL FRAMEWORK

A finite element analysis of a three point bend testing configuration is undertaken. The analyses have
been carried out using the commercial finite element code ABAQUS V5.8 [?]. Full account is taken of
material and geometric non-linearities with the resultant non-linear equilibrium equations being solved
iteratively using Newton’s method (see [?]). A typical finite element mesh, which is composed of about
2000 four noded isoparametric quadrilaterals, is shown in Fig. 1. Due to symmetry only half of the
problem is analysed. The failure mechanism examined is that of void growth and coalescence, which
is incorporated into the model using a Gurson-type failure model, developed for porous materials, ([?],



[?]). Within this model, the yield surface of the material, Φ, is a function of the evolving void volume
fraction f ,

Φ =

(
σe

σy

)2

+ 2 q1 f cosh

(
−q2

3 p

2 σy

)
−

(
1 + q2

1 f 2
)

= 0 , (1)

where σe is the equivalent stress, p the hydrostatic pressure and σy the yield stress of void-free material.
The material parameters q1 and q2 depend on the hardening exponent n and on the ratio E/σy, where
E is the Young’s modulus [?].

The void growth rate is expressed in terms of the current value of f and the plastic strain rate tensor
ε̇P as

ḟ = (1− f) ε̇P : I , (2)

where I is the second order unit tensor. Finally, to completely define the material softening behaviour,
the critical void volume fraction, fe, at which the stress carrying capacity of the material is lost must
also be specified. Once the void volume fraction, f , at a material point reaches this value, the stiffness
at that point is gradually reduced to zero and the element is then removed from the analysis. If the
removed element is directly ahead of the crack tip, the crack is considered to have grown by an amount
equal to the element size. As seen in Fig. 1(b), ahead of the initial crack tip the finite element mesh
consists of regular square elements. The use of an element removal approach to simulate crack growth
introduces as an additional length scale into the problem, the size of these crack tip elements (see,
e.g., [?]). This characteristic length scale (i.e., local mesh size) should be associated with a physically
meaningful quantity such as the mean inclusion spacing or the CTOD of the material [?].

Figure 1: Finite element mesh used in the analysis (a) full mesh (b) near tip region

Evaluation of J integral

The evaluation of a path independent J integral value in the presence of residual stress has been
discussed in [?]. A path independent J-integral equation can be obtained via,

J =
∫

Γ

(
Wδ1i − σij

∂uj

∂x1

)
nids; +

∫

A
σij

∂ε0
ij

∂X1

dA , (3)

where A is the area enclosed within a contour Γ and W is the mechanical strain energy density,

W =
∫ εm

ij

0
σij dεm

ij . (4)

Note that A → 0 as Γ → 0 and implicit in this definition for J is the assumption that the initial strains,
ε0
ij, are bounded at the crack tip, [?].

The initial strains, ε0
ij in Eq. 3, are determined as the difference between the total strains and the

elastic mechanical strains at the initial state, i.e.

ε0
ij = (εij − εe

ij)|initial state . (5)



In this work, the residual stress in the specimen, before a crack has been introduced, is assumed to
be available. This residual stress is then introduced into the finite element model as an initial condition
and the effect of introducing a crack is represented by the removal of the symmetry boundary conditions
along the crack plane (see [?]). The initial state, at which ε0 is evaluated, is then the state after the
initial residual stress is input, before the crack is introduced. This procedure has been shown to provide
a path independent integral and, for linear elastic behaviour, results for J consistent with those obtained
using linear superposition, [?]. In this analysis, to avoid loss of path independence on contours near to
the growing crack tip, only the outer rings in the finite element mesh are used in the evaluation of J
(outside the fine square mesh region illustrated in Fig. 1 (b)).

Figure 2: (a) Uniaxial stress-strain behaviour of the material (b) J-resistance curves with two values of
initial void volume fraction, f0

MATERIAL AND SPECIMEN PROPERTIES

The uniaxial stress-strain behaviour of the material is shown in Fig. 2(a). This behaviour is representa-
tive of a low strength offshore steel (BS 7191 Grade 355 EMZ), which is being studied as part of a larger
overall program. The material has a yield strength of 350 MPa and the post yield strain hardening is
represented here as a power law with n = 5.

The values of q1 and q2 related to the mechanics of void growth in Eq. 1 have been taken from [?]
and are given by q1 = 2.0 and q2 = 0.8, respectively. The mesh size, D, (twice the size of the square
elements in the crack tip region) used in the crack growth calculations is taken as 50 µm which is on
the order of the measured CTOD for the BS 7191 Grade 355 EMZ steel. The sensitivity of the results
to the mesh size is currently under investigation. The critical void volume fraction fe is taken to be
10%.

The effect of the initial void volume fraction, f0 on the predicted resistance curve behaviour is
shown in Fig. 2(b). These results were determined from a study of a three point bend geometry with
overall specimen width, W , of 50 mm and initial crack size, a, of 30 mm. The high toughness material
with f0 = 0.3% is representative of the toughness of the ferritic steel, (BS 7191 Grade 355 EMZ) at
room temperature. The strong effect of f0 is noted by comparison with the predicted resistance curve
behaviour when f0 = 2%. Note that both materials have the same uniaxial stress strain behaviour,
shown in Fig. 2(a). The analysis for f0 = 2% terminates at ∆a = 200 µm due to numerical difficulties.
However, the trend of the behaviour is clear, even at this amount of crack growth.

EFFECT OF RESIDUAL STRESS ON RESISTANCE CURVE BEHAVIOUR

A representative residual stress distribution is examined in this paper. Future work will present results
for measured residual stress distributions due to welding, [?]. The distribution examined is shown in
Fig. 3, where the stress normal to the crack plane, σ22, normalised by the material yield strength, σy,



Figure 3: Residual stress distribution used in the analysis.

is shown. The value of a/W for the three point bend geometry is 0.6 so the crack tip is located at
x/W = 0.6. This residual stress profile was chosen to provide a reasonably high fracture driving force
due to residual stress. Note that, despite the fact that the uncracked body residual stress shown in Fig.
3 is close to zero along the crack faces, the J value due to the residual stress field determined from the
finite element analysis is still significant (11 N/mm).

The resultant load vs. crack growth curves are shown in Figs. 4 (a) and (b) for the two material
toughnesses. It is seen that for the high toughness material (Fig. 4(a)), there is a very small effect
of residual stress on the load to cause crack initiation, (note that the J value due to residual stress is
less than 1% of the initiation J) and after some crack growth, this effect almost disappears. For the
low toughness material, Fig. 4(b), however, there is a strong effect of residual stress on the initiation
load, though again the effect diminishes somewhat after crack growth. For the low toughness material,
the load corresponding to ∆a = 50µ m is about 20% lower when residual stresses are present. In
Figs. 4(c) and (d) the J-resistance curves with and without residual stress are shown for the two
materials examined. For the high toughness material (Fig. 4(c)), the resistance curves are almost
indistinguishable. For the low toughness material (Fig. 4(d)), there is a small difference (maximum
of 8%) between the resistance curves—the J resistance curve is slightly higher for the specimen with
residual stress. If it is assumed that J retains its validity as a fracture parameter when residual stresses
are present, any effects on the J resistance curve must be accounted through constraint arguments—the
loss of J dominance in the specimen. At higher loads the effect of the residual stress is expected to
diminish as the deformation is controlled by the applied mechanical load. Therefore constraint effects
are expected to be more significant for lower strength materials as indeed is observed here. Similar
trends have been observed in [?] where it was found that residual stress had a strong effect on the onset
of brittle fracture but a much reduced effect on ductile fracture.

DISCUSSION AND CONCLUSIONS

The effect of residual stress on the fracture behaviour of a high and low toughness material have been
examined numerically. A Gurson-type void growth model has been used to simulate the effect of damage
ahead of a growing crack tip. It is seen that the J−∆a behaviour of the material is relatively unaffected
by the existence of the residual stress field for both materials. The damage introduced by the residual
stress near the crack tip, is well accounted for by the use of J as the driving force for fracture. This
implies that when residual stresses are present, it is acceptable to incorporate the residual stresses into
the driving force and to assume that the material resistance is unaffected.

The geometry examined is a high constraint three point bend geometry and the residual stress field
examined has a relatively low J and associated T stress. Different geometrical configurations, materials
and residual stress distributions may lead to different results from those presented here. It should also



(a) (b)f0 = 0.3% f0 = 2%

(c) (d)f0 = 0.3% f0 = 2%

Figure 4: (a) and (b) Load vs crack growth for (a) high toughness material, (b) low toughness material;
(c) and (d) J-resistance curves for (c) high toughness material and (d) low toughness material.

be pointed out that if the residual stress has been introduced due to welding or by a heat treatment
there may be some effect on the material microstructure, in which case the intrinsic toughness of the
material may change. Such effects have not been examined in this analysis.
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ABSTRACT 
  
 The stress-strain behavior of 2D woven SiC fiber reinforced, melt-infiltrated SiC matrix composites with 
BN interphases were studied for composites fabricated with different fiber tow ends per unit length, different 
composite thickness, and different numbers of plies.  In general, the stress-strain behavior, i.e. the “knee” in the 
curve and the final slope of the stress-strain curve, was controlled by the volume fraction of fibers.  Some of the 
composites exhibited debonding and sliding in between the interphase and the matrix rather than the more 
common debonding and sliding interface between the fiber and the interphase.  Composites that exhibited this 
“outside debonding” interface, in general, had lower elastic moduli and higher ultimate strains as well as longer 
pull-out lengths compared to the “inside debonding” interface composites.  Stress-strain curves were modeled 
where matrix crack formation as a function of stress was approximated from the acoustic emission activity and the 
measured crack density from the failed specimens.  Interfacial shear strength measurements from individual fiber 
push-in tests were in good agreement with the interfacial shear strength values used to model the stress-strain 
curves. 
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Ceramic matrix composites, Stress-strain behavior, Acoustic Emission 
 
INTRODUCTION 
 
 Woven SiC fiber reinforced, SiC matrix composites are prime candidate materials for a high-speed civil 
aircraft combustor liner [1,2] as well as other high temperature engine components.  A considerable amount of 
composite development has occurred in order to improve the performance of this material system including 
evaluating different fiber types, interphases, and matrices.  For the reference 2 application, a composite system 
consisting of a Sylramic (SYL) fiber (Dow Corning, Midland, MI), a BN interphase and a melt-infiltrated (MI) 
matrix was down-selected based on this system’s superior strength, creep resistance, and thermal conductivity 
properties in comparison to other SiC/SiC systems (e.g. chemically vapor infiltrated SiC matrix).  More recently, a 
further improvement to the SYL fiber has been developed via elevated temperature treatment in nitrogen 
containing atmospheres that results in an in situ-BN coating on the Sylramic fiber [3,4] (referred to here as SYL-
iBN).  Composites processed with these treated fibers resulted in higher ultimate strengths and improved creep 
resistance over composites processed with as-produced SYL. However, to date, this latest improved composite has 
only been fabricated on a small scale.   

In order for the SYL/MI-SiC matrix composite system to further mature and be used by designers, the 
stress-strain response of these materials needs to be well understood and modeled for a range of constituent 
volume fractions and specimen sizes.  For example, components will vary in thickness, curvature, etc. This will 



 

 

require varying numbers of woven fiber plies in specific locations or perhaps different fiber architectures.  The 
most critical aspect of the stress-strain behavior of these types of composites is not necessarily the ultimate 
strength properties.  Rather, the “knee” in the stress-strain curve, due to the formation of bridged matrix cracks 
may be more important.  For example, the formation of through-thickness matrix cracks usually denotes the stress 
above which time-dependent strength degradation occurs at intermediate temperatures due to the oxidation of the 
fiber, interphase and matrix [5-7].  The purpose of this paper will be to compare and model the effect of varying 
fiber volume fraction on the stress-strain behavior for MI matrix composites using composites with different 2D 
woven fiber architectures, i.e., varying the numbers of fiber-tows per unit length, the number of plies, and the 
thickness of the composite specimens. 

 
EXPERIMENTAL 
 
 Unload-reload tensile hysteresis tests were performed on over 20 different composite specimens that varied 
in fiber tow ends per unit length, number of plies, composite thickness or fiber type (SYL or SYL-iBN).  Three 
different vintages of composites were tested in this study.  The oldest vintage composites were from the early 
years of NASA’s Enabling Propulsion Materials program [1] and were processed by Carborundum Corporation 
(Niagara Falls, NY). The next oldest vintage composites were from the latter years of the EPM program and were 
processed by Honeywell Advanced Composites (Newark, DE.) [2].  The newest vintage composites were 
processed under NASA’s Ultra Efficient Engine Technology (UEET) program and were also fabricated by 
Honeywell Advanced Composites.  The first two vintages consisted of only two different weaves, the same 
number of plies (8), and similar composite thicknesses (~ 2 mm). Whereas the latter vintage varied fiber tow ends 
per unit length, composite thickness, and number of plies by nearly a factor of two. This resulted in composite 
specimens that varied by a factor of two in fiber volume fraction in the loading direction.  Table I lists the 
constituent variations for the composites tested. 
 

TABLE 1 
VARIATION IN PROCESSING PARAMETERS FOR DIFFERENT VINTAGE COMPOSITES 

 
Vintage Variation in 

Fiber* Tow Ends 
per Inch 

Variation in Number 
of Five Harness Satin 

Plies 

Variation in 
Composite 

Thickness, mm 

Variation in Volume 
Fraction of Fibers in 
Loading Direction 

1 18 or 22 8 2 to 2.3 0.17 to 0.2 
2 18 or 22 8 2 to 2.3 0.17 to 0.2 
3 12.5, 18, 20, or 22 4, 6, or 8 1.4 to 2.3 0.13 to 0.25 

* Each fiber tow consisted of 800 fibers. The average fiber diameter was 10 µm. 
 
 Composite processing entails first stacking of the balanced five-harness pieces of cloth of SYL or SYL-
iBN fiber, a BN interphase layer deposition (~ 0.5 µm) via chemical vapor infiltration (CVI), a SiC layer 
deposition via CVI, SiC particulate infiltration via slurry-infiltration, and finally, liquid Si infiltration [1-2]. 
 The tensile tests were performed on specimens with a contoured gage section (dog-bone) using a universal-
testing machine (Instron Model 8562, Instron, Ltd, Canton Mass.) with an electromechanical actuator.  Glass fiber 
reinforced epoxy tabs were mounted on both sides of the specimen in the grip regions and the specimens were 
gripped with rigidly mounted hydraulically actuated wedge grips.  A clip on strain gage, with a range of 2.5% 
strain over 25.4 mm gage length was used to measure the deformation of the gage section. 
 Modal acoustic emission (AE) was monitored during the tensile tests with two wide-band, 50 kHz to 2.0 
MHz, high fidelity sensors placed just outside the tapered region of the dog-bone specimen.  Vacuum grease was 
used as a couplant and mechanical clips were used to mount the sensors to the specimen.  The AE waveforms were 
recorded and digitized using a 4-channel, Fracture Wave Detector (FWD) produced by Digital Wave Corporation 
(Englewood, CO).  The load and strain were also recorded with the FWD.  After the tensile test, the AE data was 
filtered using the location software from the FWD manufacturer in order to separate out the AE that occurred 
outside of the gage section.  For more information on the AE procedure and analysis, see references 8 and 9. 

Fracture surfaces were observed with a field emission scanning electron microscope (Hitachi S-4700, 
Tokyo, Japan).  Since the compressive stress in the matrix closes the matrix cracks, to measure crack density, 



 

 

sections of the tested tensile specimens in the gage section at least 10 mm long were polished and then plasma 
(CF4) etched at 500 W for 30 minutes.  The etchant reacts with the free Si in the matrix, removing much of it, 
making it impossible to observe cracks in the MI part of the matrix. Matrix cracks can only be observed in the 
dense CVI SiC layer between the BN and the MI matrix. 

Push-in tests were performed on a few specimens from sections of the composite that were in the 
mechanical grips in order to measure the interfacial shear stress, τ, of the sliding interface.  Specimens were cut 
and polished to a thickness of ~ 1mm.  The procedure for the push-in technique, the apparatus used, and the 
analysis can be found in reference 10. The average τ was determined from at least 20 different fibers for each 
specimen. 
 
RESULTS AND DISCUSSION 

 
Figure 1: (a) Typical unload-reload stress-strain curve and cumulative AE energy for a vintage 2 SYL-MI 

composite.  (b) Stress-strain curves (hysteresis loops removed) for composites with a variety of fiber volume 
fractions, f, in the loading direction and fiber tow ends per unit length (ends per inch) from all three 

composite vintages. 
 
 A typical hysteresis tensile stress-strain curve for a SYL-MI composite is shown in Figure 1a.  All 
Sylramic-MI SiC composites stiffen during unloading due to matrix crack closure presumably due to residual 
compression in the matrix [11].  The AE activity is also plotted in Figure 1 in the form of cumulative AE energy.  
It was found in earlier studies that cumulative energy was the best AE parameter to correlate AE activity with 
matrix cracking [8-9].  Matrix crack formation and growth occurs in a similar fashion to that described in other 
studies [12-14] for 2D composites. At low stresses, microcracks form in the 90o bundles and/or large matrix only 
regions (tunnel cracks). With increasing stress these cracks grow and become through-thickness matrix cracks and 
new cracks form.  At higher stresses, the formation of matrix cracks diminishes and may cease altogether; 
however, for SYL-MI composites, matrix crack saturation was not always achieved.   
 Figure 1b shows a number of stress-strain curves with different fiber volume fractions.  The elastic moduli 
were all similar for the composites in Figure 1b (265 to 280 GPa); however, elastic moduli as low as 220 GPa 
have been recorded.  In general, an increase in fiber volume fraction results in an increase in the “knee” of the 
stress-strain curve as well as an increase in the slope of the stress-strain curve after the “knee” in the curve, as 
would be expected. Also, the SYL-iBN reinforced composites usually had higher ultimate strengths and strains for 
the same volume fraction/architecture when compared to SYL reinforced composites as was found in the other 
study [4]. The fracture surfaces of most specimens tested were observed using a field emission scanning electron 
microscope.  For specimens corresponding to Figure 1a, it was verified that the fibers pulled-out between the fiber 
and the interphase (inside debonding) and had relatively short fiber pull-out lengths (Figure 2), typical of SYL-BN 
composites. 
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   (a)       (b) 
Figure 3: Fracture surface from a SYL-iBN composite where the fibers debonded between the fiber and 

the interphase (outside debonding). 

BN
Fiber 
Surface 

   
 
   (a)       (b) 
Figure 2: Fracture surface from a SYL-iBN composite where the fibers debonded between the fiber and 

the interphase (inside debonding). 

Fiber 
Surface 

BN

For some of the vintage 3 composites, debonding and sliding occurred between the interphase and the 
matrix (outside debonding, see Figure 3).  For these composites, large pullout-lengths, higher strain to failure 
(Figure 4a) and lower elastic moduli (Figure 4a) were generally observed. However, some specimens with 
“outside debonding” had elastic moduli on the order of the “inside debonding” composites of Figure 1a but still 
had larger strains for a given stress at stresses above the “knee” in the stress-strain curve in comparison to “inside 
debonding” composites.  This was the first time that debonding and sliding had been observed to occur on the 
outer interface between the interphase and the matrix for SYL reinforced composites.  Presumably, this interface 

was 

weaker and possibly debonded during cool down of the composite as the residual tension at the interphase 
increased with decreasing temperature.  The residual compressive stress was estimated from intersection of the 
average slopes of the upper portions of the hysteresis loops (see Figure 1, after Steen [11]).  It was found that for 
“inside debonding” composites, the residual stress was dependent on fiber volume fraction (Figure 4b). Many of 
the “outside debonding” composites had smaller residual compressive stresses for the same volume fraction 
compared to the “inside debonding” composites, especially for SYL-iBN composites (Figure 4b). 



 

 

 It was desired to model the stress-strain behavior in order to estimate the interfacial shear stress and to see 
if the “knee” in the stress-strain curve could effectively be accounted for.  However, modeling the stress-strain 
behavior depends on accurately determining the stress at which matrix cracks will form and the extra displacement 
associated with the increased load applied to the fibers bridging the matrix crack.  This was first done for 
unidirectional fiber reinforced composites assuming the matrix possessed an infinite Weibull modulus [15].  Later 
modifications incorporated the effects of residual stress due to thermal expansion mismatches between the fiber 
and the matrix [16]. However, for SiC/SiC composites, matrix fracture is dependent on the flaw population in the 
matrix [17].  Therefore, matrix cracking occurs over a range of applied stress.  In addition, 2D lay-up or woven 
composites have been shown to possess different types of matrix cracks that originate either at pores in the matrix, 
in the 90o plies, or in the 0o plies with increasing stress, at least for CVI SiC matrix composites [12-14].         
  

     (a)       (b) 
Figure 4: Comparison of (a) stress-strain curves for two composites with identical fiber architectures 

(hysteresis loops removed) and (b) residual compressive stress in the matrix for composites with 
“inside debonding” (vintages 2 and 3) and “outside debonding” (vintage 3). 

 
 Cumulative AE energy has been related to the number of transverse matrix cracks [9]; however, it only 
gives the relative amount of cracking.  In order to use AE energy for absolute crack densities, the AE energy must 
be calibrated to a known crack density at a specific stress.  This was done for most of the composites after fracture.  
For composites where crack saturation was believed to occur, crack densities were measured to be 11.0 + 4.0 and 
8.7 + 0.7 cracks/mm for “inside debonding” and “outside debonding” composites, respectively.  However, there 
was no apparent relation between fiber volume fraction, specimen thickness, or ends per unit length and saturation 
crack density.   

Composite strain was determined in the same fashion as Pryce and Smith [18]. Using the nomenclature of 
Curtin, et al. [19], composite strain can be modeled for equally spaced cracks: 

 
ε = σ/Ec + αδ(σ)ρc/Ef  (σ + σth); for ρc -1 > 2δ   (1) 

 
where the first part of the equation corresponds to the elastic strain response of an uncracked composite and the 
second part of the equation corresponds to the extra strain (displacement) of the fibers at and away from a through-
thickness matrix crack dictated by the sliding length: 
 

   δ = α r (σ + σth) / 2τ        (2) 
where 

   α = (1-f) Em / f Ec        (3) 
 

σ is the applied stress, σth is the residual (thermal) stress in the matrix (compression is negative), E is the elastic 
modulus, subscripts m, f and c refer to matrix, fiber, and composite, respectively, ρc is the matrix crack density, r 
is the fiber radius, and τ is the interfacial shear strength.  Ec and σth were determined from the stress strain curves.  
Ef is 380 GPa and Em was determined from the rule of mixtures. ρc was estimated from the AE energy based on 
the known crack spacing from the stress-rupture tests. Therefore, the only variable not known was τ which was 
adjusted in order to best fit the predicted stress strain curve to the experimental stress strain curve.  For the case 
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where the sliding lengths overlap, Ahn and Curtin [20] showed that if the cracks are still equally spaced, the 
composite strain could then be modeled by: 
 
     ε = σ / (f Ef) + α σ th / Ef − α (σ + σth) / [4 Ef δ(σ) ρc];  for ρc -1 < 2δ (4) 
 
Therefore, for higher applied stress conditions, if ρc -1 < 2δ  was predicted, equation (4) was used. 

Figure 5a to 5d show the room temperature experimental stress-strain curve, the AE activity, and predicted 
stress-strain curve using the best-fitted τ value and for τ values 20% greater and 20% less than the best-fit value 
for “outside debonding” and “inside debonding” composites.  The ultimate stress was not predicted, the curves 
were only plotted to the known ultimate strength of the individual specimen. The predicted stress-strain curves are 
in good agreement with the experimental stress-strain curves. “Outside debonding” composites required lower τ 
values to model the stress-strain curve: 31+6 MPa for two SYL composite specimens and 15+4 MPa for two SYL-
iBN composite specimens. “Inside debonding” composites required higher τ values: 64+1 MPa for two SYL 
composite specimens and 71+10 for four SYL-iBN composite specimens.  Presumably, the lower τ for “outside 
debonding” composites is due to the smoother sliding interface. Average τ values had been measured for the SYL-
iBN “outside debonding” specimen (Fig. 5a), SYL-iBN “inside debonding” specimen (Fig. 5b), and the SYL 
“inside debonding” specimen (Figure 5d) from push-in tests and were found to be 7 + 5 MPa, 83 + 25, and 64 + 19 
MPa, respectively.  These values are in very good agreement with the τ values used to model the stress-strain 
curve for inside debonding composites.   

The “knee” in the stress-strain curve was modeled very well using the AE data and final crack spacing to 
estimate the matrix crack distribution.  The only exception was for the SYL “inside debonding” composite (Figure 
5d), where the predicted stress-strain curve underestimated the strain at stresses corresponding to the “knee” in the 
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   (c)       (d) 
Figure 5: Experimental (thick solid line) and predicted (dashed and thin solid lines) stress-strain curves 
for an (a) SYL-iBN outside debonding, (b) SYL-iBN inside debonding, (c) SYL outside debonding , 
and (d) SYL inside debonding composites.  Also shown is the normalized cumulative AE energy (AE 

energy normalized by the maximum cumulative AE energy). 



 

 

stress-strain curve.  The predicted stress-strain behavior for Figure 5d was the worst of all ten specimens modeled.  
The other SYL “inside debonding” composites was modeled similar to Figure 5b except with a τ = 63 MPa. 
 
CONCLUSIONS 
 
 The room temperature stress-strain behavior of Sylramic reinforced melt-infiltrated composites was shown 
to be most dependent on the volume fraction of fibers in the loading direction for various 2D architectures and 
composite thickness variations.  Some specimens exhibited debonding on the outer interface between the BN 
interphase and the CVI SiC matrix-layer.  This resulted in lower elastic moduli, in general, lower interfacial shear 
strengths, and higher strains to failure.  It is unknown as to the benefits of such behavior at elevated temperature; 
however, the improvement in composite toughness is obvious.  Outside debonding may also aid intermediate 
temperature properties since the environment would have to react through the interphase layer rather than having 
direct access to load-bearing fibers.  However, interlaminar and high temperature creep/rupture properties still 
need to be determined in order to ascertain whether or not there is a benefit for this interfacial sliding behavior. 

The composite stress-strain curves could be effectively modeled based on the approaches of references 18 
and 20. However, this required several parameters to be directly or indirectly determined including the dependence 
of matrix cracking with stress from AE activity and final crack densities, composite elastic modulus, and matrix 
residual stress.  The approach to best fit the predicted stress-strain curve to the actual data by varying τ provided a 
way of determining τ that was in very good agreement with measured values. 
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ABSTRACT

Corrections of CTOD for constraint loss in large-scale yielding conditions are made on the basis of the Weibull

stress fracture criterion.  A CTOD ratio β = δ
3P

 / δ
WP

 was introduced, where δ
WP

 is the CTOD of a wide plate

component and δ
3P

 is an equivalent CTOD of the fracture toughness specimen at which the toughness specimen

gives a compatible Weibull stress with the wide plate.  CTOD toughness scaling diagrams with β are constructed,

including effects of the work hardening property of materials, crack size in the component and the Weibull

modulus m.  The CTOD ratio β is decreased to a large extent after full yielding, which is more significant for a

high yield ratio and short/deep crack.  Case studies are presented on the fracture transferability assessment of

high strength structural steels with different work hardening properties.

KEYWORDS

brittle fracture, constraint effect, transferability, CTOD toughness, fracture performance, Weibull stress

INTRODUCTION

The fracture mechanics approach to structural design and material selection relies on the stress intensity factor

K, crack tip opening displacement (CTOD, δ) and J integral as the controlling parameters for stress fields ahead

of a crack.  In large-scale yielding conditions, however, the actual stress fields deviate from the K- and J-

controlled fields and depend significantly on the crack size and geometry of specimens employed.  This is due

to the constraint effect on the crack-tip plasticity.  A loss of constraint resulting from large-scale yielding

relaxes the stress elevation for notched-tension panels and shallow-notch specimens, while deep-notch bend

and compact specimens maintain a high level of crack tip constraint.  Such constraint loss leads to an apparently

increased fracture resistance K
c

 , δ
c
 and J

c
 for the former configurations.  In order to characterize the constraint

effect on the crack tip condition, the constraint parameters, T-stress and Q-parameter were implemented in the

K- and J-controlled stress fields, respectively [1-4].  Nevertheless, these two-parameter characterizations posed

an essential problem in the fracture assessment; the T-stress and Q-parameter at fracture are not material constants

but depend on the geometry of specimens.  On the other hand, Anderson & Dodds [5, 6] have proposed a

toughness scaling model (TSM) to correct the fracture toughness for constraint loss in large-scale yielding

conditions.  This model insists a similarity between near-tip stress contours in different yielding conditions, and
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transfer the fracture toughness in large-scale yielding to one under small-scale yielding with equivalent stressed

areas ahead of a crack.  For simplicity, the TSM does not reflect the variation of stresses within near-tip stress

contours and not consider a statistical aspect of cleavage fracture.  In order to overcome limitations of the TSM,

a modified toughness scaling with the Weibull stress was developed [7, 8], which requires the attainment of a

specified Weibull stress to cause cleavage fracture at the same probability in different specimen geometry.

These methodologies focus the attention on toughness scaling in small-scale yielding conditions.  From a

structural design point of view, however, the fracture toughness to be used for the fracture performance evaluation

in service conditions should be quantified in conjunction with the constraint state.  This paper addresses the

constraint correction of CTOD, based on the Weibull stress criterion, as a function of the deformation level of

structural components.  A parametric study is performed on the CTOD correction factors, including the work

hardening property of materials, crack size in components and the Weibull modulus m related to a scatter in the

material fracture toughness.

CTOD  TOUGHNESS  SCALING  WITH  THE  WEIBULL  STRESS

This paper constructs CTOD toughness scaling diagrams to correct a constraint loss in large-scale yielding

conditions.  The Weibull stress σ
W

 is used as a driving force for cleavage fracture.  The Weibull stress σ
W

 is

derived from a statistical characterization of instability of microcracks in the Local Approach [9, 10], and given

by the integration of a near-tip stress σ
eff

 over the fracture process zone V
f
  in the form

σ W = 1
V0

 σeff
 m d Vf

Vf

 1/ m

                                                           (1)

where V
0
 and m are a reference volume and a material parameter, respectively.  The critical Weibull stress σ

W,cr

obeys the Weibull distribution with two parameters m and σ
u

F (σ W,  cr) = 1 - exp - 
σ W,  cr

σ u

 m
                                                          (2)

which is considered as a material property independent of the specimen geometry.  This enables the fracture

strength/toughness scaling among different specimen configurations.  Figure 1 illustrates the process of CTOD

scaling between the fracture toughness specimen with a high constraint level and a wide plate component.  This

paper defines the CTOD ratio β [11] as

β = δ3P
 / δWP                                                                        (3)

Figure 1 : CTOD toughness scaling between wide plate component and fracture toughness specimen.
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where δ
WP

 is a wide plate CTOD, and δ
3P

 is an equivalent CTOD at which the fracture toughness specimen

gives a compatible Weibull stress with the wide plate.  The establishment of β as a function of (a) applied strain

ε∞ of wide plate and (b) CTOD δ
3P

 of toughness specimen enables the fracture control assessments with the

CTOD design curve (relationship between ε∞ and δ
WP

) conventionally used in the structural engineering field:

- Determination of required fracture toughness δ
3P

R to meet a design solution ε∞
R  of structural components.

- Estimation of fracture performance ε∞
F of structural components from fracture toughness test results δ

3P, cr 
.

In this paper, an effective stress [12] considering a random spacial distribution of microcracks was employed as

the near-tip stress σ
eff

 in Eqn. 1.  The selection of V
0
 does not affect the transferability analysis of fracture

mechanics test results, although the absolute value of the Weibull stress depends on V
0
.  Furthermore, the

Weibull modulus m has no connection with V
0
.  Hence, a unit volume was adopted as V

0
 for convenience [12].

TRANSFERABILITY  ANALYSIS  OF  FRACTURE  MECHANICS  TEST  RESULTS

Firstly,  advantages of the Weibull stress based approach to cleavage fracture are demonstrated for two structural

steels with different work hardening properties.  Materials used were high strength steels of 490 and 950 MPa

class, HT490 and HT950, with a plate thickness of 25 mm.  Table 1 shows the chemical composition and

mechanical properties of these steels.  Low and extremely high YR (yield-to-tensile ratio) values are noted for

HT490 and HT950 steels, respectively.  Figure 2 shows the configuration of test specimens used.  Fracture

toughness tests were conducted with compact and 3-point bend specimens.  The compact and deep-notch bend

specimens with a/W = 0.5 (a: notch length, W: specimen width) were of a standard type specified in the test

standard, BS 7448 Part 1: 1991.  A shallow notch of a/W = 0.1 was also prepared for the bend specimen.  The

tension specimen included a double-edge notch of 2a/2W = 0.3, where the specimen width 2W = 100 mm.  The

notch tip of each specimen was finished with a fatigue precrack of length 2.0 ~ 2.5 mm.  Tests were conducted

at -100 °C for both steels.

Test results were given in Fig. 3 in terms of cumulative distributions of the critical CTOD at brittle fracture

initiation.  The CTOD values were calculated according to BS7448 for the compact and deep-notch bend

Ceq=C+Mn/6+Si/24+Ni/40+Cr/5+Mo/4+V/14
σY : Yield stress, σT : Tensile strength, εT : Uniform elongation

TABLE 1 : CHEMICAL  COMPOSITION  AND  MECHANICAL  PROPERTIES  OF  STRUCTURAL  STEELS  USED.
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Figure 2 : Fracture mechanics specimens used in experiments.
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specimens and by the Dugdale model for the tension specimen.  One for the shallow-notch bend was evaluated

by a method proposed by Wang & Gordon [13], which is based on the area under the load versus CMOD record

(CMOD: crack mouth opening displacement).   A marked effect of constraint loss is observed in the tension and

shallow-notch bend test results; larger critical CTOD than the standard fracture toughness  specimen.

Using the CTOD results of the compact and deep-notch bend specimens, the critical CTOD values for the

tension and shallow-notch bend specimens were estimated on the basis of the Weibull stress criterion; indepen-

dence of σ
W, cr

 on the specimen geometry.  An iteration procedure [12] was employed for the determination of

the m-value.  The Weibull parameters m determined were 17 and 20 for HT490 and HT950 steels, respectively.

The estimated results are drawn with a solid line in Fig. 3.  A good agreement is found between the estimation

and experimental data.  One may argue the reliability of the m-value determined by the iteration procedure;

non-uniqueness in small-scale yielding conditions [14].  In order to address this discussion point, a bias was

introduced in the range 0.5m ≤ m ≤ 1.5m, where m is the Weibull modulus determined by the iteration method

(m=17, 20 in this case).  The numerical study with m = m ± 0.5m indicated that such bias hardly affected the

estimation of the critical CTOD.  Studies on the fracture transferability assessment of welded joints are pub-

lished in the recent paper [11].

CTOD  TOUGHNESS  SCALING  DIAGRAM

For applications of the Weibull stress approach to structural design and material selection, a framework begins

in this paper to construct CTOD toughness scaling diagrams.  A tension wide plate with a surface crack and a

standard 3-point bend specimen of a/W = 0.5 were considered (Fig. 4).  A parametric study was conducted on

controlling factors of the CTOD ratio β.  Table 2 gives basic variables used in the FE-analysis (3D FEM),

which include the work hardening property, crack size in the wide plate and the Weibull modulus m;

- Work hardening property: The yield ratio YR (= σY 
/σ

T 
) was varied in the range 0.60 to 0.95 with a given yield

stress σ
Y 

= 583 MPa and tensile strength σ
T 

= 711 MPa.  These σ
Y
 andσ

T
 values were referred to the mechanical

properties of a high strength pipeline steel [15].

- Crack size; The crack length 2a and depth b analyzed were in the range 16 ≤ a ≤ 100 mm and 1 ≤ b ≤ 6 mm.

- Weibull modulus m; The m-value ranged from 15 to 40, where m = 20 was used as a standard value.

The yield ratio YR exerted a large influence on the CTOD ratio β.  Figure 5 shows the effect of YR on the CTOD

ratio β for a surface crack of 2a = 40 mm and b= 6 mm, where the results are given as a function of the non-

                  (a) HT490 steel                                                      (b) HT950 steel

Figure 3 : CTOD test results and estimation of critical CTOD of tension and shallow-notch bend specimens.
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dimensional overall strain ε∞/ε
Y
 of the wide plate.  The CTOD ratio β decreases to a large extent after full

yielding of the wide plate, which is more significant for a high YR.  This is mainly related to the crack opening

behavior of the wide plate.  Low work hardening (= high YR) yields a strain localization in the crack tip region,

which produces a large CTOD δ
WP

 resulting in a low β.  The change in YR under a constant σ
Y
 reached substan-

tially the same results as under a constant σ
T 
.  Similar effects were observed for another crack size.

Figure 6 shows the effect of crack length in the wide plate.  The CTOD ratio β seems to be not so sensitive to

the crack length.  This is due to the following aspects: Longer crack provides a larger CTOD.  At the same time,

the fracture process zone V
f
 is enlarged with the crack front length, leading to amplification of the Weibull

stress σ
W 

.  Namely, the crack length 2a brings about two opposite influences on the CTOD ratio β.  The positive

and negative effects are almost evenly balanced, so that the CTOD ratio β seems to be insensitive to the crack

length 2a in the range of calculations in this paper.  The crack depth effect on the CTOD ratio β  is presented in

Fig. 7.  A deep crack gives a low β, although the near-tip stress fields are activated in the deep crack.  Low β for

the deep crack was induced by a dominant action of crack opening; deep crack produces a large CTOD.  However,

the crack depth effect is weakened in a large-scale yielding range.

The influence of the Weibull modulus m is presented in Fig. 8.  The CTOD ratio β  was rather insensitive to the

m-value.  The exception was found in the results for a long crack of 2a=100 mm.  The Weibull stress σ
W

 consists

of a stress term and a volume term.  The stress term is given by (σ
eff

 m) 1
 
/

 
m and almost independent of m.  On the

other hand, the volume term includes the shape parameter m in the form V
f
 1 

/
 
m.   The latter term becomes active,

when a large process zone V
f
 is combined with a small m.  Such volume effect elevated β slightly.  Further work

is in progress to establish the CTOD toughness scaling diagram.
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Figure 4 : Wide plate and 3-point bend specimen

                 used for parametric study of β.

Figure 5 : Effect of yield ratio YR on CTOD ratio β.     Figure 6 : Effect of crack length 2a on CTOD ratio β.
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CONCLUSIONS

This paper presented the CTOD toughness scaling between structural components and fracture toughness

specimens.  Diagrams to correct the CTOD for constraint loss in large-scale yielding were constructed as a

function of the deformation level of components, based on the Weibull stress fracture criterion.  A CTOD ratio

β = δ
3P

 / δ
WP

 was introduced, where δ
WP

 is the CTOD of a wide plate component and δ
3P

 is an equivalent CTOD

of the fracture toughness specimen at which the toughness specimen gives a compatible Weibull stress with the

wide plate.  Major factors controlling β were the work hardening property of materials and crack size in the

component.  A low β was related to a low work hardening (= high yield ratio) and a deep crack in the component.

The CTOD toughness scaling diagrams enable a reasonable fracture assessment to eliminate an excessive

conservatism in structural design and material toughness requirement.
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ABSTRACT

In this paper, the evolution of T-stress and the constraint parameter  Q in dynamically loaded
fracture specimens are studied. The results show that typical fracture specimens exhibit significant
constraint loss (i.e., negative Q) under dynamic loading irrespective of their static response. The
implications of the above behaviour on the variation of fracture toughness with loading rate is
discussed.
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1. INTRODUCTION

The HRR solution [1,2] provides a one parameter characterization of the elastic-plastic crack tip
fields based on the J integral. However, for certain specimen geometries like the centre cracked
panel and shallow cracked bend specimen, the single parameter characterization has been found to
be inadequate [3-5]. In other words, these specimens experience loss of HRR (or J) dominance,
which is reflected in the reduction of stress triaxiality or crack tip constraint. In order to overcome
the above limitation of the purely J based fracture methodology, two parameter description of the
crack tip fields using the stress intensity factor  K and the T-stress [3], or using J and a triaxiality
or constraint parameter  Q  [4,5] have been proposed. In the former approach, T represents the
second term in the series expansion for the elastic crack tip fields. In the latter method, Q is based
on the difference between the actual near-tip stress field prevailing in a ductile specimen and the
HRR solution. This difference field is found to be a slowly varying triaxial stress term in the
region ahead of the crack tip [4]. A negative value of Q implies constraint loss in the specimen
with respect to the high triaxiality HRR field. A one-to-one relation exists between Q and the
elastic T stress under small scale yielding conditions [5], which indicates that the approaches
based on  K - T and  J - Q are equivalent under these conditions. It must be emphasized that the
above investigations pertain to quasi-static loading.

By contrast, only few investigations [6,7] have been carried out to understand loss of crack tip
constraint in dynamically loaded ductile specimens. This issue assumes importance due to the
following reasons. First, recent experimental studies [8-10] show that for many ductile materials
the dynamic fracture toughness exhibits a strong increase over the static value for stress intensity

rates &K  > 104  Mpa m /s. Secondly, numerical simulations [11,12] demonstrate that micro-void
nucleation, growth and coalescence near a notch tip in ductile solids are retarded with respect to J
when subjected to high loading rates. Hence, the objectives of this paper are to investigate the



evolution of T-stress and constraint loss in some fracture specimens under dynamic loading and to
employ these results to understand the enhancement in fracture toughness with loading rate.

2. NUMERICAL MODELLING

In this work, a single edge notched plate under transient tensile loading (SEN(T)), and a three
point bend specimen (TPB) subjected to impact loading are analysed.  In Figs.1(a) and (b),
schematic diagrams of these specimen geometries along with the loads and boundary conditions
are shown.

                    

                             Figure 1: Schematic of  (a)  SEN(T) and  (b)  TPB specimen.

The applied load is chosen as a function of time t  in the form P(t) =  αt + γt2. By varying the
constants  α and γ,  a range of stress intensity rates &K  is achieved at the crack tip. The length 2L
and width W of the specimens are taken as 160 and 40 mm, respectively. The analyses are
conducted for different crack length to width, a/W,  ratios. The material properties are assumed as
E = 200 GPa,  ν = 0.3 and  ρ (density) = 7800 kg/m3.  In the elastic-plastic analyses reported in
Sec.4, the initial yield strength σo  and strain hardening exponent  n  are taken as 400 MPa and 10,
respectively.

The 2D,  plane strain, finite element meshes employed in the analyses are comprised of four-
noded quadrilateral elements. They are well refined near the crack tip and are chosen after
conducting mesh convergence studies. The finite element equations of motion are integrated using
the explicit central difference method. The domain integral representation of the energy release
rate J, proposed by Nakamura et.al. [13], is employed to compute the time history of J from the
finite element results. The stress intensity factor  K is obtained from J as                       K =

EJ / ( )1 2− ν .



3. T-STRESS UNDER DYNAMIC LOADING

In this section, the dependence of the T-stress on loading rate in a dynamically loaded SEN(T)
specimen is examined. The time history of the T-stress is computed using a domain representation
of the interaction  integral [14,15].

In Fig.2, the evolution histories of the biaxiality parameter, β π= T a K/ , with respect to the
stress intensity factor K are displayed for the SEN(T) specimen with  a/W = 0.5, corresponding to
three values of  &K . Here, &K  is the average stress intensity rate which is obtained from the time
history of  K [15]. For comparison, the biaxiality parameter determined from the static analysis
is marked on the ordinate axis in Fig.2.

                               
Figure 2: Evolution histories of biaxiality parameter β with respect to stress intensity factor K
corresponding to different &K  for SEN(T) specimen with  a/w = 0.5.

It can be observed from this figure that unlike the static case, where β is independent of load and
has a fixed value for a given specimen geometry and crack length,  β  under dynamic loading
varies strongly with  K.  During the early stages of dynamic loading  (i.e., when the magnitude of
K is small), β has a very large negative value, whereas the static biaxiality parameter has a much
smaller magnitude. This behaviour is more pronounced at higher loading rates (see Fig.2) which
implies that it is caused by inertial effects. Further, it is noted from Fig.2  that as the magnitude of
K increases (i.e., at later stages of loading), β gradually approaches the static limit. Similar
behaviour was observed from the analyses of SEN(T) specimens with other  a/W  ratios as well as
the TPB specimen (see [15]).  Since Q and  T-stress are related [5], the above observations imply
that Q will also be dramatically affected during the early stages of dynamic loading in ductile
fracture specimens. This issue is examined below.



4. CONSTRAINT LOSS IN DUCTILE SPECIMENS

In this section, elastic-plastic dynamic finite element analyses of the specimens shown in Fig.1
under plane strain conditions are conducted. In Fig.3(a), the variation of normalized opening
stress σ22/σo  with normalized radial distance  r/(J/σo)  ahead of the crack tip corresponding
to the SEN(T) specimen with  a/W = 0.5 are shown. Results pertaining to different &K  values and

at a fixed K = 50 MPa m  are presented in this figure. Also shown are the variations obtained
from static analysis of the above specimen and the analytical HRR solution [1,2].

 
                                     (a)                                                                           (b)
Figure 3: Variation with respect to normalized distance  r/(J/σo) ahead of the tip of
(a) normalized opening stress and  (b) normalized difference stress for SEN(T) with a/W = 0.5.

It can be seen from this figure that with increasing &K , the opening stress ahead of the crack tip
decreases in magnitude and falls well below the HRR solution. In order to quantify this
discrepancy, the normalized difference stress field, introduced by O'Dowd and Shih [4],

Q $σ22 = ( σ σ σ22 22− HRR
o) /  is plotted against normalized distance ahead of the tip in Fig.3(b) for

the same cases as shown in Fig.3(a). It can be noticed from this figure that Q $σ22  is negative for
all cases and varies slowly with respect to  r ahead of the tip. Its magnitude under static loading is
quite small which corroborates with the small negative static biaxiality parameter associated with
this specimen (see Fig.2). However, the magnitude of Q $σ22  increases strongly from the static

limit as &K  increases beyond  105  MPa m /s. Further, it is found that Q $σ11 = ( σ σ σ11 11− HRR
o) /

also exhibits similar variation as discussed above. This implies that the difference stress field
corresponds to a stress triaxiality term as observed by O'Dowd and Shih [4] for static loading.

Following O'Dowd and Shih [4,5], the constraint parameter  Q is defined by the equation,

                                                Q  =  ( σ σ σ22 22− HRR
o) /

(1)

at  r/(J/σo) = 2 ahead of the crack tip. In Table 1, the values of Q obtained from the dynamic
analyses of SEN(T) and TPB specimens with different a/W ratios corresponding to



K = 50 MPa m  and various average &K  values are summarized. The  values of Q obtained from
static analysis of the above specimens are  also indicated in the table.

                                                               TABLE 1

                    VALUES  OF  Q  AT  K = 50 MPa m   FOR  DIFFERENT  SPECIMENS

SPECIMEN STATIC                                               DYNAMIC

                                           &K  (MPa m /s )
        1 × 105                           5 × 105                        2.5 × 106

     SEN(T)
  (a/W = 0.2)

-0.51         -0.52           -0.54            -0.59

     SEN(T)
  (a/W = 0.5)

-0.31         -0.33           -0.45            -0.58

     SEN(T)
  (a/W = 0.7)

-0.25         -0.28           -0.43            -0.68

        TPB
   (a/W = 0.5)

-0.24         -0.26           -0.32            -0.80

It should first be noted that  Q is negative under static loading for all cases shown in Table 1.
However, for the SEN(T) specimen, the magnitude of Q under static loading increases as a/W
decreases. This implies that the shallow cracked SEN(T) specimen suffers significant constraint
loss under static loading which corroborates with the results of the earlier studies (see, for
example, [3]).

Secondly, it can be observed from Table 1 that as &K  increases, Q becomes much more negative
as compared to the static limit, particularly for deeply cracked specimens (with  a/W ≥ 0.5). The
above effect which is attributed to material inertia corroborates with the large negative biaxiality
parameter at high &K   noted in Sec.3 from the elastic analyses. Interestingly, Table 1 shows that
enhancement in magnitude of  Q with &K  is marginal for the shallow cracked specimen (at least up

to &K  = 2.5×106  MPa m /s).  It is clear from the above discussion that SEN(T) and TPB
specimens, which are commonly used in dynamic fracture testing [8-10], display enhanced
constraint loss as loading rate increases. This was further confirmed by examining the shape and
size of the plastic zones, as well as the magnitude of the crack opening displacement, and
comparing them with corresponding results from static, modified boundary layer analyses with
negative T-stress [3-5].

5. DISCUSSION

An important consequence of the above noted constraint loss is the slowing down of micro-
separation processes like void nucleation, growth and coalescence in the fracture process zone
which is embedded inside the  J-Q annulus at high loading rates as observed in [11,12]. This
would result in enhanced fracture toughness as the loading rate &K  or  &J  increases as reported in
numerous experimental studies on ductile materials [8-10].



In order to illustrate this, the variation of  J with Q for different applied load histories are
superimposed  along with a material-specific  Jc  versus Q failure locus in Fig.4(a).

                             (a)                                                                                      (b)

Figure 4(a):  Schematic showing a material-specific  Jc-Q failure locus along with J-Q  variations
corresponding to different loading histories. (b) Dynamic fracture toughness versus &J   predicted
by the model.

The point of intersection of  J versus Q trajectory pertaining to a certain loading rate & ( )J i  with the

Jc-Q locus in Fig.4(a) yields the dynamic fracture toughness J dc
i( )  corresponding to that loading

rate. The variation of Jdc with &J  obtained by the above simple model can now be plotted as shown
in Fig.4(b). This figure demonstrates that substantial enhancement in Jdc over the static limit will
occur at high &J  as observed in the experimental studies [8-10].
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ABSTRACT 
 
A method is proposed that constructs a total strain range versus fatigue life curve (∆εt-Nf curve) based on 
variable amplitude loading data. In this method material parameters in the ∆εt-Nf curve are determined by the 
least squares method on the assumption that fracture or crack initiation is occurred when the summation of life 
fractions estimated using Miner’s rule reaches unity. Computer simulation of random loading fatigue test was 
first conducted to assure that the method is applicable to a wide variety of real materials. Constant and variable 
amplitude axial loading tests were carried out on annealed 0.37% carbon steel specimens. During the fatigue 
test, varying strain was measured by a strain gage and reduced to a frequency distribution of strain range using 
the rainflow method. The ∆εt-Nf curve based on initiation of a crack was reasonably estimated by the proposed 
method. The procedure for obtaining the ∆εt-Nf curve directly from an actual component subjected to service 
loading is also discussed. 
 
 
KEYWORDS 
 
Fatigue damage, Variable amplitude data, Miner’s rule, Rainflow method, Inverse problem, Strain-life curve. 
 
 
INTRODUCTION 
 
One of the best ways for preventing fatigue failure of machines or structures is to monitor the fatigue damage 
accumulated in them. To do this it is necessary to measure the variable amplitude strain signal under the 
service condition where the component is used, and then to estimate the fatigue life by proper fatigue damage 
analysis. Service load fatigue phenomenon is so complicated that many problems have yet to be solved. 
Although study for understanding the essence of fatigue phenomena is important, development of practical 
technique for fatigue life estimate will become more important in the future. 
 
Murakami et al. [1] have recently developed a small compact strain histogram recorder named Mini Rainflow 
Corder (MRC). In this device the rainflow method [2, 3] is used to decompose complex strain history into 
discrete strain ranges, related to fatigue damage, and the frequency is stored in the form of a histogram. In 
contrast, the authors [4] have developed user-friendly software that assists fatigue damage evaluation by 
analyzing the data obtained using MRC.   
 
In usual fatigue life analysis, S-N curve or strain-life curve is necessary as basic material properties under 
cyclic loading. These relationships are usually obtained in a constant amplitude load or displacement fatigue 



test where number of cycles to complete fracture of specimens or initiation of a crack with a definite length is 
examined. In general such a test requires an expensive testing machine and a skilled task. The purpose of this 
study is to propose a method to construct a basic relation of strain range versus cycles to failure from variable 
amplitude fatigue data. It is expected that using this method the relation can be obtained in an easy test with an 
inexpensive testing machine. In addition, this method may have a promising future in that field data reflecting 
particular effects of load spectrum, geometry of component, environment or other effects unforeseen in 
laboratory tests can be collected from actual components subjected to service load.  
 
PROPOSED METHOD 
 
Phenomenon on service load fatigue is not sufficiently elucidated now, and a unified method for damage or 
life assessment has not been established yet though many methods have been proposed. In this study, therefore, 
only well-known fatigue theories will be used to propose a new method. Usual process of fatigue damage 
assessment with MRC may be described as follows: 
1.  Strain range versus cycles to failure relationship (strain-life diagram) is obtained in a constant amplitude 

fatigue tests using small specimens in laboratory.  
2.  Varying strain signal is measured through a strain gage in a component or structure in service and the 

rainflow cycle counting is instantaneously made using MRC. The reduced strain history data is stored in 
MRC as frequency distribution of strain ranges, in which the maximum strain range is 7000 ×  10-6 and 
it is divided into 256 discrete levels with the interval of 27 ×  10-6 strain. 

3.  Fatigue damage summation is performed using Miner’s rule. If consideration for stress concentration is 
necessary, local strain approach is employed with the aid of Neuber’s rule, finite element analysis, etc.   

 
If this process is grasped as a forward analysis, it is expected that a strain-life diagram may be reconstructed 
by a back analysis using output information of material; that is, frequency distribution of strain ranges, 
number of cycles to failure, etc.  
 
For this analysis several assumptions are made in this study. First, it is assumed that strain-life diagram is 
stated as 
 

∆ε = f(Nf),                         (1) 
 

where ∆ε is strain range, Nf is number of cycles to failure and f(Nf ) means a function of Nf. Failure means 
complete fracture, initiation of a crack with a given length, etc. Although the type of function can be 
arbitrarily determined depending on the purpose of life estimate, in this study the following equation is 
assumed: 
 

∆εt/2 = A (2Nf)B,                    (2) 
 
where A and B are material constants and ∆εt/2 is total strain amplitude. Total strain may be convenient for 
practical use because it is directly measured by a strain gage. To deal with plastic strain we need the relation 
between stress and strain, which is usually changed with load cycling. 
 
Second, it is assumed that a complex strain history is reduced by a certain cycle counting technique into a 
relation between strain range and its frequency. The rainflow algorithm [3] is used in MRC to provide the 
histogram. 
 
Finally, it is assumed that fatigue damage is cumulated according to Miner’s rule [5] expressed by 
 

�=�= iii N/ndD 22 ,                   (3) 



where D : damage, i : level of strain range (i = 1~256 in MRC), di : damage fraction at level i, 2ni : number of 
reversals at level i and 2Ni : number of reversals to failure when strain range of level i is cycled alone. Failure 
is assumed to occur when the summation of damage fractions, D, equals 1. Load sequence effects and mean 
stress effects are not taken into account in this analysis. 
 
The following equation is obtained substituting Eqn. 2 into Eqn. 3 and setting D = 1. 
 

( ) 01]A22[ B
1

=−�
−/n ii ε∆ .                              (4) 

 
If giving linear forms by doing Taylor expansion for the left-hand side of Eqn. 4 as a function of variables A 
and B, the unknown values A and B will be computed by the least squares method. In this analysis, the 
solution of (A, B) is given as values converged by iteration starting the computation from a given set of initial 
values (A0, B0).  
 
SIMULATION TESTS 
 
The calculation ability of the proposed method can be examined by the following simulation test: 
1.  The values of (A, B) in Eqn. 2 are initially given as a correct solution.  
2.  A strain range level is randomly generated on a computer. For this strain range, damage fraction is 

calculated using Eqn. 2 and then summed up with the previous damage D using Eqn. 3. The number of 
reversals for the corresponding level is increased by 1. 

3.  If this work is continued until D = 1, a histogram of strain range frequency will be obtained. 
4.  For two or more sets of histograms obtained as above, a solution of (A, B) is given by applying the 

proposed method. The solution is compared with the correct solution initially given. 
 
The calculable region of (A, B) is dependent on the initial values (A0, B0). The best values of (A0, B0) were 
obtained to be (0.002, – 0.6) through trial and error. Figure 1 shows the calculable region examined using (A0, 
B0) = (0.002, – 0.6) for the worst condition that the region becomes narrowest. The region is appeared to be 
broad enough to cover the regions corresponding to material constants of the Coffin-Manson relationship and 
Basquin’s equation expected for a wide variety of real materials. 
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Figure 1 : Calculable region of (A, B) examined using (A0, B0) = (0.002, – 0.6) 



FATIGUE TESTS 
 
Material used is annealed 0.37% carbon steel. The chemical composition (wt %) is 0.37C, 0.21Si, 0.65Mn, 
0.019P, 0.017S, 0.13Cu, 0.06Ni, 0.14Cr. The lower yield strength is 328 MPa, the tensile strength is 586 MPa, 
the reduction of area is 50.7 % and the Vickers hardness is 160. Specimen geometry is shown in Figure 2. The 
stress concentration factor Kt is 1.10. The specimens were electropolished to remove a surface layer of 40 µm 
in diameter. Axial load fatigue tests were conducted under load control using a 100 kN digitally-controlled 
servo-hydraulic testing machine, operating at 1-10 Hz. The alignment of specimen and machine axes was 
adjusted to minimize bending for each test using four strain gages at the positions indicated in Figure 2. The 
nominal stress amplitudes in constant load tests were 270, 290, 310 and 330MPa. The tests were performed 
under fully-reversed loading (R= –1). Stress is the nominal stress defined by the cross section area at notch 
root. It follows that the true stress has a tensile mean stress even for R = –1. The variable amplitude tests were 
carried out by block load tests using the stress histories shown in Figure 3. Note that there are three hysteresis 
loops with different stress and strain ranges in a block, as shown by schematic relationship between stress and 
strain. During the fatigue test the strain frequency was measured using an MRC. Notch root strain was 
numerically calculated using Neuber’s rule, stress concentration factor Kt and the cyclic stress-strain curve 
estimated from the monotonic curve. Plastic replicas were taken during the tests to monitor crack growth. 
 
RESULTS AND DISCUSSION 
 
Figure 4a shows an example of the histogram of strain range frequency measured using MRC in block load 
tests. Figure 5 shows the strain-life diagrams constructed based on the definition that D = 1 when a 1000 µm 
crack 

 
 

Figure 2 : Specimen geometry 
 

 
 

History A B C D 

∆σ1/2 (MPa) 340 320 300 280 

∆σ2/2 (MPa) 240 220 200 180 

 
Figure 3 : Condition of variable amplitude load tests 



crack is initiated. For small specimens shown in Figure 2, this definition is virtually equivalent to that for 
complete fracture. In this analysis damage below the fatigue limit was taken into account. The curve for 
variable amplitude is very close to that for constant amplitude. Table1 shows damage ratios for fatigue test 
results, which were computed using reconstructed curves. All ratios fall between 0.744 and 1.16. It may be 
concluded that the strain-life diagrams are well constructed from the variable amplitude data. Figure 4b shows 
histogram of damage fraction for the same data. The histogram has three populated groups, which may 
correspond to strain ranges of three hysteresis loops, see Figure 3. The scatter in the distribution may be 
mainly due to cyclic softening and hardening of material. 
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(a) Strain range frequency                    (b) Damage fraction 
 

Figure 4 : Example of histogram obtained in block load test 
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Figure 5 : Constructed strain-life diagrams 
 
 

TABLE 1 
DAMAGE RATIOS OF FATIGUE TEST RESULTS 

 

(a) Constant amplitude test                                    (b) Variable amplitude test 

 
The present method can be used also for the case that D ≠  1. Therefore, if certain physical damage observed 
in an actual component is correlated with D in the midst of its fatigue process, the data of strain-life 
relationship will be collected directly from the component subjected to service load. Although the term 
“fatigue damage” is often used in different ways by different researcher [6], in this study the length of a main 
crack leading the specimen to fracture was used as a measure of fatigue damage. Figure 6a shows the 

Stress amplitude (MPa) 330 310 290 270 

Damage ratio 1.03 1.04 1.16 0.744 0.795 0.842 1.08 1.14

History A B C D 

Damage ratio 1.06 0.842 0.995 1.07 



relationship between surface crack length and damage D for the case of variable amplitude load tests. The 
value of D for a given crack length was calculated using the reconstructed strain-life curves and the strain 
range histogram corresponding to the length. Figure 6b shows the relationship between crack length and 
damage D normalized by the damage D1000 corresponding to the length of 1000 µm. All plots are within a 
narrow band. The values of D for cracks observed in a component may be defined using this relation. 
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Figure 6 : Relationship between surface crack length and damage D 
 
Several methods for constructing an S-N curve from variable amplitude fatigue data have previously been 
proposed. Nakamura et al. [7], Dowling [8] and Kikukawa et al. [9] used equivalent stress or plastic strain 
range to correlate the data between variable and constant amplitude loading. It is assumed in those methods 
that the value corresponding to B in Eqn. 2 equals the value obtained in constant amplitude fatigue tests. In 
contrast, the present method does not require such assumption. In addition it is applicable for the case that 
Eqn. 1 has two or more material constants. 
 
CONCLUSIONS 
 
A method for constructing a strain-life relationship from variable amplitude data was proposed. Computer 
simulation and fatigue tests were carried out to assure that the method is applicable to a wide variety of 
materials and complex strain history data. An idea for applying this method to an actual component subjected 
to service load was also presented. 
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ABSTRACT 
  
Mechanisms of intersonic crack propagation along a weak interface under shear dominated 
loading are studied by both molecular dynamics and continuum elastodynamics methods. 
Part of the objective is to test if continuum theory can accurately predict the critical time and 
length scales observed in molecular dynamics simulations. To facilitate the continuum-
atomistic linkage, the problem is selected such that a block of linearly isotropic, plane-stress 
elastic solid consisting of a two-dimensional triangular atomic lattice with pair interatomic 
potential is loaded by constant shear velocities along the boundary. A pre-existing notch is 
introduced to represent an initial crack which starts to grow at a critical time after the loading 
process begins. We observe that the crack quickly accelerates to the Rayleigh wave speed 
and, after propagating at this speed for a short time period, nucleates an intersonic daughter 
crack which jumps to the longitudinal wave speed. The daughter crack emerges at a distance 
ahead of the mother crack. The challenge here is to test if a continuum elastodynamics 
analysis of the same problem can correctly predict the length and time scales observed in the 
molecular dynamics simulations. We make two assumptions in the continuum analysis. First, 
the crack initiation is assumed to be governed by the Griffith criterion. Second, the 
nucleation of the daughter crack is assumed to be governed by a peak of shear stress ahead 
of the crack tip reaching the cohesive strength of the interface. Material properties such as 
elastic constants, fracture surface energy and cohesive strength are determined from the 
interatomic potential. Under these assumptions, it is shown that the predictions based on the 
continuum analysis agree remarkably well with the simulation results. 
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INTRODUCTION 
 
This paper is a study of intersonic crack dynamics using both atomistic and continuum 
methods, with emphasis on the linkage between "mechanics" and "physics" modeling of 
fracture. Continuum mechanics is limited by its coarse view of physical phenomena and 
various assumptions adopted in its constitutive laws. On the other hand, atomistic methods, 
such as molecular dynamics (MD), is limited not just by the large number of degrees of 
freedom involved but also the time scale. There are only a few classes of problems to which 



continuum and atomistic approaches can both be applied and the results directly compared. 
One of such problems is the simulation of dynamic crack propagation in a nanometer size 
crystal. The system is large enough for the continuum methods of dynamic fracture 
mechanics [1,2] to be applicable. On the other hand, the emergence of large scale parallel 
computers have also allowed MD simulations of crack propagation for system sizes reaching 
1 billion atoms and time scales approaching nanoseconds [3]. Atomistic simulations provide 
an ab initio investigation of fracture by which the validity of continuum methods can be 
tested. Continuum mechanics analysis provides a conceptual framework in which MD 
simulation data can be analyzed and understood. It is in this spirit that we conduct a joint 
continuum and atomistic investigation of intersonic crack propagation along a weak 
interface. 
 
Our present study is motivated by recent experiments on intersonic crack propagation by 
Rosakis et al. [4] who investigated shear dominated crack growth along weak planes in a 
brittle polyester resin under far field asymmetrical loading. They observed crack propagation 
as fast as the longitudinal wave speed. This experiment is interesting because it has been 
widely believed that a brittle crack cannot propagate faster than the Rayleigh wave speed. 
The origin for this belief stems from the vanishing of crack tip energy release rate and stress 
singularity at the Rayleigh wave speed predicted by continuum mechanics. The late arrival 
of laboratory experiments on intersonic fracture [4] is due, in part, to the fact that a crack in 
elastic homogeneous and isotropic solids always kinks or branches out, deviating from the 
initial crack plane and having a zigzag crack path, once the crack tip velocity exceeds only 
0.3 ~ 0.4 of the shear wave speed [1, 5, 6]. A wavy crack instability occurs at low crack 
velocities and prevents an exploration of the full range of possible velocities. In fact, the 
only possibility of attaining intersonic crack propagation is to introduce a weak path (a layer 
of lower toughness) so that crack growth is confined to this path. Although the experiments 
of Rosakis et al. [4] have shown convincingly that a shear dominated crack can propagate 
with velocity up to the longitudinal wave speed, the question of whether such a crack has 
been accelerated from a subsonic crack or is nucleated directly as an intersonic crack has not 
been fully resolved by experiments. 
 
A two-dimensional MD simulation was conducted to investigate the mechanisms of shear 
crack propagation along a weak interface joining two harmonic crystals [7]. The atomic 
bonds of the harmonic crystals are characterized by the harmonic interatomic potential with 
infinite cohesive strength. Crack propagation is forced to propagate along the interface 
which is characterized by the Lennard-Jones (LJ) potential. The two-dimensional crystal 
with pair interatomic potential assumes a triangular atomic lattice and behaves as a linear 
elastic isotropic sheet deforming under plane-stress conditions. Loaded by linearly 
increasing shear displacements along the boundary of the simulation block, a pre-existing 
notch is introduced to represent an initial crack which starts to grow at a critical time after 
the loading process begins. The main results in [7] can be briefly summarized as follows. A 
mode I crack never exceeds the Rayleigh wave speed. In comparison, a mode II crack 
initiates at a critical load level and accelerates very quickly to the Rayleigh wave speed. It 
travels at the Rayleigh speed for a short while and nucleates an intersonic daughter crack 
ahead of its tip. The daughter crack propagates near the longitudinal wave speed. 
 
The objective of this paper is to test if continuum theory can accurately predict the critical 
time and length scales observed in molecular dynamics simulations [7]. We apply the 
dynamic elasticity methods [1] to solve the crack propagation problem subject to identical 
geometry and loading conditions in the molecular dynamics simulation. We determine 
material properties including Young's modulus, Poisson ratio, wave speeds, surface energy 
and cohesive strength from the interatomic potentials used in the atomic simulation. This 
precise knowledge of material properties allow us to use the simulation results to test the 
validity of continuum theories of fracture. We make two assumptions in the continuum 
analysis. First, the crack initiation is assumed to be governed by the Griffith criterion. 



Second, the nucleation of the daughter crack is assumed to be governed by a peak stress 
ahead of the crack tip reaching the cohesive strength of the interface. Under these 
assumptions, we show that the predictions based on the continuum analysis agree 
remarkably well with the atomic simulation results. 
 
 
ATOMIC SIMULATION RESULTS 
 
The atomic simulation of intersonic shear fracture is based on molecular dynamics which is a 
computational method [8, 9] for predicting the motion of a given number of atoms by 
numerically integrating Newton's law for each atom. In the MD simulation, the mutual 
interactions among atoms are described by a continuous potential function. The details of 
MD simulations of intersonic shear fracture can be found in [7]. Here we briefly discuss the 
most relevant results that will be compared to the continuum analysis. 
 
In accordance with the objective of studying crack propagation along a weak interface in a 
linear elastic isotropic solid, we consider a two-dimensional atomic lattice characterized by a 
pair potential. Atoms across a weak interface line are assumed to interact according to the LJ 
potential, ( 12r4 −=ϕ . All results are expressed in terms of reduced units: lengths are 
scaled by the value of the interatomic separation for which the LJ potential is zero, energies 
are scaled by the depth of the minimum of the LJ potential, and mass is scaled by the atomic 
mass. A cut-off distance equal to 2.5 is assumed for the LJ potential. Atoms in the adjacent 
crystals are assumed to interact according to the harmonic potential ( ) 2d 2−rk=ϕ , where 

6 2d =  and ( ) 3 272d =′′= ϕk  such that the materials are elastically homogeneous across 
the interface. We note that the harmonic crystal has infinite fracture strength due to linear 
interactions among nearest neighbors. The only fracture path in this linear elastic 
homogeneous and isotropic solid is along the interface which has a finite cohesive strength 
associated with the LJ potential. 

)6r−−

 
The total dimension of the simulation system under study is a 2D slab of atoms with 1424 
atoms along the horizontal length defining the x1 direction and with 712 atoms along the 
vertical length defining the x2 direction. A horizontal slit of 200-atom distance is cut midway 
along the left-hand vertical slab boundary. The 2D crystal has a triangular lattice with the slit 
parallel to the close packed direction along which atomic spacing is equal to the lattice 
constant . To study a shear dominated crack, a shear strain rate of 0.00025 and a tensile 
strain rate of 0.00005 are imposed on the outer most rows of atoms defining the opposing 
horizontal faces of the two-dimensional slab. The crack is of mixed mode but dominantly 
shear. Linear velocity gradients are established across the slab initially. Then the loading 
process proceeds with constant shear and tensile velocities along the boundary, which leads 
to eventual failure of the material at the slit tip. The applied strain rates remain constant 
during the simulation, and the simulation is continued until the growing crack has traversed 
the total length of the slab. Simulations of a mode I crack is conducted with the same 
geometrical setup except only an opening strain rate is imposed. 

6 2

 
The mode I crack in the atomistic simulations (Abraham and Gao, 2000) quickly approaches 
a constant velocity equal to the Rayleigh wave speed 4.83 of the harmonic crystal, which 
shows that the crack velocity is limited by the Rayleigh wave speed, consistent with the 
classical theories of fracture. The mode II crack initiates at a critical time estimated to be 65 
and quickly approaches the Rayleigh wave speed of the harmonic solid. After propagating at 
the Rayleigh wave speed for a short while, the crack tip jumps to the longitudinal sound 
speed calculated to be 9. The time for this velocity jump is estimated to be around 140. 
 
The mechanism for the mode II crack "jumping" over the forbidden velocity zone is the 
nucleation of an intersonic daughter crack ahead of the mother crack travelling at the 



Rayleigh wave speed [7]. A sharp intersonic crack is nucleated at a small distance estimated 
to be around 22 ahead of the mother crack. Transverse Mach cones near the daughter crack 
are observed in atomistic simulations, and the angle of the Mach cone shows that the 
velocity of the daughter crack is consistent with the longitudinal wave speed.  As the 
daughter crack moves ahead, the mother crack trails behind at the Rayleigh wave speed. The 
MD simulations demonstrate intersonic crack propagation and the existence of a "mother"-
"daughter" crack mechanism for a subsonic shear crack to jump over the forbidden velocity 
zone. This mechanism is reminiscent of the mechanism of Burridge [10] and Andrews [11] 
based on continuum theories, although the continuum description cannot provide an ab initio 
description for crack formation. The birth of the daughter crack cannot be characterized by a 
critical energy release rate or a critical stress intensity factor near the mother crack because 
both these quantities vanish at the Rayleigh wave speed. It seems that the only possible 
mechanism by which the daughter crack can be nucleated is by the finite stress peak ahead of 
the mother crack and along the weak bonding line, as measured in the stress field and 
discussed by Burridge [10]. 
 
 
MATERIAL PROPERTIES 
 
Material properties of importance to continuum descriptions of fracture include the elastic 
moduli, elastic wave speeds, surface energy and cohesive strength. In comparison with a 
laboratory fracture experiment, atomistic simulations have the advantage of providing a 
precise knowledge of these material properties from the interatomic potential.  
 
A two dimensional triangular lattice behaves as a plane stress elastic sheet with the shear 
modulus µ , Young’s modulus 3k2E = , and Poisson’s ratio  [12]. With 
the atomic mass taken as the unit of mass, the triangular lattice has density 343=ρ . The 
longitudinal, shear and Rayleigh wave speeds are cd = 9, cs = 5.20, and cR = 4.83, 
respectively. 

4k3= 31=ν

 
The fracture surface energy of the material is defined as the energy consumed in breaking 
atomic bonds as crack grows. For the MD simulations described in section 2, the crack is 
parallel to the close packed direction and atoms across the interface interact according to the 
LJ potential with a cut-off distance equal to 2.5. Accounting for all the atomic interactions, 
four atomic bonds (2 between nearest neighbors and 2 between next nearest neighbors) are 
snapped per atom in the fracture process. The fracture surface energy is defined as half of the 
energy stored in these bonds and is equal to 956.0=γ  [12]. 
 
The cohesive strength of the weak interface under shear dominated loading is calculated as 
follows [13]. The cohesive failure of a single atomic bond is defined as the state when the 
interactive force between two atoms reach the maximum, which corresponds to  

and md  is the critical bond length at failure. Balance of forces parallel and normal 
to the interface gives the relation 04.2577.0 intint =+ στ  between shear and normal stresses 
along the interface at the cohesive limit, which is the cohesive strength criterion and has a 
strong coupling between shear and tensile stresses. 

( ) 0dm =′′ϕ
6 726=

 
 
CONTINUUM ANALYSIS OF CRACK INITIATION AND PROPAGATION 
 
The aforementioned entire process of crack initiation and propagation is studied via a 
transient, continuum analysis of dynamic fracture [13]. It is shown that the continuum 
analysis, in conjunction with the Griffith criterion, can determine the critical time for crack 
initiation rather accurately. The location and time at which the daughter crack is nucleated 



are also determined rather accurately by the continuum analysis, together with a cohesive 
strength criterion. 
 
An infinite plane-stress solid containing a semi-infinite crack on the negative x1 axis is 
subjected to constant remote shear stress rate 0τ&  and tensile stress rate  normal to the 
crack. Consistent with the atomistic simulations, an initial velocity field at time t = 0 
corresponding to the constant remote stress rates is imposed such that there are no waves 
coming from the remote field. The deformation field can be decomposed into the following 
two sub-problems. First, a uniform deformation field corresponding to constant shear stress-
rate  and normal stress-rate  in the same solid but without the crack; the initial velocity 
field is consistent with 0τ&  and  such that there are no waves from the remote field. The 
second sub-problem has constant shear and normal traction-rates,  and 0σ& , imposed on 
the entire crack faces (including the new ones generated by crack propagation) in order to 
negate the crack-face tractions from the first sub-problem. There is no initial velocity field. 
The crack tip remains stationary until a critical time, t = tinit, is reached at which the Griffith 
criterion is met. The crack tip then propagates in the crack plane at the Rayleigh wave speed 
cR, consistent with the atomistic simulation discussed in section 2. It should be pointed out 
that stresses are indeed not singular near a crack tip propagating at the Rayleigh wave speed 
cR. Instead, the shear stress has a peak that occurs at a finite distance ahead of the crack tip. 
Once the peak stress reaches the cohesive strength of the solid, the daughter crack is 
nucleated. 

0σ&

0τ& 0σ&

0σ&

0τ&

 
Griffith Criterion and Crack Initiation 
We study first the critical time for crack initiation, t = tinit, at which the macroscopic crack 
tip starts to propagate. The plane-stress crack tip energy release rate for a stationary crack 
subjected to constant remote shear and normal traction-rates  and σ&  on the crack faces 
are given in [1]. The Griffith criterion predicts that the crack tip starts to propagate when the 
crack tip energy release rate reaches twice the surface energy, 2γ, which gives the critical 
time for crack initiation. Using the shear and normal strain rates in the atomistic studies 
given in section 2 as well as the elastic constants, wave speeds and fracture surface energy in 
section 3, we find that the critical time for crack initiation predicted by the continuum 
elasticity is tinit = 70.3 in the reduced unit, which is in good agreement with the 
corresponding result of 65 in the MD simulations. This analysis indicates that the Griffith 
criterion holds even down to the atomic scale. 

0τ& 0

 
Cohesive Strength Criterion and the Nucleation of Daughter Crack 
The continuum analysis becomes much more difficult after the crack tip propagates at the 
Rayleigh wave speed cR after time t = tinit. We follow the same method developed by Freund 
(1990) to solve this fully transient dynamic fracture problem involving both the dynamic 
crack-face loadings and the crack propagation. We skip details of the solution and present 
only the shear stress relevant to the nucleation of daughter crack. The shear stress has a very 
sharp peak at the shear wave front ahead of the moving the crack tip. This maximum shear 
and normal stresses have been determined in terms of the applied load, time, as well as the 
elastic constants and wave speeds. Using the cohesive strength criterion in section 3, we 
have determined the critical time and location for the nucleation of the daughter crack. For 
the material properties given in section 3 and the imposed strain rates in atomistic 
simulations (section 2), we find the critical time for the nucleation of the daughter crack 
predicted by classical elasticity is tnucl = 120 in the reduced unit, which is in reasonable 
agreement with the counterpart of 140 in atomistic simulations. The corresponding location 
at which the daughter crack is nucleated ahead of the moving crack tip is the shear wave 
front and is found to be 18.2 in the reduced unit, which is once again in reasonable 
agreement with the estimate of 22 from atomistic simulations. This indicates that the 



cohesive strength criterion seems to govern the nucleation of the daughter crack even down 
to the atomic scale, leading to intersonic crack propagation. 
 
 
CONCLUSIONS 
 
We have studied intersonic shear crack propagation along a weak interface by both 
molecular dynamics and continuum elastodynamics. The problem selected is a block of 
linearly isotropic, plane-stress elastic solid consisting of a two-dimensional triangular atomic 
lattice with pair interatomic potential loaded by constant shearing velocity along the 
boundary. The fracture process revealed by MD simulations shows the following sequence 
of events. The initial crack starts to grow at a critical time after the loading process begins. It 
quickly accelerates to the Rayleigh wave speed and, after propagating at this speed for a 
short time period, nucleates an intersonic daughter crack which immediately jumps to the 
longitudinal wave speed. The daughter crack emerges at a critical distance ahead of the 
mother crack. We solve the continuum elastodynamic problem of the same crack geometry 
under the same loading history to test if the continuum analysis can correctly predict the 
length and time scales observed in the atomic simulations. We assume that the crack 
initiation is governed by the Griffith criterion while the nucleation of the daughter crack is 
governed by the Burridge-Andrew mechanism of cohesive failure by a peak of shear stress 
ahead of the crack tip. We determine material properties including elastic constants, elastic 
wave speeds, fracture surface energy and cohesive strength from the interatomic potential 
used in the atomic simulations. 
 
The critical time for initial crack growth predicted by the continuum elastodynamics and the 
Griffith criterion agrees with the atomistic simulation results within 10%. Also, we find 
remarkably good agreement between continuum analysis and atomic simulations for the time 
and location of the nucleation of the daughter crack.  From this comparison, we conclude 
that continuum mechanics can provides not only qualitatively useful insights into the 
mechanisms of intersonic shear crack propagation, but also gives quantitatively correct 
predictions for the times and locations of critical atomistic events. Effective linking between 
continuum and atomistic methods is expected to be a powerful way of studying a wide 
variety of nanoscale dynamic phenomena. 
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ABSTRACT 

 
A continuum approach based on qualitative micro-structural physics and thermodynamic arguments 
has been elaborated for modeling of such interactive phenomena as yelding, thixotropy, nonlinear 
viscoelasticity, frozen memory, and stress localization. This type of modeling has been successfully 
applied to various systems, such as coagulating suspensions, highly filled polymers, concentrated 
solutions of surfactants, and elasto-viscoplasticity in metals. The mutual feature in these systems is 
the presence of a specific “structure” at rest, which can be destroyed at higher stresses and restored 
again after any type of unloading. Examples of this type modeling are presented in this paper. Several 
comparisons of calculations with experimental data will also be demonstrated in presentation. 
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INTRODUCTION 

 
Many two-phase systems with small attractive colloidal particles display a peculiar mechanical 
behavior when the particle concentration is above a certain “gelation” (or a percolation) threshold. A 
simplest class of such systems is dispersions where solid colloidal particles with inter-particle 
attractive interaction are dispersed in a low molecular weight fluid. Many of them, such as 
lubricating greases, inks, pastes, foodstuffs, coal-water, and clay-water systems are of considerable 
industrial significance. Because of the attractive interactions, dispersions can create a particulate 
network, which is usually ruptured in flow with formation of “flocs”, and restored again at rest. The 
general approach presented below, was successfully applied to dispersed systems in [1]. The filled 
polymers represent another example of such a system. They include a broad variety of cured and 
uncured rubber compounds employed in rubber and tire industries, as well as the micro-gels used in 
electronics. Here, depending on the type of polymer and filler, a dominant physical bonding can 
happen either between small particles of filler or between filler and polymer matrix. Again, this 
secondary network existing at rest can be destroyed by stresses, with a long restoration after 
unloading. Examples of our modeling of uncured systems are given in [2,3]. The third class of the 
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phenomena to which the general approach has been applied is the elasto-viscoplasticity in metals [4]. 
Here, beyond a critical (yielding) level of stresses, a sharp and time dependent transition from elastic 
behavior to plastic flow occurs in active loading, caused by the sliding of metallic “grains” along 
multiple dislocation lines. Also, a long time stress-strain relaxation with restoration of structure, its 
hardening, stress localization, and frozen memory effects happen in metals. Finally, the same 
approach with few modifications can also be employed to describe the rheological behavior of the 
concentrated solutions of worm-like micelles. Here, the long chains of micelles with relatively strong 
but still secondary inter-micelle forces present the structure. At low stresses, the system behaves as a 
polymer-like viscoelastic liquid, but at higher stresses, the chains of micelles are destroyed being 
restored again in any type of unloading [5]. No yielding exists in this system.  
 
 
BODY OF PAPER 
 
We demonstrate below the basic principles of the approach and its applications to the above four 

systems. For the sake of simplicity only the case of simple shearing with small viscoelastic 
deformations is considered. The general 3D approach with a complete geometric nonlinearity has 
also been developed and presented in the cited papers, where the comparison was made between 
calculations and data. 
 
Basic Principles and Formulation 
It is easy to illustrate the basic principles of the approach on the example of colloidal suspensions 

in viscous or viscoelastic liquid with interparticle attractive interactions. These interactions are of 
two major types.  
(i) Direct attractive interactions, which create the particulate network and flocs. These interactions 
being elastic before yield and viscoelastic beyond it produce a specific macroscopic viscoelastic 
shear sub-stress ppp G γσ = . Here Gp is the elastic modulus and  is the small (visco-) elastic 
strain. Two relaxation times are important here: a lifetime of flocs 

γ p

pθ , and a restructuring time 
)( poo θθθ ≥ during unloading. 

(ii) Hydrodynamic interaction between the flocs, as in a suspension of inactive particles, produces 
another type of sub-stress, mσ , which depends on the rheological properties of matrix and such 
important parameters of suspension as particle concentration ϕ  and size d. If the suspending matrix 
is a low molecular liquid, then γησ &mm = , where mη ( ), dϕ is the suspension viscosity. The function 

mη ( ), dϕ  is approximately known from the rheology of suspension of inactive particles (see 
discussion in [2]). If the suspending matrix is a polymer liquid, the sub-stress mσ  is of viscoelastic 
nature (see details in [2,3]). 
 
The total macroscopic shear stress σ  is then represented as the sum of   pσ and mσ . These are 

viewed as the contributions in the stress arising from specific matrix and particulate sub-media, or 
“modes” [2]. For high concentrated colloidal suspensions in low molecular matrices, the 
contribution mσ  in the total stress is negligible. Then the approach in this limit will also valid for 
the case of the elasto-viscoplasticity of metals [4]. Additionally, the normalized debonding factor ξ  

)10( ≤≤ ξ should also be introduced to characterize the process of rupture/restoration of flocs.  
 
The formulation of the constitutive equations is then as follows [1,2]: 
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      mppG σγσ +=  ( γησ &mm = ) ;     γθγξγ && =+ /)( pp f ;       */)1( γθγξξξθ && −=+o           (1,2,3) 

 
Here γ&  is the shear rate. Eqn.2 describes the evolution of elastic strain pγ , and kinetic equation 3 
describes the evolution of  the debonding factor  ξ . The mobility function )(ξf  in Eqn.2 describes 
the effect of the floc rupture/restoration on the rheological properties of particulatee mode. The 
properties of )(ξf  are assumed as follows: 

 
                               1. ),(<   ;0  ,  ;0)(' ),( 10 →∞→→→> ξξξξ ffffff                                  (4) 

 
When the behavior of00 =f 0near  )( =ξξf  is assumed as: 

 
                                                      0  ),( →+= ξξξ of .                                                              (4a) 

 
An example of (ad hoc) specification which captures the properties shown in Eqns.4 and 4a for )(ξf , 
is proposed as:  
 

                                                0),(    )exp()()( ≥+= ββξξξ kkff o .                                            (5) 
 
Two asymptotic cases of Eqn.5, (i) 0 ,1 =≈ kfo and (ii) 1 ,0 == kfo , are considered below. The 
physical sense of Eqns.1-5 is easy to illustrate on the simple situation when contribution of the 
matrix mode in the stress is negligible, i.e. ppG γσ ≈ . This situation also describes the effects of 
elasto-viscoplasticity in metals and rheology of worm-like micelles. 
 
1.  The particulate mode in Eqns.1, 2 has a viscoelastic character, since it has elastic properties (due 
to attractive inter-particle interaction) and quasi-viscous properties (due to floc rupturing under stress 
action). The effective relaxation time in Eqn.2, )(/* ξθθ f= , decreases with the increase in 
debonding factor ξ , i.e. with the floc rupture. Thus )(ξf should be an increasing function ofξ . In 
accordance with Eqn.4, parameter θ /f1  has the sense of the ultimate viscoelastic relaxation time in 
the mode, when the flocs are completely ruptured. The parameter  in Eqn.4 reflects the importance 
of fluctuations in the floc network at rest. If  ∼ 1, the system at rest has a viscoelastic character 
with initial relaxation time 

of

of
)/(  1fθθ > . This can describe the rheology of worm-like micelles. On the 

contrary, if <<1, the value of  can be neglected and the floc network can be considered as 
“rigid”. This is the case of dispersed systems in low molecular matrices, filled polymers and elasto-
viscoplasticity, with yielding and sharp transition from solid-like behavior to flow. To guarantee the 
occurrence of such a sharp transition with yield behavior, the assumption shown in Eqn.4a is made 
about the behavior of 

of of

)(ξf  in the vicinity ξ  = 0.  
 
2. The phenomenological equation 3 is proposed here to capture the essence of the process of flocs 
rupturing and restoration. Here *γ  is the critical value of pγ at which the intensive de-bonding 
process starts. When Eqn.4a is applicable, the parameter *γ  is associated with the elastic 
deformation at yielding point. It is easy to prove that Eqn.3 preserves the constraint 1)(0 ≤≤ tξ . In 
thermodynamic interpretation [2] of floc de-bonding/re-bonding, the factor ξ  is proportional to the 
free energy stored in flocs, oθξ / is proportional to the rate of dissipation due to de-bonding and the 
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right-hand side of Eqn.3 is proportional to the average rate of work done by fluctuating micro-
stresses on critical deformation *γ  [1,2]. 

ˆ, kG

(α

tσ

const

ˆ  , σ

 
3. For filled polymers, the matrix mode is viscoelastic and contributes a lot in the stress. Two cases 
are important here. 
  3a) In the simplest case, where the filler/filler interactions predominate, one can use along with 
Eqns.1-4, the multi-mode viscoelastic constitutive equations (Ces) for polymeric matrix. In our 
simplified case, these are the sum of linear Maxwell type modes with the relaxation spectrum 

. Since the matrix mode is treated as a suspension of inactive particles in a polymer melt (or 
elastomer), there is the scaling relation [2] 
{ $ , $ }θk kG

 
                                             { ={}ˆ

kθ }, χθ kk G ,   ),( dϕχχ =                                                  (6) 
 

between the matrix’s viscoelastic spectrum and that for the pure polymer, { }, kk Gθ . The SBR 
elastomer filled with surface treated silica particles is an example of such a system.  
   3b) When the particle/polymer interactions predominate, more complicated particle/polymer 
secondary network and related flocs arise in the compound. At any instant, the polymer chains are 
classified here as either free or trapped to the particles; the total stress in the compound being the 
sum of the stresses in the two types of chains. During flow it is assumed that there is a dynamic 
balance between two competing structural processes - the debonding trapped chains from the 
particles, and the entrapment of free chains to the filler particles. The hydrodynamic effects of flow 
around the particles are lumped as in the case 3a), in the response of the free chains. The well-
known examples of such compounds are the carbon black filled elastomers compounds [3]: 
 
                                 )1/() αξγσ ++= ff G ; )1/()1( αξγσ +−= tt G ;                                    (7) 
 
                                 fσσ += ,  γθγγ && =+ /ff ;  γθγξγ && =+ /)( tt f .                                   (8)         
 
Here )or ( and )or( tftf γγσσ  are stresses and elastic strains for free (trapped) chains. Also, the 
kinetic equation 3 with θθ =o  was assumed to be valid for every relaxation mode, with parameter 

*γ  being mode independent.  The total stress is then represented as the sum of stresses over all the 
relaxation modes. Comparisons between calculations based on a completely nonlinear formulation 
and some data for uncured rubber compounds have been made [3]. 
 
Qualitative Predictions 
We now illustrate the basic predictions of the approach on the simple example of the Eqns.1-3 with 
the use of Eqn.5, when the matrix sub-stress is negligible, i.e. when ppG γσ ≈ .  
 
1. Steady shearing.  Here =γ&  and the solution of Eqns.2, 3, 5 can be found as follows: 
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Here )/(ˆ *γσσ pG= . Eqn.9 displays a non-dimensional flow curve )(ˆ zσ . Its non-Newtonian 
character is due to the floc rupture. Consider now two cases have been discussed above. 
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(i)  When , , the asymptotic behavior of the flow curve at both the small and large shear 
rates is Newtonian. The maximum viscosity, 

1=of 0 =k
θη po G= , is reached at 0→γ& , and minimum 

viscosity, , at β−eη∞ = oη ∞→γ& . If the numerical parameter β  is large enough ( )2>β , the flow 
curve is non-monotonous, which predicts the occurrence of the stress localization. This behavior is 
similar to that known for worm-like micelles [5]. 
When  the asymptotic behavior of the flow curve at 0,   1,of k= = 0γ →&  is viscoplastic, i.e: 

, with the yield value, Y =)1ˆ 2+=σ ()1( zOz +− β *γpG , and the Bingham plastic viscosity, 
θβη pG)1−p (= . When γ →∞& , the asymptotic behavior of flow curve is Newtonian with the limit 

viscosity, . When β−θη∞ = eG p ,1>β  this model also predicts the occurrence of the stress 
localization near the yield stress. This behavior is similar to that known for dispersed systems [1]. 
Thus this analysis shows that the model predicts the occurrence of yield value without any yield 
criteria. The mechanism for this has been demonstrated in [1,2,4] and will be discussed in detail in 
Subsection 4 below. 
 
2. Start up shearing from the rest state. Here the shear rate γ& is constant at t  A cumbersome 
transient solution for 

.0>
)(tσ  displays the well-known stress overshoot whose intensity increases and 

time location decreases with γ&  increasing. This demonstrates the effect thixotropy.  
 
3. Stress relaxation. We assume that an active loading was applied at 0<t  and at the instant 0=t  
the stress and de-bonding factor reached the values oσ and oξ . For the more interesting case (ii), the 
model prediction of relaxation is:  

 

                             o-t// ;    = exp [exp( ) ]ot o
o o oe θ βξθ θξ ξ σ σ βξ

βθ
−− e e −

= − − 
 

.                                     (10) 

 
Eqn.10 demonstrates the effect of incomplete relaxation (or “frozen memory”) at ∞→t . It is seen 
that the residual stress ∞σ decreases with the increase in oξ . It happens since the rate of relaxation is 
higher when the flocs are more ruptured.  
 
4. Creep. We consider here only interesting case (ii), when a constant stress 0σ  is applied at t  
to the elasto-viscoplatic body initially at rest. Eqns.2, 3, 5ii always have the static solution:  

0>

 
                                                 0)(  ,/   ,0 ==== tG pop ξσγγγ& .                                              (11)      

 
It corresponds to the solid-like behavior. Another solution, describing the plastic behavior, may also 
exist. To find it, γ& is expressed at t > 0  from Eqn.2 as:  and substituted into 
Eqn.3. Then the problem is reduced to the initial problem for the kinetic equation 3 rewritten in the 
form: 

)/( θξσγ βξ
po Ge=&

  
                                     , .                            (12) )]1/(1ˆ)[1( ξσξξξθ βξ −−−= eo

& σξξ ˆ1)0( r
o e−−=≡

 
Here 1/ <= or θθ , Yo /ˆ σσ = , and *γpGY =  is the yield stress. Analysis of this problem reveals 

that depending on the value of parameter , the following behavior of σβξ ˆoeδ = )(tξ  happens at 
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∞→t . (i) If  1<δ , 0)( →tξ , and (ii) if ,1>δ  the solution goes at t  to a steady solution 
shown by Eqn.9. The case (i) is related to solid like behavior, and the case (ii), to the flow, and the 
transition between these is of a bifurcational type.  In the realistic case 

∞→

,1<<r  σδ ˆ≈ . It means that 
the bifurcation happens when the stress in creep is closed to the yield value, i.e. σ o Y≈ .  
 
 
CONCLUSION 

 
 The approach presented in this paper, demonstrates many mutual features peculiar for such different 
systems as colloidal dispersions, filled polymers, worm-like micelles and metals. It was shown that 
in these systems, a simple and flexible kinetic model could capture common rheological effects, 
such as yielding, thixotropy, viscoelasticity, frozen memory, and stress localization. The key element 
in this model is the coupling between a specific kinetic equation, which describes the 
rupture/restoration of a “structure”, and the equation of viscoelastic type for stress evolution. The 
remarkable feature of this approach is that it describes yielding as a bifurcation in the transition from 
solid-like behavior to flow. This gives this approach a computational advantage over those which 
employ an algebraic yield criterion, especially when solving complicated 3D problems.  
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ABSTRACT 
 
Current research efforts are developing simulation methods at the mesoscopic scale to study fatigue crack 
initiation and propagation in polycrystals. Geometric models of the microstructure are created using Voronoi 
tessellations. The grain material is modeled by statistically assigning lattice orientation and elastic or elastic-
plastic material properties to each grain in a model. Grain boundaries then naturally arise in the model. 
 
The focus is on the involvement of the grain boundaries in the fracture process and ways of characterizing 
their resistance to fracture based on atomic scale studies. The goal is to extract grain boundary properties 
(when possible as a function of their macroscopic parameters) out of atomistic simulations, then summarize 
and transfer this information across length scales.  To model the behavior of the grain boundaries at the 
mesoscopic scale we consider a coupled, cohesive zone model, where the microscopic information is 
summarized in the form of traction-displacement relationships. 
 
Finite element analyses are then conducted under monotonic and cyclic loading.  Observations are made 
about where and when cracks initiate, their subsequent trajectory, and the sensitivity of the simulation to the 
grain and grain boundary constitutive models and their distributions in the polycrystal. 
 
 
KEYWORDS 
 
Fatigue Crack Initiation, Polycrystal, Multi-scale, simulation, cohesive model 
 
 
INTRODUCTION 
 
Assuming homogeneity at the macroscopic scale in a metallic component leaves out the details from smaller 
length-scales that precipitate fatigue crack initiation, a major concern in many applications. For these 
concerns the details at the polycrystal scale are the features that determine when and where fatigue cracks 
will initiate and which ones will grow to macro-cracks.  As the macroscopic response results from the 
polycrystal-scale features, properties of polycrystal features such as grain boundaries are in turn dependant on 
the atomic-scale. 
 



 
 
 
The work presented here investigates statistically modeling the polycrystal geometry and properties in order 
to study influences on the initiation of fatigue cracks.  Outlined in the following section are how the 
polycrystal geometry is modeled and how the individual grains are constitutively modeled.  Then, the 
coupled, cohesive zone constitutive model used for the grain boundaries is discussed.  Finally, an example of 
a fatigue crack initiation simulation using FRANC2D/L is shown and the results and observations are 
discussed. 
 
 
POLYCRYSTAL MODELING 
 
Creating a polycrystal sample begins with defining the geometry of the grains.  This is done using a Voronoi 
tessellation.  Polygons are created from a random set of initiation points.  Each polygon then represents a 
grain with an average size held to observed measures from electron back-scattering pattern scans (EBSP).  
Once the geometry is in place material properties are assigned.  Four constitutive relationships for the grain 
material are currently being evaluated for their impact on the crack initiation process: elastic, isotropic; 
elastic, orthotropic; elastic-plastic, isotropic (von Mises); elastic-plastic, orthotropic (Hill).  For the chosen 
material model each grain is assigned values of the appropriate parameters sampled from uniform 
distributions centered on the average macroscopic value.  This allows each grain to be a separate realization 
of the material model.   
 
 
COUPLED COHESIVE ZONE MODEL 
 
The geometry created by the tessellation determines the locations of the grain boundaries while the material 
parameters introduce heterogeneity and possible anisotropy.  Finally, a cohesive zone model (CZM) is used 
to describe the strength of the grain boundaries. The CZM is also used as a criterion for initiation of 
intergranular cracks. The GB’s are allowed to decohere after reaching a critical combination of transmitted 
normal and shear stress, thus gradually initiating a crack.  An advantage of using such a model is that initial 
cracks are not arbitrarily introduced at the beginning of a simulation.  Instead cracks naturally occur due to 
the heterogeneous stress field throughout the sample caused by the geometry and property variations. 
 
CZM’s are traction-displacement relationships originally used to describe the damage that occurs in the 
plastic zone ahead of the crack [1].  In the present case the damage represented by the softening portion of the 
CZM is used to describe the decohesion of the GB’s.  The implementation being used in our simulation code, 
FRANC2D/L [2], is adapted from the coupled, cohesive zone model (CCZM) developed by Tvergaard and 
Hutchinson [3] where the normal and shear components of the traction and displacement are combined into 
single measures for each quantity, t and λ, respectively (Figure 1).  A key characteristic of the relationship is 
the area under the curve, Gc, which represents the critical energy release rate. 
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Figure 1: Coupled Cohesive Zone Model 

 



 
 
 
The CCZM begins from a traction potential, Φ, (Eqn. 1) that is a function of the relative normal, δn, and 
tangential, δt, displacements between the faces of the GB. λ is a non-dimensional separation measure for the 
relative opening and sliding normalized to the relative critical displacement values, δn

c and δt
c, at which the 

separation is considered a true crack in pure Mode I and pure Mode II (Eqn. 2).  When the value of λ reaches 
1 this indicates the complete decohesion of the GB and the formation of a true crack.  For a given relative 
displacement between two grains the combined traction, t, transmitted across the GB can be determined from 
the CCZM.  The combined traction can then be decomposed into normal, Tn, and shear, Tt, components by 
differentiating Φ according to Eqns. 3 and 4, respectively.  In the case in which the GB encounters unloading, 
the CCZM follows the path shown in Figure 1. 
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In our simulations the parameters describing the CCZM were determined to either be the same for all GB’s in 
the sample, or to vary from GB to GB.  For the orthotropic models, parameters were varied based on the 
misorientation angle, θ, across the GB shown in Eqn. 7 and Figure 2.  For the isotropic grain material models, 
there is no physical misorientation across GB’s.  Therefore, the inclination angle, ψ, of the grain boundary 
with respect to the global X-axis (Figure 3) was chosen as an arbitrary measure with which to introduce 
variation in Gc.  Assuming that Gc varies with the angle θ or ψ changes, the area under the CCZM varied 
according to Eqn. 5 or Eqn. 6, respectively, in which Gavg is the average value of the critical energy release 
rate and ∆G determines the range of values.  The critical normal displacement, , is then held constant at 
1µm so that the critical combined traction, t

c
nδ

p, for each GB could be determined.   
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Figure 2: Misorientation angle, θ, calculated 
according to Eqn. 7 from the material orientation 
angles, βi, of neighboring grains. 
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Figure 3: Grain boundary inclination angle 
measured with respect to the global X-axis.

 



 
 
 
The form of Eqns. 5 and 6 was chosen based on a Fourier expansion of spherical harmonics.  In 3D any 
periodic function can be written using a Fourier expansion of spherical harmonics of which the present case is 
a 2D degenerative form.  Holding the normal of each grain to be along the (100) direction forces cubic 
symmetry for a FCC crystal.  This results in the cos 4θ(or ψ) form term seen in Eqns. 5 and 6. 
 
In conjunction with this work are efforts to conduct atomistic and quasi-continuum simulations of the fracture 
of GB’s and triple point junctions of grains.  These results will be used to guide the determination of 
parameters of the CCZM as well as give insight into the shape of the CCZM curve and the form of variation 
as a function of misorientation between grains. 
 
 
SIMULATION OF FATIGUE CRACK INITIATION 
 
Simulations were run as part of a parametric study to observe the sensitivity of fatigue crack initiation due to 
the various parameters.  Varied parameters included different realizations of grain geometry from the 
Voronoi tessellations, the four grain material models mentioned previously, different samplings from an 
orientation distribution function (ODF) for orientations of the orthotropic grains, variation in the range and 
mean values of the CCZM parameter ∆G, varying load conditions including monotonic and cyclic, and the 
presence of an initial stress field. 
 
 
RESULTS 
 
Results discussed here are for the grain geometry, boundary conditions and loading history shown in Figure 
4.  Individual results will be shown for the points indicated in Figure 4b.  The grain material properties for the 
Hill material model and CCZM parameters are shown in Table 1.  The parameters chosen result in the 
average peak combined strength of the GB’s being equal to the average uniaxial yield stress of the grains.  
This will allow some of the GB’s to reach their peak and begin softening, initiating fatigue cracks, before the 
grains begin to yield and absorb all of the damage to the polycrystal.  The current implementation of the Hill 
yield criterion is limited to perfect plasticity. 

 
As seen in Figure 4, the sample was loaded to 0.69% strain (98% of the macroscopic yield strain) and then 
unloaded.  Figures 5a-c show the deformed mesh of the sample at 0.1%, 0.69%, and 0.2% strain 
corresponding to the points marked in the loading history (Figure 4b).  The circled area in Figure 5b shows 
the opening of a grain boundary due to decohesion.  Figures 5d-f show schematically the approximate 
corresponding location along the CCZM of the decohering GB’s. Since λ has not reached a value of 1 this 
damaged GB has not yet completely fractured.   
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TABLE 1 
GRAIN MATERIAL AND CCZM PARAMETERS 

 
Grain Material CCZM 

Type Elastic-Plastic, 
Orthotropic (Hill) 

Gavg 250 Pa m 

E 72 GPa ∆G 100 Pa m 
σyld1 505 MPa Resulting tpavg 500 MPa 
σyld2 450 MPa   
σyld12 400 MPa   
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Figure 5: Deformed mesh at 2X magnification for (a) point 1 indicated in Figure 4. (b) point 2 
in Figure 4. The circled grain boundaries have begun to decohere. (c) point 3 in Figure 4. (d) 
σyy contour plot corresponding to (a). (e) σyy contour plot corresponding to (b). (f) σyy contour 
plot corresponding to (c). (g) Schematic representation of the location on the CCZM of the 
opening GB at the first load point. (h) Schematic representation of the location on the CCZM 
of the opening GB at the first load point. (i) Schematic representation of the location on the 
CCZM of the opening GB at the first load point. 

 



 
 
 
 
OBSERVATIONS AND CONCLUSIONS 
 
Using a Voronoi tessellation, samples of polycrystalline geometry were created.  The grains where 
statistically assigned material parameters from one of four material models.  The GB’s where assigned a 
statistically varying CCZM.  Completed polycrystal samples were loaded monotonically and cyclically to 
observe damage and crack initiation. 
 
In an example shown herein, damage occurs to the sample in the form of GB decohesion before any grains 
reach yield from macroscopic loading.  Local yielding then follows due to stress re-distribution caused by the 
decohesion process.  The use of the CCZM to describe the GB’s allows for this type of damage to occur.   
 
Other simulations to be reported include monotonically loaded samples strained to 3% or to failure due to the 
propagation of a through-crack.  In samples using elastic material models damage began once the tp was 
reached and progressed to failure as true cracks were created and propagated through the sample.  Samples 
using elastic-plastic material models saw damage in the form of GB decohesion and plastic yielding of the 
grains.  From these simulations the influence of tp relative to the yield stress of the grains was observed.  For 
the samples using the elastic-plastic, isotropic (von Mises) material model, which allowed for hardening 
within the grains, a shift from GB damage to grain hardening was observed as tp was raised to from 0.8 to 1.5 
times the average yield stress. 
 
The current ongoing parametric study will yield additional sensitivities to modeling choices and parameter 
ranges.  The collected observation will serve to reduce the parameter space when the current capabilities are 
transferred to a 3-D framework.  Also, the accuracy of parameters for the CCZM, such as tp or δc, needed will 
be determined though the observed sensitivity.  This will guide future atomistic simulations of GB’s. 
 
 
ACKNOWLEDGEMENTS 
 
Funding for this research is being provided through Grant F49620-98-1-0401 from the Air Force Office of 
Scientific Research and Grant 9873214 from the NSF. 
 
 
REFERENCES 
 
1. Dugdale, D. S. (1960). Journal of Mech. Phys. Solids. 8,100. 
2. Bittencourt, T. N., Wawrzynek, P. A., and Ingraffea, A. R. (1996) Engineering Fracture Mechanics. 

55, 321. 
3. Tvergaard, V. and Hutchinson, J. W. (1992). Journal Mech Phys Solids. 40, 1377. 
 



ICF100485PR 
 
 
 
 
 
 

CORROSION CRACKING OF STAINLESS STEEL 
UNDER STRESS: 

THE PROBLEM AND ITS SOLUTION 
 
 

Ata A. Miatiev and Galina V. Khil'chenko 
 

Pro Scientific & Technical Service, Prague, Czech Republic 
 
 
 

ABSTRACT 
 
This study addresses the reasons behind stress corrosion cracking (SCC) of stainless steel and the lines of 
attack on this problem. The effects of different deposited oxide films on SCC were studied. These film 
coatings permitted the modeling of mechanical and chemical properties of the steel surface and surface 
layer. The understanding of the reasons behind SCC made it possible to suggest the ways of solving this 
problem. In particular, these films can increase the time-to-failure of steel under creep from 1 to 4575 h, 
while the average strain increases to 14–16%. 
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INTRODUCTION 
 
Corrosion cracking of alloys depends on the level of mechanical stress [1]. In particular, corrosion tests of 
the SUS304 steel in a boiling (143°С) 42% MgCl2 solution showed that (i) cracking did not take place at 
stresses below 110 MPa (σ0.2= 244 MPa); (ii) at stresses 132–150 MPa, a crack issued from a corrosion 
center and propagated across a grain; (iii) at a stress of 180 MPa, cracking was of mixed character (intra- 
and intergranular); (iv) at stresses near the yield point, cracks formed at the junctions of three grains and 
rapidly propagated into the bulk along the grain boundaries. In the last case, the result was fatal, and brittle 
fracture proceeded rapidly, at virtually zero strains. 
An abrupt increase in dislocation density in the surface layer accompanies the corrosion cracking of any 
alloy [2]. Brittle cracks propagate across dislocation pileups and twins and along grain boundaries loosened 
up (expanded) by dislocations. 
As has been shown in [3], deposited oxide films can be used to control the dislocation density in the surface 
layer and the magnitude and sign of stress and to insulate the surface from an environment. In addition, film 
coatings permit the modeling of the stress–strain state of surface layers, with allowance for environmental 
effects, in SCC under virtually any conditions. This makes it possible to study all the processes that cause 
SCC and the reasons behind this phenomenon. 



RESULTS 
 
The tests were carried out with tubular pieces of 0.02C-16Cr-15Ni stainless steel under stress and creep in 
water with a chloride ion concentration of 100 mg /l and pH 3 at 340°C. The stress–strain state of the 
stainless steel surface was modified by deposited oxide films. This state was controlled by the following 
factors: (i) the sign of surface stresses (extension or compression); (ii) the intensity of surface stresses and 
relaxation effect; (iii) the surface energy barrier to dislocation egress; (iv) the lack of the surface energy 
barrier to dislocation egress; (v) insulation of the surface from environment. The testing cycle consisted of 
four stages. The first stage involved mechanical loading below the yield point; the second, third, and fourth 
stages involved creep at a rate of 1.06 10-4, 4.2 10-3, and 5.4 10-3 % h-1, respectively. These test conditions 
may be thought of as of the severest ones. They were used to reliably assess the efficiency of films for 
solving the problem of SCC and to study the influence of these films on the process of SCC itself. 
The time to failure under given conditions depends on the composition of a deposited film and its thickness 
[4]. It is obvious that these two factors do not give a comprehensive idea of the mechanism and protective 
action of deposited films. Therefore, the following parameters were considered to study the effects of 
deposited films: 
1. Oxide film material. Both amorphous and crystalline metal oxide films (Zr, Y, Zr–Y, Zr–Ni–Fe, Sn, Ce, 
Sc, Fe, Ni, U), as well as layered oxide compositions, were used. Employing different film materials made it 
possible to modify the properties of the films and the properties of steel–film systems and resulted in 
various degrees of insulation of the specimen surface against ambient chloride ions. 
2. Film thickness. The thickness of films was varied from 0.01 to 6 µm. 
3. The intensity and sign of internal stresses in as-deposited films. As has been shown in [3], virtually all 
deposited films are characterized by considerable internal stresses. Film properties, including the intensity 
and sign of internal stresses, are able to considerably change the kinetics of deformation, hardening, and 
failure of substrate materials. 
4. Relaxation effects in films. This parameter determines the sign and intensity of the mechanical stress 
induced by a film in the surface layer of a substrate, both before and in the course of corrosion treatment. 
5. Film deformability and imperfectness. Defects were monitored with a scanning electron microscope 
both in the as-deposited films and at the moment of test termination. 
The time to failure and average strain of specimens were used as criteria for their stability toward corrosion 
cracking. In addition, the surfaces and fractures of selected specimens were examined at different stages of 
test. The test results are listed in Table 1. 
 
 

TABLE 1 
FORMAL RESULTS OF SCC TESTS OF STEEL SPECIMENS 

 
No. Specimen Time to failure, h Average strain, % 
1 Uncoated steel 1 – 3 3.6 – 3.7 
2 With an urania film < 1 1.0 – 3.0 
3 With an iron oxide film 1 – 1020 1.2 – 5.6 
4 With a nickel oxide film 1 – 1980 2.2 – 7.6 
5 With a zirconia film 200 – 1820 3.9 – 7.4 
6 With a ceria film 500 – 1920 5.7 – 7.7 
7 With a tin oxide film 1660 – 1880 7.3 – 9.0 
8 With a zirconia–yttria film 340 – 1820 4.4 – 6.7 
9 With a zirconia–iron oxide–nickel oxide film 1820 – 1980 6.4 – 13.1 
10 With layered films From 920 to 4575 

without failure 
5.0 – 14.0 

11 With an yttria film From 2140 to 4575 
without failure 

8.2 – 16.8 

12 With a scandia film From 1660 to 3600 6.3 – 12.6 
 



Noteworthy is a large scatter of time-to-failure and average-strain values for specimens of the same set. 
However, there is no conflict here, since the above characteristics depend on the properties of the film and 
steel–film system and on the varied protective function of the film against a corrosive environment. 
Comprehensively studying the film-coated specimens of the same set have shown that both time-to-failure 
and ultimate strain correlate well with several factors that determine the process. The influence of these 
factors was studied for each specimen set. 
The effects of the sign of mechanical stresses induced by a deposited film in the surface layer of steel. 
This influence follows the rule: tensile stresses provoke SCC, and compressive stresses inhibit SCC. In 
particular, urania films (set 2) (over the entire range of varying other parameters) and iron and nickel 
oxide films (sets 3 and 4, respectively) (in a portion of the range) created tensile stresses in steel. This 
resulted in a decrease in time-to-failure and ultimate strain, against uncoated steel. The remaining films 
(sets 5 and 6) created compressive stresses. This led to an increase in time-to-failure and ultimate stress, 
against uncoated steel. 
The effect of the intensity of stresses induced by a film. The effect of tensile stress is quite definite: the 
higher the stress, the stronger the corrosion cracking caused by a film. The effect of compressive stress 
depends on stress intensity more complexly. With an increase in compressive stress, the resistance to 
corrosion increases, goes through a maximum, and then decreases. Figure 1 shows the plot of time-to-failure 
of coated specimens versus stress created by different films. 
 

 
 
Fig. 1: Qualitative dependence of time-to-failure upon SCC on the magnitude of stresses created in the steel 

surface layer by a deposited film. Zero at the time coordinate axis corresponds to the time-to-failure of an 
uncoated steel specimen 

 
We assume the following reason behind the effect of surface stresses on SCC: if a film, along with the 
external mechanical load, promotes the accumulation of deformation defects (for example, dislocations) in 
the surface layer of a steel specimen, this provokes brittle crack nucleation. In this case, the time-to-failure 
and ultimate-strain values decrease. Critical hardening of the steel surface layer can be realized even prior to 
corrosion tests (in the course of oxide film deposition). This is the case with a set of urania-coated 
specimens. If a film, due to compressive stresses, retards accumulation of deformation defects in the steel 
surface layer, a brittle crack forms at a later time, and the ultimate strain increases. However, given that a 
film creates large compressive stresses in the steel surface layer, the latter can be deformation-hardened by 
the film itself. Under external mechanical load and environment action, such a hardened layer can also be 
prone to brittle crack formation. However, the time-to-failure and ultimate strain values undoubtedly exceed 
those observed for tensile stresses. 
The effect of the film thickness. It is quite reasonable to assume that an increase in the thickness of a 
deposited film should result in the buildup of its protective effect, for example, under the conditions of 
corrosion cracking tests. This general tendency was observed for some sets of specimens, but not for all of 
them. For specimens of the same set, the time-to-failure upon cracking is dominated by internal stresses in a 
film, which induce corresponding stresses in the steel surface layer, rather than by film thickness. This 
correlation is exemplified by an iron oxide film in Fig. 2a and by a zirconia film in Fig. 2b. 



 
 

Fig. 2a: Correlation between internal stress in an iron oxide film and time-to-failure of film-coated 
steel specimens, depending on the thickness of the deposited film 

Fig. 2b: Correlation between internal stress in a zirconia film and time-to-failure of film-coated steel 
specimens, depending on the thickness of the deposited film 

 
Figure 2a shows that tensile stresses in iron oxide films up to 1 µm thick reduce the time to failure of the 
substrate. For compressive stresses, the time to failure abruptly increases for the film thickness ranging from 
1 to 2 µm, and a further increase in film thickness has virtually no effect on the time to failure of the 
substrate. 
Figure 2b shows that zirconia films with maximal compressive stresses considerably (hundredfold) increase 
the time-to-failure of film-coated steel specimens compared to the uncoated one. However, with an increase 
in film thickness and the corresponding decrease in internal stress, the time-to-failure increases still further, 
passes through a maximum, and then abruptly decreases. 
Influence of relaxation in deposited films. Deposited films are characterized by structural relaxation [3]. 
Relaxation is a structural reconstruction, which changes stresses, continuity (imperfection), and many other 
film properties. In addition, relaxation effects in deposited films can considerably change the stress–strain 
state of the surface layer of substrates, their mechanical properties, and even the character of failure [3]. For 
the SCC problem under given test conditions, thermal, deformation, and adsorption relaxations are of 
crucial importance. Generally, relaxation can result in the decrease in internal stresses in films and in the 
enhancement of their influence on the steel surface layer; also, relaxation can lead to the crystallization of 
some films and to the formation of microcrack defects in these films. The most injurious effect is typical of 
adsorption relaxation. Adsorption relaxation, in the form of implantation of chloride ions in the film 
structure, usually results in additional tensile stresses in the film and, correspondingly, in the steel surface 
layer. This effect is most pronounced in iron, nickel, and uranium oxide films. Zirconia, tin oxide, and ceria 
films, as well as mixed Zr–Y and Zr–Fe–Ni oxide films, respond to the implantation of chloride ions to a 
lesser extent: tensile stresses in films decrease. For yttria and scandia films, adsorption relaxation does not 
manifest itself, at least, over a period of 1500 h. 
Film deformability and imperfection. As shown by tests, all as-deposited films had no defects. In tests, 
crystalline films strained 1–1.5% cracked. In addition, crystalline films create a high barrier to dislocations, 
thus resulting in their concentration in the steel surface layer. Cracking these films promotes steel failure, 
regardless of the other properties of the surface and films. Therefore, crystalline films were not used in 
further tests. 
In amorphous films, microcrack defects were observed in specimens coated by Zr, Zr–Y, Zr-Fe-Y, Ce, and 
Sn oxide films at an average strain of more than 5%. Noteworthy is that microcracks are uncommon in 
urania and nickel and iron oxide films, although the specimens coated by these films fractured rapidly at a 



strain of less than 2.5%. Yttria and scandia films exhibit the highest deformability without defect formation. 
Examining the surface under the electron microscope indicates that these films are capable of deforming 
without failure up to strains of 8–12%. With an increase in test duration and deformation, these films 
crystallize and crack; however, hundreds of hours can elapse before failure. 
Figure 3 shows a representative fracture. As a rule, the fracture section contains the region of brittle failure, 
in which cracks propagate along grain boundaries; the region of brittle–ductile failure, in which cracks 
propagate along the directions of stress localization; and the region of ductile failure, typical of ductile steel. 
 

 
 

Fig. 3: Representative fracture of broken specimens 
 
Reasons behind brittle failure upon SCC. Our findings and results reported in [3] allow us to argue that 
brittle failure is a result of the abnormal deformability of the surface layer, which accumulated deformation 
defects under an external mechanical load considerably lower than the yield strength of the bulk. The 
accumulated defects are localized in planes, and localization directions depend on the intensity of external 
mechanical stresses. This factor distinguishes intergranular brittle failure from intragranular one. The phase 
film that forms in water stimulates this process, since its formation is accompanied by an increase in 
volume, which results in additional tensile stresses in the surface layer. Chloride ions, being built into the 
structure of the phase film, induce even greater tensile stresses in the surface layer. The phase film and 
hardened surface layer represent an efficient barrier that prevents a “soft” drop of internal stresses and 
mechanical energy dissipation. Therefore, crack nucleation across dislocation pileups requires minimal 
energy consumptions. Brittle crack nucleation is a process of separation of a grain along the plane of 
dislocation pileups, or a process of separation of grains from one another along the grain boundaries. 
Embrittlement can propagate inward and can result in local deformation at stress concentrators upon 
stability loss of an entire specimen. 
 
Ways of preventing SCC of steels. 
To efficiently guard against SCC, the following measures are recommended: 
1. To create internal compressive stresses, in the surface layer, which persist for a long time under material 
extension conditions; 
2. To create conditions preventing accumulation of deformation defects in the surface layer, for example, 
by virtue of the dislocation and vacancy pump effect revealed and described in [3]; 
3. To insulate the surface against injurious environmental effects, in particular, against chloride ions. 
Deposited oxide films can meet the above requirements. These films should have a complex of appropriate 
properties and characteristics, the most important being an amorphous layered structure, chemical stability 
in chloride-containing water, internal compressive stresses whose relaxation results in compression, and 
high adhesion and deformability. 
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ABSTRACT 
 
This paper seeks to describe on corrosion fatigue behavior of ship hull structural steels mainly based upon 
the author's recent experimental results. First it is described on general view of corrosion fatigue strength and 
corrosion fatigue crack propagation behavior of high strength steels. Then it is presented on corrosion fatigue 
strength of ship hull structural steel in ballast tank environment. It is demonstrated that tar epoxy resin 
coating effect on corrosion fatigue strength of KA32(TMCP) steel is observed in lower nominal stress range. 
Corrosion fatigue crack propagation behavior of ship hull structural steels in cargo oil environment is also 
presented. Fatigue crack propagation rate for KA36(TMCP) and KAS steel is accelerated in the region 
where ⊿K is above about 16MPa m1/2 in the sour crude oil containing 400ppm H2S. A couple of future 
problems on corrosion fatigue research of ship hull structural steels are also touched in brief. 
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INTRODUCTION 
 
Recently much attention has been focussed upon the improvement of corrosion fatigue strength and the 
evaluation of corrosion fatigue life for ship hull structural steels under ballast tank and cargo oil tank 
environment. The advantages such as lighter structures, increasing design stress and saving welding time 
were brought by use of higher strength steels for ship hull structures. However, the structure became more 
susceptible to corrosion fatigue. To evaluate ballast tank life evaluation of corrosion fatigue strength for 
ballast tank members is necessary under sea water environment with high temperature and high humidity. To 
evaluate corrosion fatigue life of cargo oil tank members it is necessary to understand corrosion fatigue crack 
propagation behavior of ship hull structural steels under cargo oil environment containing hydrogen sulfide. 
In this paper it is briefly summarized on corrosion fatigue behavior of ship hull structural steels under sea 
water and sour crude oil environment mainly based upon the author's recent experimental results. It is 
demonstrated that corrosion fatigue strength of KA32 (TMCP) steel can be improved by tar epoxy resin 
coating. It is also demonstrated that an acceleration of corrosion fatigue crack propagation rate for 
KA36(TMCP) and KAS steel is observed in the higher stress intensity factor range under sour crude oil 
environment. 
 
CORROSION FATIGUE STRENGTH OF HIGH STRENGTH STEELS  
 
Fig.1 shows the conventional S-N diagrams for four kinds of high strength steels obtained by ISIJ round 
robin test [1]. Based upon the obtained more than one thousand S-N diagrams including those shown in 



Fig.1, it was concluded that corrosion fatigue strength of tested high strength steels were almost same in the 
number of cycles of 2x104 to 107. Thus it has been experimentally confirmed that corrosion fatigue strength 
of high strength steel is almost same as that of mild steel［2,3］. This means that an improvement of corrosion 
fatigue strength cannot be expected by use of high strength steels for ship hull structures. In Fig.1 it can be 
also observed that the S-N curves are inclined to drop to the offshore structures' design curves such as 
AWS-XX Improved and UK DOE Basic Sea Water design curve and are anticipated to drop into the lower 
than these allowable design curves in the long term S-N curves. Therefore, countermeasures such as cathodic 
protection and coating are absolutely necessary for safety use of high strength steels for ship hull structures. 
In fact it was experimentally confirmed that the S-N curves for cathodically protected T type welded 
specimens for HT80 dropped in the upper side of the AWS-X and DOE design curve［4］. To keep the marine 
structures' maintenance free for long term services the complete cathodic protection system must be 
developed. The system should be taken stress gradient on the corrosion fatigue strength of the large scaled 
members such as ship hull structures and the connected tubular joints for offshore structures into 
consideration.  
The most of the fatigue design rules for offshore structures are based upon the S-N diagrams. However, it is 
anticipated that brittle failure might occur from the corrosion fatigue crack initiated from the small defects of 
the welded joints in the low temperature sea water. Therefore many corrosion fatigue crack propagation tests 
for high strength steels have been conducted in sea water environment. Crack propagation tests of HT80 
base metal and welded joints were conducted in low temperature sea water. Crack propagation rate of HT80 
base metal in 40C synthetic sea water was almost four times faster than that in air at room temperature. It 
was also clarified that corrosion fatigue crack propagation rate in the heat affected zone was slower than that 
of the base metal. The da/dN of the heat affected zone might be enhanced due to hydrogen, however the 
higher hardness and corrosion resistant martensitic structure gave a slower da/dN in heat affected zone［5］. 
More than six thousand da/dN～⊿ K curves were obtained in an artificial sea water in the aforementioned 
ISIJ round robin test. The acceleration of the da/dN was observed in sea water environment［6］. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig.1 S-N curves of four kind of high strength steels in synthetic sea water［Toyama et al.1.］. 



To evaluate corrosion fatigue strength and corrosion fatigue crack propagation rate of high strength steels we 
have to consider about corrosion fatigue variables such as environmental, mechanical and metallurgical 
variables [7]. The principal environmental variables are bulk solution chemistries, temperature, dissolved 
oxygen content and wet-dry alternation. Further studies are required for wet-dry alternation on corrosion 
fatigue behavior of ship hull structural steels. Among the mechanical variables mean stress, frequency, stress 
mode, stress wave form and stress concentration factor are important to evaluate. The extensive studies on 
effect of stress mode, stress history and random loading on corrosion fatigue strength of high strength steels 
provide the useful data for ship hull structural design. As aforementioned any improvement of corrosion 
fatigue strength can be expected for high strength steels in sea water environment, the development of 
corrosion resistant high strength steels with higher corrosion fatigue strength is strongly desired. Whereas it 
has been indicated that the characteristics of weld metal depend not only metallurgical factor but also is 
strongly influenced by welding parameters［8］. Among the metallurgical variables the subjects of plate 
thickness and residual stress should be particularly investigated.           
   
CORROSION FATIGUE BEHAVIOR OF TAR EPOXY RESIN COATED  
SHIP HULL STRUCTURAL STEEL 
 
Fig.2 shows the effect of tar epoxy resin coating on corrosion fatigue strength of the ship hull structural steel 
KA32(TMCP) plate notched specimen by push-pull fatigue testing[9]. The coating thickness is 200μm and 
stress concentration factor of the plate specimen is 2.0. It is apparent that the effect of tar epoxy resin coating 
is observed in lower nominal stress range. An increase of corrosion fatigue life was 2.8 times higher than 
that of base metal specimen at nominal stress range of 199.8MPa. The lower the nominal stress range the 
coating effect increased. The influence of coating thickness with 50 to 300μm on corrosion fatigue life was 
also investigated. The thicker the coating thickness the longer the fatigue life was. Impedance/time curves 
were taken for tar epoxy resin coated specimen with 50 to 300μm thickness. Impedance of tar epoxy resin 
 
 
 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig.2  S-Nf curve for tar epoxy resin coated specimen in artificial sea water［Ebara et al.9.］. 



coated with 50 and 100μm dropped tremendously after few days exposure into an artificial sea water. 
While the impedance of 200μm and 300μm tar epoxy resin coated specimen did not drop after exposure 
for 6000hrs. The impedance dropped slightly after exposure for 104 hrs. However the dropping rate was not 
prominent. From these results it can be mentioned that tar epoxy resin deteriorates due to the change of 
water absorption after long term exposure in sea water. The deterioration of the tar epoxy resin coating at the 
notched area of the coated specimen was influenced by the repeated stress. The decrease of the impedance at 
the notched area was bigger than that at the plane area［Fig.3］. These facts reached to the following 
mechanism of the deterioration of the tar epoxy resin coating. In higher nominal stress range corrosion 
fatigue crack initiate earlier at the notched area where stress concentrate and an improvement of corrosion 
fatigue strength cannot be expected when an interception effect against sea water disappear. The lower the 
nominal stress range an improvement of corrosion fatigue strength becomes to be observed by an 
interception effect due to the difficulty of crack initiation on the coating. An improving effect becomes to be 
smaller when water absorption rate increases and the coatings deteriorates as times go by. Since the 
deterioration of the tar epoxy resin coating is governed by the thickness of the coating, it can be mentioned 
that effective coating thickness to improve corrosion fatigue strength of the ship hull structures is at least 200
μm. Considering the deterioration of the tar epoxy resin coating at the notched area, it can be easily reached 
to conclusion that the toe of the welded joints of ship hull structures is easily deteriorates due to the breakage 
and deterioration of the tar epoxy resin coating. To evaluate corrosion fatigue strength of the ballast tank 
members further studies on effect of sea water temperature on corrosion fatigue life of tar epoxy resin coated 
ship hull structural steels is necessary. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig.3 Impedance/Number of cycles curve for tar epoxy resin coated fatigue test specimen with 50μm  
     thickness coating［Ebara et al.9.］ 
 
 
CORROSION FATIGUE CRACK PROPAGATION BEHAVIOR OF SHIP HULL STRUCTURAL 
STEELS IN CARGO OIL TANK ENVIRONMENT 



 
Corrosion fatigue crack propagation tests for the ship hull structural steels and their welded joints were 
conducted in sour crude oil containing 400 ppm H2S. The crack propagation rate of the ship hull structural 
steels such as KA32(TMCP) and KAS steel in sour crude oil containing 400 ppm H2S was remarkably 
accelerated in the higher ⊿K region [Fig.4][11]. This acceleration was also observed on X65 line pipe steel 
in sour crude oil containing 1 to 4700ppm H2S [12]. In the accelerated crack propagation area it was also 
found that the crack propagated predominantly on the cleavage fracture surface in association with brittle 
striation in the sour crude oil environment. The striation spacing per cycle, S obtained from the measured 
striation spacing⊿S versus ⊿K curve was well coincident with the da/dN ～⊿K curve in the accelerated 
crack propagation area. It can be assumed that hydrogen molecule (H2) produced through the reaction of H2S 
and H2O in sour crude oil with ship hull structural steel turns into atomic hydrogen (H) ,which enters the 
plastic zone of the fatigue crack tip and accumulates there in large quantities causing the plastic zone to turn 
into the hydrogen embrittlement zone and thus resulting in acceleration of crack propagation rate as shown 
in Fig.5.Thus it can be concluded that the environmental enhancement of the fatigue crack propagation rate 
in sour crude oil is dependent on hydrogen evolved by reaction between H2S and H2O in the sour crude oil 
with structural steels. The crack propagation tests were also conducted for welded joints. The da/dN for weld 
metal (WM),heat affected zone (HAZ) and base metal (BM) in the sour crude oil were much faster than 
those in air[13]. The three stage crack propagation mechanism can be considered.  In stage1 the fatigue 
crack opening is extremely small due to the compressive residual stress present in WM and HAZ. The 
corrosion products prevents of sour crude oil into the crack tip. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
                                             Fig.5 Schematic illustrations of corrosion fatigue  
                                                  mechanism in sour crude oil environment 
                                                  [Ebara et al.11.] 
 
 
 
Fig.4 Fatigue crack propagation rate in sour crude    
    oil (400 ppm H2S) and in air [ Ebara et al. 11.] 
 
 
Consequently, H2S and H2O are prevented from reaching crack tip and da/dN decelerated. In stage 2 the 
crack opening increases with associating fatigue crack propagation, causing the corrosion products itself to 



crack. Consequently, sour crude oil gradually reached fatigue crack tip, allowing da/dN to approximate to the 
da/dN in the corrosive environment. In stage 3 the crack opening is large enough to permit sour crude oil to 
constantly reach the fatigue crack tip causing the fatigue crack propagation to proceed in the corrosive 
environment. It is also considered that the acceleration of corrosion fatigue crack propagation rate of the 
welded joints in sour crude oil is due to the effect of an atomic hydrogen resulting from a reaction between 
steel welded joints and H2S, and H2O in sour crude oil. For HAZ of the CT specimen in the sour crude oil, 
the relation between brittle striation spacing and ⊿K shows a relatively good agreement with the da/dN ～
⊿K curve in the region of high crack propagation rate as in the case of BM, showing the dominant influence 
of the brittle striation on the fatigue crack propagation behavior in the high ⊿K region in the sour crude oil 
environment. In this tests that the effect of sour crude oil containing 400 ppm H2S on the fatigue life of the 
round notched bar specimen was pronounced in the higher stress region and obviously tended to decrease as 
decreasing the stress. It was also assumed that atomic hydrogen accumulated in the plastic zone at the 
fatigue crack tip accelerated the crack propagation rate and hence causing the round notched bar specimen to 
fail shorter in the sour crude oil than in air [11].   
 
CONCLUDING REMARKS 
 
This paper has briefly summarized on corrosion fatigue behavior of ship hull structural steels. To develop a 
reasonable fatigue life design and fracture control design for ship hull structures much more information is 
needed about metallurgical, mechanical and environmental variables which influence on corrosion fatigue 
behavior of high strength steels. It is recommended to evaluate corrosion fatigue crack initiation life at the 
notched area and the welded toe of the ship hull structural steels. A quantitative evaluation of an influence of 
tar epoxy resin coating on crack initiation and propagation of the coated specimen is also desired. 
Clarification of water absorption mechanism for the tar epoxy resin coating and of an improving effect 
corrosion fatigue behavior in lower stress and long term region is future problem to be solved. It is also 
recommended to study on the effect of H2S concentration ,plate thickness and microstructure on crack 
initiation and propagation behavior of ship hull structural steels in sour crude oil environment.     
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ABSTRACT

One of the limiting factors in an operation of a high-speed train is the wave propagation rate in trolley wire,
because the current collecting performance is reduced when the speed of a train reaches the wave propagation
rate. Therefore, an operation of a high-speed train requires trolley wire with high wave propagation rates. For
this purpose, the trolley wire should be tightened up with high tension stress which in turn requires a high-
strength property and/or should have less density, although the mechanical properties including wear and (cor-
rosion) fatigue and other properties such as electric properties should be sufficient. In this investigation, fatigue
and corrosion fatigue properties have been evaluated in a newly developed high-strength Cu-Sn trolley wire for
an operation of a high-speed train. The influence of NaCl solution on corrosion fatigue life is negligible,
because of relief of stress concentration due to initiation of multiple cracks, blunting of corrosion fatigue crack
tip by dissolution, and decrease in total crack depth due to general corrosion on the wire. Therefore, the corro-
sion fatigue strength is determined by mechanical fatigue strength in air. Attention is also paid to crack initia-
tion and corrosion behavior by using scanning electron and atomic force microscopy, and the mechanisms of
corrosion fatigue are discussed.

KEYWORDS

Corrosion fatigue, Crack initiation, Atomic force microscopy, Trolley wire for High-Speed Railroad Services

INTRODUCTION

Continuous progress in science and technology creates increasing demands for further improved materials. The
material degradation phenomennon, corrosion fatigue, is one of the most important issues for machine and
structural design when the material is subjected to varying loads and a corrosive environment. One of the
important processes of corrosion fatigue is that a crack is nucleated at a corrosion pit formed on the surface, and
then it propagates to final failure. Some investigations into the mechanical condition of the crack initiation at a
corrosion pit were already reported [1–3]. In order to analyze the initiation and propagation process of a
corrosion fatigue crack, scanning electron microscopy is widely used, which has fascinating characteristics: i)
a broad band of magnifications easily facilitates the correlation of macroscopic and microscopic images;
ii) a high depth of field or focus is attained, and a rough surface such as a fracture surface is clearly imaged in
a three-dimensional or panoramic manner. However, a drawback is that it is only capable of imaging in
vacuum, and therefore serial, in situ imaging of a corrosion or crack initiation process is impossible, and that
the vertical resolution is low for observing the very early stage of surface damage. In contrast with these, an
atomic force microscope is capable of imaging the surface not only in vacuum, but also in air or in liquid, and
thereby in situ high-magnification imaging is possible. Up to dates, it is applied to in situ observation of a
growth process of a stress corrosion crack [6, 7], early fatigue crack initiation stage of a metal [8–10] and so on.

On one hand, speedup of railroad transportation of both Shinkansen lines and conventional lines is planned by
Japanese railroad companies. In order to realize a high-speed electric train service, wave propagation velocity
in the trolley wire must be increased. This is because when the train speed approaches the wave propagation
velocity, the current-collecting performance is decreased owing to multi-pantograph induced resonance and
uplift of the contact wire. Therefore, the maximum speed of the trains is limited to about 70% of the wave



Tensile
Strength

Elastic
Modulus

Elongation at
Break

Laboratory air 473 MPa 125 GPa 8%

3.5% NaCl soln 482 MPa 122 GPa 6%
Displacement rate: 1 mm/min (Laboratory air)

0.005 mm/min (NaCl solution)

TABLE  1
Mechanical properties of Cu trolley wire in
laboratory air and in 3.5% NaCl solution.

propagation velocity. In order to increase the wave propagation velocity, two measures are utilized: one is to
decrease the density of the trolley wire and the other is to increase the wiring tension. To increase the wiring
tension, the strength of the trolley wire must be high enough for such high-tension during service. However,
high-strength metallic materials are usually sensitive to stress corrosion cracking and corrosion fatigue, and
therefore, the influence of environment on the strength must be clarified.

In this investigation, the fatigue tests in air and in a 3.5% NaCl
solution were conducted in a newly developed high-strength Cu
trolley wire for Shinkansen lines. In particular, the surface
damage initiation and propagation were closely examined by a
scanning electron microscope and an atomic force microscope,
and the mechanisms of corrosion fatigue of the high-strength Cu
trolley wire were discussed.

EXPERIMENTAL PROCEDURES

The material used was a newly developed Cu-trolley wire (Cu-0.36% Sn (O: 410 ppm, Ag: 8 ppm, other
impurities (Fe, Co, Pb, Bi, Ni, Sb, As, and Te) less than 1 ppm), in mass). To achieve as much conductivity as
that of the conventional Cu trolley wire and to increase the strength, the amount of Sn and the working are
increased. This enables the high wiring tension of 19.6 kN for 160 mm2-trolley wire, where the wave propaga-
tion velocity is about 410 km/h (≈ 114 m/s). The smooth round specimens shown in Fig. 1 were machined from
the actual trolley wire. For the fatigue tests conducted at a lower stress, the specimen diameter of 6 mm is
adopted to avoid fretting fatigue failure at a gripping position. The middle part of a sample was ground to
#1500 by wet emery paper, and then finished by 1 µm diamond paste. In a corrosive environment, the middle
part of 20 mm in gage length was exposed to an environment, and others were anti-corrosive coated. The
corrosive environment was a 3.5% NaCl solution prepared by regent grade NaCl and ion-exchanged water
whose relative resistance was larger than 1 MΩ•cm. The solution, which was kept at 298 ± 1 K, was circulated
by a vane pump between a corrosion reservoir and a environmental cell attached to the specimen. The amount
of the solution circulated was 10 L, and 3 L solution was exchanged every three days.

The testing machine employed was a computer-controlled, electro-hydraulic fatigue testing machine (Loading
capacity: 98 kN). The tensile tests were conducted under displacement control: the displacement rate was 1
mm/min in laboratory air and 0.005 mm/min in a NaCl solution. Fatigue tests were conducted at a stress cycle
frequency of 20 Hz with sinusoidal stress wave form. The tests were conducted at a constant mean stress of 115
MPa. This is because the trolley wire is used under tension of 19.6 kN, which gives the tensile stress of 115
MPa (cross sectional area: 170 mm2). Two types of fatigue tests were conducted: one was to run the fatigue
tests to final failure, and the other was an interrupted test, where the test was periodically interrupted and the
surface damage was observed, until the specimen failed. When observing the specimen surface, the surface
was ultrasonically cleaned in ethyl alcohol followed by in deionized water.

The specimen surface was observed by a scanning electron microscope. Some were closely examined by using
an atomic force microscope (NanoScope IIIa and Dimension 3000 system, Digital Instruments, Ltd., USA),
which has a large sample stage, and thereby the specimen surface was examined without cutting.

EXPERIMENTAL RESULTS AND DISCUSSIONS

Tensile Strength and Fracture Morphology
Table 1 summarizes the results of tensile tests conducted in laboratory air and in NaCl solution. The tensile
strength obtained under a low strain rate in NaCl solution, (a slow strain rate test: SSRT), was the same as that
conducted in laboratory air. The fracture in NaCl solution occurred in a cup-and-cone manner, similarly to the
case of tensile tests in laboratory air. The microscopic
fracture was dominated by dimples both in laboratory
air and in NaCl solution. These indicate that the
fracture occurred in a ductile manner in both
environments, and the susceptibility to stress
corrosion in a 3.5% NaCl solution is considered low.

Fatigue Fracture Behavior
Corrosion fatigue strength
Figure 2 illustrates the relationship between the stress
amplitude and the number of cycles to failure (S-N

50

φ8φ1
5

250

R
25

Figure 1: Shape and dimensions of smooth
test specimens. All dimensions are in mm.
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(b) Cross section along the longitudinal direction.
Figure 4: Corrosion fatigue damage at σa = 167
MPa (σm = 115 MPa, Nf = 7.4×106)

(b) Cross section along the longitudinal direction.
Figure 5: Corrosion fatigue damage at σa = 167
MPa (σm = 115 MPa, Nf = 1.2×107)

Figure 2: S-N curves of Cu trolley wire in laboratory
air and in a 3.5% NaCl solution at 25°C. The tests were
conducted under a mean stress of 115 MPa, corresponding
to tension stress of the trolley wire in a service
condition.

(b) Cross section along the longitudinal direction
Figure 3: Corrosion fatigue damage at σa = 196
MPa (σm = 115 MPa, Nf = 1.5×106)

curves) of fatigue conducted in laboratory air and in NaCl solution. The superscript “*” denotes the number of
cycles to failure of an interrupted fatigue test mentioned before. Although the number of samples conducted in
laboratory air is small, fatigue strength in NaCl solution was almost equal to that conducted in laboratory air.
The run-out result conducted at a stress amplitude of 50 MPa was that of a simulated test of a service stress
condition. These indicates that the trolley wire is strong enough for fatigue loading of a service operation. In a
corrosive environment, the crack which led the final failure was initiated not at the exposed surface, but at the
coated surface. This indicates that the fatigue fracture mechanism operating in a corrosive environment was the
same as that of the fatigue conducted in laboratory air. Note that the failed specimen at a stress amplitude of
167 MPa was fractured at a gripping position due to fretting, and this is considered an exception.

Corrosion fatigue damage
Figures 3 to 5 illustrate the SEM images of corrosion-fatigued specimen surface and the cross sections along



the loading direction. It is clear that the specimen surfaces were subjected to general corrosion, and no corro-
sion pit that would induce the crack initiation was observed. The morphology of the general corrosion was
influenced by the texture of the material owing to drawing. The amount of general corrosion increased with an
increase in the number of cycles (compare Fig. 5 with Fig. 3).

In order to investigate the influence of the varying load on general corrosion, interrupted tests were conducted
in samples with and without cyclic loading, and the changes in surface were examined by atomic force micros-
copy. The results are shown in Fig. 6 (under varying loads) and Fig. 7 (without loading). The longitudinal
grooves that were observed in the virgin samples were due to final finish by diamond paste. From these AFM
images and SEM images that are not shown here, the corrosion preferentially progressed along the longitudinal
direction. This may be resulted from the influence of the longitudinal scratches induced by polishing and the
longitudinal textures due to drawing. The second important thing which could be deduced from the figures is
that the corrosion morphology was not influenced by varying load when the crack was not nucleated on the
surface. Figure 8 illustrates the changes in roughness, root mean square roughness (RMS) and center plane
roughness, Ra, measured with the AFM. Note that the unit used is nm. It is clear that the both roughness
increased with an increase in testing duration, and no influence of varying load was observed. This indicates
that although the corrosion behavior of this material was dependent on the microstructure, no influence of
varying load was observed, as far as severe plastic deformation did not occur. When the testing duration was
larger than 25 h, the roughness became smaller. This is due to measurement error owing to large roughness.
The principle of the operation of the AFM is that the small, sharp tip positioned at the end of a micromachined
small, weak cantilever is raster-scanned on the surface: the observed surface was so rough that the tip could not
reach the bottom of the surface.

Corrosion fatigue crack
When the applied stress was high, multiple short transverse cracks were formed on the exposed surface (see
Fig. 3(a)). Cross sectional views showed that the depth of these cracks remained short and was about 10 µm
(Fig. 3(b)). The other noticeable point is that the crack wall was corroded, and this is in particular large near the
surface. When the multiple cracks  are formed on the surface, the stress concentration factors are increased or
decreased depending on the distribution of surface defects. Ishida and Igawa [14] investigated the influence of
multiple crack distribution on the stress intensity factor of a crack in a infinite body. They showed that the
stress intensity factor is decreased when the cracks lined up, but increased when the cracks are distributed in a
zigzag manner. From Fig. 3, the surface cracks tended to line up rather than to form in a zigzag manner. This
indicates that the multiple crack formed on the surface may release the stress concentration, leading to lower
crack growth rate.

As is discussed, multiple transverse cracks were nucleated, and then they grew due to coalescence (Figs. 4(a)
and 5(a)). When multiple long cracks become long as shown in Fig. 5(a), the stress concentration factors are
decreased. In addition, the crack walls were severely corroded, and the crack tip became blunt (Fig. 5(b)). From
Fig. 4(b) and Fig. 5(b), it is clear that the extension of the crack toward the inside of the specimen was relatively
short. The apparent crack growth rate computed was small, and was obtained at about 1.1 × 10-11 m/s ≈ 5.5 ×
10-13 m/cycle. This was caused by the relief of the stress concentration due to crack blunting, and the crack
growth rate became so much as that of general corrosion rate.

DISCUSSIONS

Corrosion fatigue mechanism can be summarized as follows [15]: in the case of a polycrystalline metallic
material, the selective corrosion preferentially occurs at the deforming area, resulting in a corrosion pit. When
the passive film or oxide film is formed, cyclic loading induces the breakage of the film owing to slip step
formation, and the dissolution concentrates there. This may lead a corrosion pit initiation and progression. The
corrosion fatigue crack is then initiated when the corrosion pit size, or depth, exceeds a critical value.

In the case of the Cu trolley wire tested here, however, the general corrosion prevailed on both cases of with
and without cyclic loading, and the localized corrosion such as pitting did not occur. In the exposed area,
multiple cracks were formed, and these yielded the relief of stress concentration. Severe general corrosion
occurred, and this decreased the actual crack depth, and at the same time, caused crack tip blunting. These
decreased the crack growth rate of both surface and depth directions. This is the reason why the final failure
was brought about by the crack that was initiated at the anti-corrosive coated surface, where the mechanical
factors dominated over the fracture, and the initiation and growth mechanism was the same as that of the
fatigue in air. These may yield the speculation that when the entire part is exposed to a corrosive environment
and a higher stress than the fatigue limit in air is applied, the corrosion fatigue strength would become higher
than that in air. This is due to a decrease in corrosion fatigue crack growth rate. However, at a longer fatigue life
region, i.e., larger than 1.0 × 108 cycles, the corrosion fatigue strength may be decreased from that conducted in



(c) n = 7.2×105, corresponding to ten hour testing
Figure 6: AFM imaging of the sample surface
fatigued at σa = 196 MPa with σm = 115 MPa in a
3.5% NaCl solution. The test was periodically
interrupted to observe the sample surface.

(c) Testing duration: ten hours.
Figure 7: AFM imaging of the sample surface
without any loading in a 3.5% NaCl solution (Static
corrosion). The test was interrupted periodically to
observe the sample surface.

(a) Virgin sample surface (a) Virgin sample surface
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(b) n = 1.4×105, corresponding to two hour testing. (b) Testing duration: two hours.
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air, because the severe general corrosion causes a decrease in
diameter of the wire itself. The amount of a decrease in the wire
diameter due to general corrosion can be estimated at 5 to 8 %/
year of the virgin wire diameter of 15 mm. In a service
operation, however, the design stress is σa = 50 MPa, and
therefore, a decrease in fatigue strength due to a loss of wire
diameter by general corrosion is considered small. Hence, it is
concluded that the newly developed Cu trolley wire has a
enough fatigue strength for a service operation.

CONCLUSIONS

Fatigue tests were performed in a newly developed Cu trolley
wire in laboratory air and in NaCl aqueous solution. The
corrosion damage was closely examined with a scanning
electron and atomic force microscopy. The investigation
yielded the following conclusions:

1. The corrosion fatigue strength of the Cu trolley wire in a
3.5% NaCl solution is as much as strong as that in laboratory air: the wire has enough fatigue strength in a
service operation.

2. The surface exposed to NaCl solution suffers from general corrosion, and no localized corrosion such as a
corrosion pit, that may cause the corrosion fatigue crack initiation, exists. Note that the amount of general
corrosion increases with an increase in exposure time.

3. No influence of cyclic loading on the morphology and the amount of general corrosion is observed even in
the nanometer order, when the applied stress is low and the plastic deformation or slip remains small.

4. The corrosion fatigue strength in NaCl solution is determined by the fatigue strength in laboratory air: a
decrease in stress concentration due to multiple cracks formed on the exposed surface, crack tip blunting
due to dissolution of the crack wake, and a decrease in crack depth due to general corrosion cause a
decrease in corrosion fatigue crack growth rate. The final failure is then brought about by the crack that is
initiated on the coated surface, where no environmental influence exists.
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ABSTRACT 

Classical approaches of corrosion fatigue damage according to the different electrochemical corrosion 
domains are presented through their interests and limits. A peculiar attention is paid on the necessity to 
integrate corrosion-deformation interactions to these modellings. A non exhaustive review of such 
interactions in corrosion fatigue is made and trends for further researches are emphasized. 
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INTRODUCTION 

The deleterious effect of aqueous environment on fatigue crack initiation and propagation in metals and 
alloys has been observed since a long time [1-3]. It is well known that slip bands, twins, interphases, grain 
boundaries and particles are classical sites for crack initiation and play a role on crack propagation. 
Moreover, persistant slip bands (PSB)/grain boundaries interactions are often observed to be preferential 
crack initiation sites during corrosion fatigue (CF), as well as localized pits around metallurgical 
heterogeneities. 
The main need in corrosion fatigue modelling is related to the quantitative approach of local synergetic 
effects between environment and cyclic plasticity. In this article, quantitative approaches of corrosion 
fatigue damage from different electrochemical conditions are presented with respect to their interests and 
their limits. Then improvements of such models are given through corrosion-deformation interaction 
effects recently analysed. 
 
Classical Approaches of Corrosion Fatigue Damage 

Electrochemical corrosion can be schematised as an 'electronic pump or an electronic circuit' related to 
oxidation and reduction reactions :

 

M → Mn + + ne
_  :  anodic dissolution 

2 2

2
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− −
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together with cation hydrolysis reaction : Mn + + nH2O → M(OH)n + nH
+
.
 



Mn + is a solvated ion, e
_ is an electron and n represents the ion state of charge. The electrons, liberated by 

the oxidation, must flow through the material M to be consumed in an appropriate cathodic reaction. 
Beyond a solubility limit, precipitates of hydroxide or hydrated oxide are formed, and this surface film 
can provide a barrier to further dissolution. In fact there are two film formation mechanisms : the 
dissolution / precipitation mechanism addressed before and also the solid state oxidation process  
M + H2O → MO + 2H+ + 2e-. Some films are named 'passive', for stainless steels or aluminium alloys for 
instance. Theses films will play an important role in environment sensitive crack initiation and fracture. 
Under thermodynamic equilibrium conditions, the film stability may be inferred from E = f (pH) 
diagrams, where E is the electrical potential related to the chemical free energy G by the relation : G = -n 
EF, and F is the Faraday's number. At equilibrium, one can define the 'electrode potential' (related to ∆G) 
and the current density I (I ~ e-∆G*/ RT where ∆G* is the activation energy of dissolution). Thus corrosion 
fatigue damage is closely dependent of the electrochemical domaine from cathodic to anodic ones. 
Crack initiation is often related to pits which act as stress concentrators during fatigue. If such pits reach 
a critical depth dCL, a fatigue crack can develop. The critical depth is then a function of the applied stress 
range [4]. 
Let us suppose the following conditions : 
• constant corrosion conditions (pH, concentration of bulk solution) 
• constant alternating load, d∆P/dt = 0 
• constant loading frequency dν/dt = 0 
It is well established that growth kinetics of corrosion pits are determined by a simple power law : 
 dL (t)  =  C ( t – t0 )β, t > t0 (1) 
where t0 is the incubation time for pit nucleation. If the pit depth reaches the critical value : 
 dL (t)  =  dCL (2) 
corrosion fatigue crack initiation occurs. The critical pit depth dCL depends on the applied  stress range 
∆σ0,  cyclic yield strength σFC (which can be different than the tensile yield strength) fatigue crack 
growth threshold ∆K0,  and the geometry of the specimen, expressed in terms  of a geometrical  factor G. 
It can be calculated by elastic-plastic fracture mechanisms based on the Dugdale model [5]. dCL is then 
given by the following equation : 
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The number of cycles to initiate a corrosion fatigue crack  under  pitting conditions is, by combining the 
previous equations with N = t.ν  : 

 ( ) 



 +ν= βCdtN 2CL0i

1
 (4) 

Such approaches have been successfully applied to the  fatigue crack initiation in a fcc Fe-Mn-Cr alloy 
cyclically deformed at low strain rate in a Cl- solution. Nevertheless, the main problem is related to the 
fact that the coefficients C and β of the pit kinetics are often not constant during cycling : it is a clear 
example of a cooperative effect between plasticity and electrochemistry which needs finer analyses. 
Crack propagation can be modelled in the same way. Anodic dissolution has been shown to occur 
preferentially in slip bands at the very near crack tip. This localized dissolution process is taken into 
account by the slip dissolution-model which is based on the fact that for many alloys in different solutions 
the crack propagation rate is proportional to the oxidation kinetics. Thus, by invoking the Faraday's law, 
the average environmentally-controlled crack propagation rates tV  for passive alloys is related to 



oxidation charge density passed between film rupture events, Qf  : 
f

ft t
1Q

Fn
MV
ρ

=  where tƒ  is the film 

rupture period. Thus 
f

ft Q
Fn

MV
ε
ε

ρ
=

&
 where ε&  is the strain rate and εƒ the strain for film rupture (about 

10-3). If we take a classical law for current transients at the crack tip, 
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Then, for tƒ  > t0, β > 0, 
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Even if mechanical analyses give good approximations for ε&  at the crack tip, some problems still remain 
with the previous equation. In particular, the value of β evolves all along cycling [5]. But the main effect 
is in fact related to localized corrosion-deformation interactions. It has been shown that vacancy 
generation at crack tip due to localized dissolution can induce cyclic softening effects and that hydrogen 
absorption which can be also coupled to localized dissolution can also enhance the local cyclic plasticity 
[5]. It is why improvement of CF predictive laws are needed even if Vt can be adjusted from equation (6) 
which is still today very useful. Moreover, films related to solid state oxidation (M + H20 → MO + 2H+ + 
2e-) can also play a role on crack advance. This needs further studies to be quantitatively precised. 
 
Corrosion-deformation interactions 

To improve previous modellings, corrosion-deformation interactions during fatigue must be taken into 
account. Following examples are given in this way. 
 
Influence of cyclic plasticity on electrochemical reactions 
PSB and intense slip bands are very prone to specific dissolution, not only for passivated alloys but also 
in conditions of generalised dissolution as shown on Figure 1 for copper single crystals in NaClO4 
solution [6]. 
 

 
 
Figure 1:  Influence of the PSB formation on the dissolution current for Cu single crystals in NaClO4 [6]. 



As soon as the PSB form, the anodic current increases even though the applied plastic strain remains 
constant. This effect is not only related to the localisation of the cyclic plasticity but also to the influence 
of the dislocation microstructure of PSB on the free entergy of dissolution (-∆G) and the energy of 
activation (∆G*) [5]. Moreover cyclic plasticity has been also shown to often promote localised pitting 
well below the pitting potential without stress [5].  For the ferritic Fe-26 Cr-1Mo  stainless steel in 3.5 % 
NaCl solution, a high strain rate  promotes strain localisation at grain boundaries, which induces an 
intergranular pitting for an applied potential of about 400 mV below the pitting potential without stress 
effect [5]. 

ε&

The applied strain rate (or frequency) is a very sensitive parameter for CF damage, and particularly for 
crack initiation. The following example can be given for an Al-Li 8090 alloy in NaCl solutions. The 
number of cycles to crack initiation Ni is defined as the number of cycles to obtain a rapid 3% decrease of 
the saturation stress [5]. At high strain  rate (  > 5 x 10ε& -3s-1 ), the anodic dissolution occurs at slip band 
emergence and induces an enhancement of the transgranular mechanical microcracking. At medium strain 
rate ( 5 x 10-5s-1 < ε  < 5 x 10& -3s-1 ), pitting is favoured and responsible for crack initiation. So when the 
plastic strain decreases, pitting is more profuse (because of time) and the reduction in the fatigue life to 
crack initiation is more pronounced in comparison to air. At low strain rate  ( 5 x 10-6s-1 < ε  < 10& -5s-1 ), 
the fatigue time to initiation increases by blunting of the mechanically formed microcracks because of 
generalised pitting which acts as general corrosion. At  very  low  strain rate  ( ε  < 5 x 10& -6s-1 ) CF crack 
initiation occurs by intergranular stress corrosion due to localized dissolution at grain boundaries. The 
rapid occurrence of SCC induces a marked decrease of Ni. 
 
Softening effect due to anodic dissolution 
CF tests on smooth specimens were performed at room temperature on a 316 L austenitic stainless steel in 
a 0.5 N H2SO4 solution at different electrochemical potentials and for a prescribed plastic strain amplitude 
of 4 x 10-3 ( ε&  = 10-2s-1 ). The depassivation-repassivation process occurs in a very regular way, well 
before any microcracks can form [5]. It is of particular interest to follow the evolution of the maximum 
flow stress in the corrosive solution at free potential and at imposed cathodic potential, and to compare 
this evolution with that observed in air (Figure 2). It clearly appears that : 
 

 
 
Figure2:  Evolution of the peak stress ∆σ/2 during cycling in a 0.5 N H2SO4 solution at free potential, for 

310x4
2

p −=
ε∆  and ε&  = 10-2s-1, compared to the air behaviour. 



(i) a cyclic softening effect occurs at the free potential in comparison to the behaviour in air. 
(ii) this softening effect disappears when the cathodic potential is applied (and the anodic dissolution is 
markedly reduced), after about 150 cycles. 
(iii) the softening effect then occurs in the same way when the free potential is re-established. 
(iv) a delay in the evolution of the flow stress with regard to the number of cycles for which a potential 
change is imposed can be observed for the free potential to the cathodic potential change (and vice-versa). 
This effect has been also observed during creep in corrosive solutions for copper [5]. It corresponds to the 
time during which vacancies due to dissolution are still acting on the dislocation mobility. The 
macroscopic cycling softening effect observed in H2SO4 solution at room temperature (which is not due 
to microcracking) is very relevant to take quantitatively into account the local dissolution-deformation 
interactions which will lead to the fatigue crack initiation process. 
 
An example of mechanical and electrochemical coupling effects : the CF crack initiation mechanisms of a 
two - phase stainless steel in NaCl solutions 
Mechanical and electrochemical coupling effects are generally the key for understanding the crack 
initiation mechanisms in multiphase alloys. This is clearly illustrated for a duplex α/γ stainless steels 
(without nitrogen) in a 3.5% NaCl solution at pH 2 and free potential [5]. At low plastic strain amplitude, 
the softer γ phase is depassivated but this phase is cathodically protected by the non-plastically deformed 
α phase. This coupling effect reduces the dissolution of the γ phase and delays CF damage, which is not 
the case at higher strain amplitude when the α phase is also depassivated by slip band emergence. 
Observations of the crack initiation sites by scanning electron microscopy show [5] that at low plastic 
strain amplitudes (∆εp/2 < 10-3) for which the fatigue resistance of the α-γ alloy is close to that of the γ 
alloy, cracks nucleate only in the austenitic phase but, at higher strain amplitudes (∆εp/2 > 10-3), the first 
cracks nucleate principally in the ferritic phase. The excellent CF resistance of duplex stainless steels (for 
∆εp/2 < 10-3) can then be understood through the electrochemical and mechanical coupling effects on 
crack initiation processes. 
 
Hydrogen effects on cyclic plasticity 
Figure 3 shows the well-established cyclic stress-strain curves of nickel single crystals oriented for single 
slip, with a plateau region corresponding to persistant slip bands [7]. In the low amplitude range, the 
dislocation pattern is built up predominantly of elongated and fragmented edge dislocation dipole loops 
which frequently cluster into dense bundles (the veins). During cyclic hardening, the veins develop and 
become denser. At a critical threshold stress level, the vein structure becomes locally unstable and 
gradually gives thin lamellae of persistant slip bands (PSB's) which lie roughly parallel to the glide plane. 
Cyclic deformation becomes localized to a large extent in the PSB's which are softer than the so-called  
matrix of veins in which they are embedded.  
Hydrogen has be shown to enhance the dislocation mobility in nickel [5] and to promote planar slip. 
Hovewer, the ease of cross slip is known to be an essential factor facilitating the development of PSB's 
[1]. The elimination of the screw dislocations by cross slip is a major prerequisite for providing the 
simple edge multipole dislocation arrangement that appears for undergoing the structural changes leading 
to PSB's. Moreover, the saturation stress in the PSB's regime is related to the equilibrium between 
multiplication and annihilation of dislocations which can then be modified by the presence of hydrogen.  
Increasing strain amplitudes are applied (Figure 3) to obtain the cyclic stress-strain curves as a function of 
hydrogen content (from less than 1 ppm wt % in pure nickel to 23 ppm wt % in pre-charged specimens). 
The following remarks can be made : (i) A plateau region is observed whatever the hydrogen content, but 
the corresponding saturation stress is lowered in the presence of hydrogen. Moreover a sligth increase of 
the critical γp for the beginning of the plateau regime seems to be shown with hydrogen ; (ii) A more 



marked difference in the value of the saturation stresses is observed in the vein structure region at low 
strain amplitudes than in the PSB's domain. 
Because of a decrease of the cross slip ability in presence of hydrogen [8], nickel single crystals oriented 
for single slip exhibit different cyclic stress-strain curves according to the hydrogen content. In the low 
strain amplitude domain, saturation is reached faster in presence of hydrogen. Such effect can be 
interpreted in terms of new equilibrium between bundles and mobile screw segments between the veins, 
which leads to a lower value of the saturation stress. A softening effect due to hydrogen is observed when 
PSB are formed in the plateau region, whatever the applied strain amplitude. It can be interpreted in terms 
of decrease of the internal shear stress in PSB walls, which induces a decrease of τs. 
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Figure 3: Effect of applied γp on the cyclic hardening curves of [153] nickel single crystals with and 
without hydrogen. 

 
Such effects of hydrogen on plasticity must be taken to into account in modellings. Hydrogen assisted 
cracking is often invoked, particularly for bcc materials but also together with anodic dissolution for fcc 
alloys. Figure 4 schematizes a hydrogen assisted cracking event. Interactions between a discretized 
dislocation array and the crack tip under an applied stress produce a maximum stress field from behind 
the tip. When the hydrogen concentration reaches a critical value, a microcrack is nucleated because 
either the local cohesive strength is reduced, dislocation motion is blocked in the hydrogen-enriched zone, 
or both. The microcrack arrests about 1 µm ahead of the original location of the tip and these processes 
then repeat leading to discontinuous microcracking. 
Other mechanisms have been proposed, particularly the hydrogen-induced plasticity model for 
precipitates containing materials such as Al-Zn-Mg alloys [9]. Absorbed hydrogen atoms weaken 
interactomic bonds at crack tip and thereby facilitates the injection of dislocations (alternate slip) from 
crack tip. Crack growth occurs by alternate slip at crack tips which promotes the coalescence of cracks 
with small voids nucleated just ahead of the cracks. In comparison to the behaviour in neutral 
environments, the CF crack growth resistance decreases as the proportion of dislocation injection to 
dislocation egress increases. More closely spaced void nuclei and lower void nucleation strains should 
also decrease the resistance to crack growth in CF. This mechanism is proposed for Al-Zn-Mg alloys and 
is highly supported by observations that environmentally assisted cracking can occur at high crack 
velocities in materials with low hydrogen diffusivities and that the characteristics of cracking at high and 
low velocities are similar. 



 
Figure 4:  Schematic illustration of hydrogen assisted cracking mechanism [10]. 

 
CONCLUDING REMARKS 
 
The analysis of CF micromechanisms related to anodic dissolution together with hydrogen effects is 
under progress but needs to be more quantitative through the localized corrosion deformation interactions. 
The trends for future researches are mainly related to : 
(1) the modelization of crack tip chemistry, 
(2) the quantitative analysis of corrosion-deformation interactions at CF crack tip (scale of 1 µm) 
according to the electrochemical conditions, 
(3) a comparison between CF and SCC based on a detailed analysis of micromechanisms near the fatigue 
threshold, 
(4) developments of numerical simulations at mesoscopic scales. 
These researches are needed to propose more relevant predictive laws for CF damage based on physico-
chemical controlling factors. 
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Abstract:  

To determine the effect of a coating on fatigue strength, three point bending fatigue tests of coated 
and un-coated specimens of AM50 and AZ91D magnesium high pressure die castings were made 
and S-N curves determined. Environments adopted were air, tap water and natural seawater. A 
difference in corrosion fatigue performance has been found, between AZ91D and AM50 and for 
both alloys performance in air was superior to both water environments.  AZ91D has better 
corrosion fatigue resistance in tap water than in seawater; conversely, AM50 has better corrosion 
fatigue resistance in seawater than tap water. The results showed that the fatigue life was not 
reduced in these water environments for coated specimens, as the coating usually provided 
sufficient protection from corrosion 
Key words: magnesium, high pressure die casting, fatigue, corrosion fatigue, coating 
 
INTRODUCTION 
Magnesium is the lightest of the commercial metallic construction materials. Die cast magnesium 
parts are rapidly replacing steel and aluminium structural components in automotive applications, 
as design engineers seek to reduce assembly costs, raise fuel efficiency, and improve safety.  In 
addition to an excellent strength-to-weight ratio, magnesium die-castings offer good fatigue 
strength, high impact and dent resistance, good corrosion resistance, thermal and electrical 
conductivity. Corrosion resistance of magnesium alloys today is a less serious problem because of 
better control of alloying element contents. 
 The magnesium alloys used for this project are AZ91D and AM50 high-pressure die casting alloys.  
AZ91D die-castings have high values of fatigue strength and are among the most corrosion resistant 
of the magnesium alloys [1].   Many structural applications require an appreciable amount of 
energy absorption during service.  Magnesium alloys having lower aluminium contents, such as 
AM50 have been found to be more ductile, especially during impact situations.  AM50 alloy has 
been employed to fabricate prototype wheels for cars [2].  It is now possible to make large complex 
castings such as integral instrument panel/cross beam members for vehicles using AM60 [3] and 
high integrity crash sensitive components such as steering wheel frames in AM50 [4].   
 
Corrosion is still a problem for these magnesium alloys for most applications. Magnesium alloys 
may be used under wet or chemical environments, thus a coating should be applied to improve 
corrosion resistance.  There are two main reasons for the poor corrosion resistance of many 
magnesium alloys [5-7].  Firstly, there is internal galvanic corrosion caused by second phases or 
impurities.  Secondly, the quasi-passive hydroxide film on magnesium is much less stable than the 
truly passive film which can form on metals such as stainless steels.  This quasi-passivity causes 
poor pitting resistance in magnesium and its alloys. 
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A recently published review of the fatigue behaviour of magnesium alloys shows there are very few 
fatigue data available to the practising engineer [8].  Specifically, there is a lack of information 
concerning low cycle fatigue, cyclic stress-strain, mean strain-stress and fatigue crack growth 
behaviour.  The literature on magnesium alloy fatigue behaviour is incomplete, covering only 
specific topics for some magnesium alloys.  Examples of stress-life (S-N) curves are found for 
some alloys. 
In many cases, metallic corrosion is governed by the characteristics of its surface films. For 
magnesium, the nature of the film is not well understood [9].  Hence, corrosion prevention is very 
important and essential for commercial applications.  There are several ways to protect magnesium 
and its alloys from corrosion [10]: high purity alloys; new alloys; surface modification; protective 
films and coatings.  In this project, an anodised coating is used to determine coating effects on 
corrosion fatigue performance for AZ91D and AM50.  
 
Normally, corrosion fatigue is very sensitive to testing frequency, especially for structural steels. 
For magnesium alloys, it has been noted that: “frequency dependence of corrosion fatigue strength 
showed that the influence of a corrosion environment decreased with increasing frequency” [11].  
However, no data showing the influence of frequency on fatigue performance of magnesium has 
been cited. Work on the effect of test frequency is in progress. 
 
TEST MATERIAL AND ENVIRONMENT 
Test specimens were 10mm×10mm cross-section bars, 50mm long with smooth die cast surfaces.  
These specimens, which were die cast to shape without heat treatment, allow three point bend 
fatigue tests to be conducted with a 40mm span. Bending fatigue tests were carried out with an 
MTS810 using constant load amplitude control, R-ratio of 0.25 and frequency of either 30 or 40 
Hz. Tests were stopped when they reached 7.0E+06 cycles and at least three tests have been 
conducted for each test condition. Tests were performed in air, tap water and natural seawater. The 
natural seawater was taken from a local Auckland beach and the tap water from a tap in the MTS 
laboratory. Coated specimens were made to investigate the fatigue performance in seawater of 
magnesium alloys with or without coating.  5µm and 25µm thick coatings, and 5µm and 25µm 
thick organically sealed coatings were prepared at the site of Magnesium Technology Licensing 
Limited, who supplied a new anodising process, ‘Anomag’. 
 
RESULTS AND DISCUSSION 
Environmental Influence on Fatigue Performance. 
The fatigue performance of un-coated AM50 die cast alloy at various stress levels in air, tap water 
and natural seawater environments is shown in Figure 1.  Maximum stress is plotted against the 
logarithm of the number of cycles to failure.  The points with arrows are identified as “did not fail” 
at a certain stress level and number of cycles (tests were stopped when they reached 7.0E+06 
cycles). 
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Fig.1  S-N curves of un-coated AM50 (40Hz, R=0.25, bending fatigue) 
 
At high maximum stress, AM50 had best fatigue life in an air environment, with the effects of tap 
water and seawater environments being the same.  For low maximum stress the curves for air and 
seawater drop slowly to an endurance limit of about 105MPa.  All specimens, tested in air and 
seawater at a maximum stress of 105MPa, did not fail after 7.0E+6 cycles.  However, the fatigue 
performance in tap water showed significantly different behaviour; the curve continues to decrease 
and shows no fatigue limit at 70MPa, where a specimen failed after 1.0E+6 cycles.  It would appear 
that S-N curves have a ‘knee’ in air and seawater environments, but not in a tap water. These results 
are not consistent with our general knowledge of corrosion fatigue behaviour of magnesium alloys, 
in that it has been noted: “Sea water has a greater corrosive effect than tap water because chloride 
ions react with and remove the protective films from the surfaces of magnesium alloys” [12]. 
Eliezers et.al. [13] report similar behaviour for 5% NaCl solution and water environments where 
life depends on aluminium content with about  4% Al  giving least life in a water environment. 

 
It would appear that tap water is enhancing the fatigue process as expected with corrosion fatigue; 
but that seawater, which is assumed to be more corrosive, has a smaller effect on fatigue 
performance. The un-coated AM50 high pressure die castings have excellent corrosion fatigue 
behaviour in a seawater environment.  A possible reason for the abnormal behaviour is that the 
more aggressive environment reduces crack initiation by decreasing or reducing the stress 
concentration at crack initiation sites, corrosion products may also cause crack blunting and reduce 
crack growth. 
 
The fatigue performance of AZ91D die cast alloy at various stress levels in air, tap water and 
natural seawater environments is shown in Figure 2.  It can be seen that the best fatigue life for 
AZ91D is in an air environment, while the effects of tap water and seawater environments within 
the fatigue scatter give similar but reduced performance.  The S-N curve for air decreases sharply to 
a “knee” between 115MPa to 110Mpa being the fatigue endurance limit of AZ91D in an air. The 
fatigue performance in tap water and seawater is different to that in air. The fatigue resistance in tap 
water and seawater is significantly decreased, especially at low stress levels.  The S-N curve in a 
tap water environment is slightly above the S-N curve in a seawater environment, which shows the 
slightly better fatigue resistance is in tap water compared with that in seawater.  Both curves 
continue to decrease and possibly will not show a fatigue limit. 
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Fig.2  S-N curves of un-coated AZ91D (30Hz, R=0.25, bending fatigue) 

 
Generally, the corrosion fatigue resistance for AM50 is always better than that for AZ91D in both 
tap water and seawater.  The comparison of mean fatigue lives for these two alloys in both tap 
water and seawater are shown in figures 3 and 4.  This result supports Eliezer et.al’s work [13], in 

 



which it was found that the less the aluminium content in magnesium alloys, the better the 
corrosion fatigue resistance. Eliezer et.al [14] also report that the sensitivity of AZ91D alloy to 
corrosion fatigue is higher than that of AM50 alloy when tested in 3.5% NaCl solution. 
 

Fatigue lives in tap water for Mg alloys

1.000E+01

1.000E+02

1.000E+03

1.000E+04

1.000E+05

1.000E+06

1.000E+07

150 110 90

Maximum Stress (MPa)

N
um

be
r o

f c
yc

le
s 

to
 fa

ilu
re

, N
 

AZ91D AM50

 
Fig.3  Fatigue lives in tap water for un-coated AM50 and AZ91D 

 
Fatigue lives in seawater for Mg alloys
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Fig.4  Fatigue lives in seawater for un-coated AM50 and AZ91D 

 
Coating Influence on Corrosion Fatigue Behaviour 
A special coating (‘Anomag’ anodising) has been used on AM50 and AZ91D die cast specimens to 
determine the influence of surface protection on fatigue performance in a seawater environment.  
The results of fatigue tests in seawater for coated and un-coated AZ91D and AM50 show that the 
special coating and coating & sealing (‘Anomag’) do not decrease the fatigue properties in the 
seawater environment (see figures 5 & 6).  It has been noted that magnesium coating treatments, 
which are applied for corrosion protection, usually decrease the fatigue and corrosion fatigue 
resistance of materials in air, but not in seawater[15]. 
As the coating affects the number of cycles required to start a crack, the effect of coating on the 
total fatigue life should decrease with increasing stress amplitude.  On the basis of this 
consideration, the most reliable estimate of the effect of the coating should be obtained from tests at 
low stress levels where the number of cycles to initiate cracking is large in comparison with the 
crack growth portion of the tests [16]. 
It can be seen from figure 5 that un-coated specimens in air have about the same fatigue resistance 
as coated specimens in seawater.  The fatigue life of un-coated specimens in air is slightly higher 
than for the coated specimens at higher stress levels but at lower stress levels, there seems to be 
little difference in the fatigue life for all specimens. Considering the usual scatter of fatigue results, 
there is little difference between the S-N curves for un-coated and coated AM50 in seawater, at all  
stress levels.  As un-coated AM50 has excellent corrosion fatigue resistance in seawater, the 
influence of a thin coating or sealing treatment should not show much improvement in fatigue 
performance.  
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Fig.5  S-N curves of coated and un-coated AM50 in seawater (40Hz, R=0.25) 

 
For AZ91D, it can be seen the coating treatment increases the corrosion fatigue performance, as the 
S-N data for coated specimens in seawater is always above the curve for un-coated specimens, but 
below the S-N curve of un-coated specimens in air (see figure 6).  It can also be seen that the effect 
of coating increases with decreasing  stress levels.  There is little difference in fatigue life for 
coated and un-coated specimens in seawater at high stress levels, and the difference gets greater 
when the stress level decreases. As the stress decreases the life for 5 & 25 µm coated specimens 
approaches the air curve and then falls as the stress drops further. Similar behaviour has been 
reported by Beck [12] for tap water. 
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Fig.6  S-N curves of coated and un-coated AZ91D in seawater (30Hz, R=0.25) 

 
It can be seen that the effect of coating or coating & sealing on corrosion fatigue performance in 
seawater is greater for AZ91D than for AM50.  A  possible reason is that the fatigue resistance for 
un-coated AM50 is much higher than that for un-coated AZ91D in a seawater environment. 
 
CONCLUSIONS 
♦ The endurance limits in bending for un-coated AM50 and AZ91D die cast alloys are about 

105MPa and 115MPa (maximum stress), respectively.  
♦ AM50 and AZ91D have different corrosion fatigue performances.  There seems to no 

endurance limit for AM50 in tap water and for AZ91D in both tap water and seawater.  Un-
coated AM50 has a better corrosion fatigue resistance than AZ91D in water(tap & salt) 
environments but not in air. 

♦  AM50 has excellent corrosion fatigue resistance in a seawater environment. The endurance 
limit (7 x 106) in seawater is about 105MPa (maximum stress), which is higher than that in tap 
water, but equal to that in air. 

 



♦  There are no negative effects of coating and coating & sealing on fatigue performance in 
seawater for AM50, and a slight improvement in the performance for AZ91D.   
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ABSTRACT 
 
The fatigue strength of machines and structures operating under corrosive environment falls off remarkably in 
comparison with the fatigue strength in the ambient atmosphere. This decrease in fatigue strength is due to the 
easy initiation of fatigue cracks at corrosion pits in the early stage of the corrosion fatigue process. In order to 
make predictions of the lifetime of the machines and structures operating under corrosive environment, it is 
therefore important to understand the initiation as well as the growth characteristics of corrosion pits. However 
such kinds of research are few and limited, in contrast to the many studies of crack growth behavior during the 
corrosion fatigue process, which have been conducted. Furthermore, the existing data on corrosion pit growth 
are not always consistent, particularly with respect to the role of stress amplitude. In this study, plane bending 
fatigue tests of commercially pure aluminum were carried out in 3% NaCl solution, and the effects of stress 
amplitude and test frequency on the initiation and growth characteristics of corrosion pits were studied in 
detail. In addition the critical condition for the nucleation of a fatigue crack at a corrosion pit was considered. 
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INTRODUCTION 
 
The fatigue strength of machines and structures exposed to corrosive environments is considerably reduced in 
comparison with that in the ambient atmosphere, and a fatigue limit may not exist. In the design of components 
for applications in corrosive environments allowance should be made for this degradation in fatigue properties. 
In the corrosion fatigue process it is known that corrosion pits arise in the initial stages of the fatigue process 
and that fatigue cracks develop at these pits. Therefore, it is important to clarify the generation and growth 
characteristics of corrosion pits as well as the process by which the cracks are generated in order to make 
reliable predictions of the corrosion fatigue lifetimes. Although there has been much research [1] on the 
generation and growth behavior of cracks during the corrosion fatigue process, relatively little work has been 
done on the generation and growth behavior of corrosion pits.  
    It has been reported that the following power law equation describes the growth law of a corrosion pit [2].  
                                                           (1) βAta =
where A and β are experimental constants. However, whether or not these experimental constants are 
dependent on stress amplitude and cyclic frequency has not been made clear.  
The present study was carried out using commercially pure aluminum, which was cyclically loaded in 
plane-bending in a dripping 3% salt solution. Observations were made of the initiation and growth 



characteristics of the corrosion pits throughout the corrosion fatigue lifetime in order to clarify the influence of 
stress amplitude and cyclic frequency. In addition, the critical stress intensity factor for fatigue crack growth 
from a corrosion pit was determined.  
 
SPECIMEN AND EXPERIMENTAL METHOD 
 
Specimen 
The chemical composition of the commercially pure aluminum used in this study was 0.01% Si, 0.66% Fe, 
0.15% Cu, 0.02 % Ti, 0.01% Mn, 0.01% Mg and 99.14% Al. The mechanical properties of the material were 
yield strength, 115 MPa, tensile strength, 125 MPa, and elongation, 20 %. The specimens were machined, 
planar-bending specimens, 15mm in width at the minimum section and 5mm in thickness. In order to facilitate 
the observations of the specimen surface, the specimens were polished to a mirror surface using diamond paste 
prior to testing. Except for the observation region the specimens, including the edges, were covered with a 
silicon resin so that corrosion pits and cracks would not be generated outside of the observation area. 
 
Experimental Method 
Fatigue machine used was a Schenck bending fatigue machine. The tests were carried out using sine wave 
loading at a stress ratio, R, of -1. The corrosive medium was a 3% salt solution, with tap water as the solvent. 
The experiments were carried out with the salt solution dripping onto the specimen surface at a drip rate of 10 
cc per minute. In the study, four of stress amplitudes were used, namely 0, 54, 75 and 99 MPa and four cyclic 
frequencies, 0, 3, 15, and 30Hz were employed. The generation and growth behavior of corrosion pit were 
investigated by the observations made during the corrosion fatigue process. The experiments were interrupted 
periodically during the corrosion fatigue process in order to make replicas of the specimen surfaces. These 
replicas were then examined at 400x in an optical microscope (resolution: 1 micron) to obtain the dimensions 
and shapes of the corrosion pits. The depths of the corrosion pits were determined by the focused focal point 
method.   
 
EXPERIMENTAL RESULT 
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Figure 1: The corrosion pit density as a            Figure 2:Corrosion pit density as a function of time 
      function of time under static loading.                under cyclic loading. 
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Figure 3: The constant γ as a function of the cyclic frequency and stress amplitude. 
The Change in Time of the Corrosion Pit Density as a Function of Stress Amplitude and Frequency 
Figure 1 shows the corrosion pit density as a function of time for pits at least 20 microns in size, which were 



developed during static loading. As seen from this figure, corrosion pits develop within a few hours and their 
number increases with increase in stress level. Figure 2 shows the relationship between the corrosion pit 
density and cyclic frequency for stress amplitudes of 54 MPa and 99MPa. At low frequencies, 0 Hz and 3 Hz, 
there is little effect of cyclic frequency on the corrosion pit density. However, at the higher frequencies, 15 and 
30 Hz, it is seen that pits initiate earlier and in greater numbers the higher the cyclic frequency. The change in 
corrosion pit density with time indicated in Figs, 1 and 2 can be approximated by the following equation: 

γBtAN =/                                        (2)  
where B and γ are experimental constants. 
Fig. 3(a) shows the relationship between cyclic frequency and constant γ, and Fig. 3(b) shows the relation 
between stress amplitude and the constant γ. As seen from Fig. 3, the value of index, γ, is equal to about 1.0, 
independent of cyclic frequency and stress amplitude. 
 
Growth Behaviour of Corrosion Pits 
Growth Behavior of the Corrosion Pit in the Plane of the Specimen Surface 
It was noted that some pits appeared to stop growing after reaching a certain size, whereas other pits continued 
to grow and serve as nuclei for fatigue cracks. In this study attention was directed at the growth behavior of the 
latter type of pits.    
Figure 4 shows the relationship between the pit diameter, 2c(m) and time, t (h), plotted on logarithmic scales 
for static loading. At static stress levels of 54 and 75MPa, there was a period during which corrosion pit growth 
was arrested, but later cracks were generated at the corrosion pits. At a static stress level of 99MPa, cracks 
developed at pits without a period of stagnation in corrosion pit growth. Further, the corrosion pits initiated 
earlier and grew more rapidly the higher the static stress level. A similar tendency was also observed for cyclic 
frequencies of 15 and 30 Hz as shown in Fig. 5 which shows the relationship between corrosion pit diameter, 
2c and time, t, plotted using logarithmic scales for stress amplitudes of 54 MPa and 99 MPa. As seen from this 
figure, the initiation time for a corrosion pit decreases and its growth rate increases the higher the cyclic 
frequency. The relation between pit size, 2c, and time in the static and cyclic tests can be approximated by the 
following equation: 

ctAc c
β=2                   (3)  

where,  and cA cβ are experimental constants. The relationship between cyclic frequency and the index cβ  is 
shown in Fig. 6(a), and it is seen that the value of cβ  increases from 0.2 to 1.0 with an increase in the cyclic 
frequency. Fig. 6(b) shows the relationship between stress amplitude and constant cβ , and cβ  is seen to 
increase with an increase of stress amplitude. This trend was more pronounced at f=30Hz than at f=0Hz. We 
define the time for a pit of 10 microns diameter to develop as tic. The relationship between tic and cyclic 
frequency is shown in Fig. 7(a), and the relation between tic and stress amplitude is shown in Fig. 7(b). As seen 
from these figures, the generation time for a 10 micron sized corrosion pit decreases with increase in cyclic 
frequency and also with increase in stress amplitude. 
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Figure 4: The corrosion pit diameter as a       Figure 5: The corrosion pit diameter as a function of time  

function of time under static loading.                 under cyclic loading. 
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Figure 6: The constant βc. as a function of the cyclic frequency and stress amplitude. 
 
 
 
 
 
 
 
 

 
0 50 10010-2

10-1

100

101

102

103

Stress σa (MPa)

In
iti

at
io

n 
tim

e 
 t i

c(h
)

:f=0Hz
:f=30Hz

(b)

0 10 20 30 4010-2

10-1

100

101

102

103

In
iti

at
io

n 
tim

e 
 t i

c(h
)

Frequency f(Hz)

(a)

:σa=54MPa
:σa=99MPa

Figure 7: The time tic as a function of the cyclic frequency and the stress amplitude. 
 
Growth Behavior of Corrosion Pits in the Depth Direction 
In order to clarify the growth characteristic of corrosion pits, it is necessary to investigate not only the growth 
behavior of corrosion pits in the plane of the specimen surface but also in the depth direction. Figure 8 shows 
the relationship between time t (h) and corrosion pit depth a (m), under static loading conditions plotted on 
logarithmic scales, Fig. 9(a) and (b) show the relationship between time t (h) and depth a (m) for stress 
amplitude of 54 and 99MPa, respectively. From Figs, 8 and 9 it is seen that the corrosion pit depth increases 
with time and increase in cyclic frequency. In all cases the following type of relationship exists between the pit 
depth and the time, t: 

atAa a
β=       (4) 

where,  and aA aβ are experimental constants. 
Figure 10(a) shows exponent, aβ  as a function of the cyclic frequency. With increase in the cyclic frequency, 

aβ  increases from 0.2 to 1.0. In Fig. 10(b), the exponent aβ  is shown as a function of stress amplitude. In the 
case of static loading no stress dependency of the exponent aβ  is clearly apparent. However, at f =15 and 30 
Hz, the exponent aβ  increases from 0.3 to 1.0 with increase in the stress amplitude. Fig. 11(a) shows the 
relationship between the initiation time for a corrosion pit of 5 micron depth and the cyclic frequency, f, and 
Fig. 11(b) shows the relationship between this initiation time and the stress amplitude. From Fig. 11 it is seen 
that the initiation time decreases with an increase in cyclic frequency as well with increase in stress amplitude. 
 
 

100 101
10-6

10-5

10-4

Time  t(h)

Pi
t d

ep
th

  a
(m

) :crack

f=0Hz
:54MPa
:99MPa

:0MPa

100 101 102
10-6

10-5

10-4

Time  t(h)

Pi
t d

ep
th

  a
(m

)

σa=54MPa

:crack 

:15Hz
:30Hz

:f=0Hz

(a)

10-1 100 101
10-6

10-5

10-4

Time  t(h)

Pi
t d

ep
th

  a
(m

)

σa=99MPa

:crack

:f=15Hz
:f=30Hz

:f=0Hz

(b)

 
 
 
 
 
 
 
 
 
 
 
Figure 8: The depth of a corrosion pit under  Figure 9: The depth of corrosion pit under cyclic loading static 

loading as function of time.              as a function of time. 
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Figure 10: The constant βa as a function of the cyclic frequency and stress amplitude. 
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Figure 11: The time to generate a 5 micron deep corrosion pit as a function of the cyclic frequency and the 

stress amplitude. 
 
The Condition for Crack Initiation at a Corrosion Pit.    
In the design of components it is useful to have an understanding of the conditions for the initiation of a fatigue 
crack from a corrosion pit, and in this regard the area method proposed by Murakami and Endo [3] is 
helpful. In this method the effective length of a defect such as a corrosion pit is taken to be equal to the square 
root of the projected area of the pit measured perpendicular to the applied stress, i.e., in the depth direction. 
Upon substituting the projected area for a pit at which a fatigue crack is initiated as well as the associated stress 
into the following equation, a critical stress intensity factor for crack initiation can be determined: 

areaK ax πσ 0Im 65.0=                              (5) 
where,σ0 is the nominal stress. 
The critical stress intensity factor at which a fatigue crack initiated is shown for each stress amplitude and 
cyclic frequency in Fig. 12. As seen from Fig. 12, the critical stress intensity factor for crack initiation from a 
corrosion pit takes on a value of about 0.4MPa√m, independent of stress amplitude or cyclic frequency. It is 
noted that Kondo [4] and Ishihara [5] have also previously found that the critical stress intensity factor at 
which a fatigue crack initiated at a corrosion pit takes on a constant value, independent of stress amplitude.  
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Figure 12: The critical stress intensity factor as a function of (a) the frequency, and (b) the stress amplitude. 
Further, in a rotating bending test in 3% salt solution using an aluminum alloy, a value of 0.33MPa√m was 
obtained [6] for the threshold value of stress intensity factor range, △Kth. This threshold value agrees quite 
well with the value of 0.4MPa√m, the value of critical stress intensity factor at which a crack initiates at a 
corrosion pit in the present investigation. 
 



 
DISCUSSION 
 
The commercially pure aluminum used in this investigation contained inclusions rich in iron and copper. 
When exposed to a 3% salt solution, these inclusions act as cathodes and the surrounding aluminum acts as an 
anode. The anodic aluminum near the cathodic particle corrodes and dissolves by a local battery reaction, and 
a corrosion pit is formed. SEM photographs confirm the above mechanism for the generation of corrosion pit 
formation. The following chemical reactions are involved in the formation of a corrosion pit: 
                        2Al =2Al3+ +6e-                                     (6a) 
                        (3/2)O2 + 3H2O + 6e- =6OH-                       (6b) 
The cathodic reaction, Eq. (6b), an oxygen-consumption-type of corrosion, was active in the experiments, with 
the rate of generation and growth of corrosion pits being governed by the oxygen content. Since the total 
anodic and cathodic currents must be equal, the oxygen content controls the rate of the anodic reaction as well.  
There are three factors, which contribute to the rate of corrosion pit generation. First of all, oxygen must be 
available, and in dripping experiment an ample supply of oxygen is present in the solution. Secondly, the 
inclusion acts as a stress raiser, and the higher the stress amplitude the more likely that the protective oxide 
film will be ruptured by local plastic deformation at an inclusion, thereby exposing the aluminum directly to 
the solution. Thirdly, an increase in cyclic frequency simply means that more cycles will be applied in a given 
time period, thereby contributing to the ease of fatigue crack nucleation within that time period. In addition, 
any corrosion products that might inhibit the corrosion reaction are washed away by the flow caused by the 
dripping action. 
 
 
CONCLUSIONS 
 
(1) Corrosion pits arise earlier in time and in greater numbers the higher the stress amplitude and the cyclic 
frequency.  
(2) At a given stress amplitude and frequency the corrosion pit density is approximately proportional to the 
time of exposure to the 3% NaCl solution. 
(3) The rate of growth of the corrosion pit diameter and the corrosion pit depth increases with stress amplitude 
and cyclic frequency. The relationship between the size of a corrosion pit and time can be expressed by a 
power law equation, with the exponent increasing from 0.3 to 1.0 as stress amplitude and cyclic frequency 
increase. 
(4) The critical stress intensity factor for generating the crack from corrosion pit has a value of about 0.4MPa
√m, independent of stress amplitude or cyclic frequency. This value is in close agreement with the threshold 
value for crack growth which was previously determined in corrosion-fatigue tests of an aluminum alloy.   
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ABSTRACT

The present work is directed to the analysis of interface corner and crack configurations which occur
in smart composite materials. It delivers a new technique for solving the corresponding piezoelectric
boundary value problems by asymptotic eigenfunction expansions in connection with the conventional
finite element method. This approach represents the extension to coupled electromechanical material
behaviour of a method which was introduced for geometrical and physical linear and non-linear solid
mechanics formerly [9, 10]. The proposed approach has the advantage that the asymptotic stiffness
matrix does not depend on the distance to the tip and that oscillating terms of the asymptotics can be
circumvented numerically but are still fully contained. Therefore, results can be achieved with much
better accuracy than by means of regular finite elements.
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INTRODUCTION

Piezoelectric, ferroelectric and dielectric ceramics or polymers are widely applied in Micro Electro Me-
chanical Systems (MEMS) to supply the essential sensing and/or actuating functionality [5]. As a
consequence of their integration into MEMS, problems of fracture and fatigue play an important role
for the optimum design and reliable service performance of MEMS. Fracture mechanics analyses and
safety concepts have to be applied to crack-like defects in piezoelectric bulk materials or in interface
structures and lead to the corresponding asymptotic solutions at interface crack and corner tips with
the associated coefficients of the eigenfunctions as fracture parameters.
First theoretical studies [3, 7, 14] about interface crack tips in piezoelectrics show that difficult sin-
gular oscillatory solutions can occur. According to its prior importance for many micromechanical
applications, models of interface crack problems in dissimilar piezoelectric materials has been published
recently with a fast-growing rate (see for instance [8, 15] and other and the references therein). Most of
the authors use the Lekhnitzkij and Stroh formalisms or the Fourier transform technique in connection
with dual boundary value problems including Cauchy-type-integrals for linear statements within infinite
bodies. In this context it is interesting to note that the usual expecting singular oscillatory behaviour
can change to solutions without oscillations for modified electric boundary conditions [4, 7, 14]. By
means of the analytic solution in [2] it is shown that an interface crack tip between a piezoelectric



and a conductor produces three non-oscillating singular terms of the form ξ(−0.5−ν)µ̃1(θ), ξ−0.5µ̃2(θ) and
ξ(−0.5+ν)µ̃3(θ), whereby ξ is the distance to the tip, θ represents the polar angle and ν is defined through
ν = 0.5 − h with 0 < h < 0.5. This way, energetic possible solutions may have a singular behaviour
which is stronger than -0.5.
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Figure 1: Interface corner configuration

The preponderant majority of the existing solutions at
interface crack tips between piezoelectric materials rep-
resent linear boundary value problems for infinite bod-
ies although real electromechanical materials show non-
linear behaviour, too [6, 12]. But in general, the linear
solution procedures mentioned above are not extensible
to non-linear problems. Thus, there is a need to develop
solution techniques filling this gap. The extension of the
methods elaborated in [9, 10] to piezoelectric materials
seems to be very hopeful in this sense. In the following,
the approach of [9, 10] is applied to linear piezoelectric
problems including interface cracks within finite body
domains.
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LINEAR PIEZOELECTRICITY AND ASYMPTOTIC ANALYSIS

In order to solve the complicated boundary value problem of interface configurations in connection with
their difficult asymptotic features and to develop associated stable numerical methods for its handling,
it is necessary to dispose of the complete eigenfunction expansions at interface corner and interface crack
tips. We will restrict our analysis to the simplest approach for the constitutive laws in both material
domains of the interface configuration. The main assumptions are:

1. Neglegtion of magnetic and time effects

2. Introducing the thermomechanical-electric coupling by the electric energy term in the first law of
thermodynamics

3. Linearization of the ferroelectric hysteresis loop

4. Transversal isotropic piezoelectric behaviour

The governing relations describing this coupled electromechanical field problem are the equations of
stress equilibrium, the compatibility equations and Gauss’ law of electrostatics

σij,i = 0, Sij = 1
2
(ui,j + uj,i), Di,i = 0, (i,j=1,2,3) (1)

as well as the equations of the linear piezoelectric material behaviour:

σ11 = c11S11 + c12S22 + c13S33 − e31E3, σ21 = (c11 − c12)S21

σ22 = c12S11 + c11S22 + c13S33 − e31E3, σ13 = 2c44S13 − e15E1

σ33 = c13S11 + c13S22 + c33S33 − e33E3, σ32 = 2c44S32 − e15E2

D1 = 2e15S13 + κ11E1, D2 = 2e15S32 + κ11E2

D3 = e31S11 + e31S22 + e33S33 + κ33E3. (2)

In (1) and (2) σij, Sij, ui, Ei and Di denote the stress and deformation tensor, the mechanical dis-
placement vector, the negativ gradient of the electrical potential φ and the dielectric displacements,
respectively. The material parameters cij (elastic), eij (piezoelectric) and κij (dielectric) characterize
transversly isotropic piezoelectrics with pooling-axis along the third direction of the chosen material
co-ordinate system in (2). These material equations are written with regard to the material axes of
each dissimilar material domain as shown in Figure 1 (x1–x3, x̃1–x̃3). The axes x2 and x̃2 are directed
perpendicular to the plane of Figure 1.



Further simplifications lead to two-dimensional statements with the assumptions of plane strain:

S22 = S32 = S12 = E2 = 0 (x2 − direction normal to the plane) (3)

and reduce the system (1) and (2) to
S11

S33

S13

 =

 a11 a13 0
a13 a33 0
0 0 d33

2



σ11

σ33

σ13

+

 0 b13

0 b33
b31

2
0

{ D1

D3

}
(4)

{
E1

E3

}
= −

(
0 0 b31

b13 b33 0

)
σ11

σ33

σ13

+

(
δ11 0
0 δ33

){
D1

D3

}
(5)

∂σ11

∂x1

+
∂σ13

∂x3

= 0,
∂σ13

∂x1

+
∂σ33

∂x3

= 0,
∂D1

∂x1

+
∂D3

∂x3

= 0 (6)

∂2S11

∂x2
3

+
∂2S33

∂x2
1

= 2
∂2S13

∂x1∂x3

,
∂E1

∂x3

− ∂E3

∂x1

= 0, (7)

whereby the coefficients a11, ..., b13, ..., δ11 and δ33 (b13 6= b31) can be determined from the material
parameters introduced above. In each material co-ordinate system the solution can be written in form
of the potentials U(x1, x3) and χ(x1, x3) [13]:

σ11 = U(x1, x3),33, σ33 = U(x1, x3),11, σ13 = −U(x1, x3),13

D1 = χ(x1, x3),3, D3 = −χ(x1, x3),1. (8)

Finally, we end up in a linear partial differential equation of sixth order for U(x1, x3). The general
solution of this equation and therewith also the solution of the whole problem - because χ(x1, x3)
follows from U(x1, x3) by integration - has the form

U(x1, x3) =
∑
k

6∑
i=1

di(λk)(x1 + τix3)λk+2. (9)

The complex variables di(λk) are free coefficients to be determined from the overall solution and τi
stands for the roots of the characteristic polynom (sixth order with real coefficients) of the partial
differential equation. The numbers λj, which are in general complex ones, represent the roots of the
solvability condition of the interface corner configuration together with the associated boundary and
transition conditions. There exists the corresponding conjugate complex root τi for each complex τi.
Because U(x1, x3) is a real function, terms of the form

eip
(λk + 2) cos [(λk + 2)(κ+ π

2
)] + fip

(λk + 2) sin [(λk + 2)(κ+ π
2
)]

with p =
√

(x1)2 + 2τ ri x1x3 + (x3)2[(τ ii )
2 + (τ ri )2], κ = arctan ((x1 + τ ri x3)/(τ iix3))

and τi = τ ri +
√
−1τ ii , di(λk) = ei(λk) +

√
−1fi(λk) (10)

occur for τi and τi in (9). The solution representation (10) is valid for each material domain of the
interface configuration which has its own material parameters, axes, τi and di(λk) . The construction
of the associated eigenfunction expansion results in the following steps:

1. Transformation of the solutions (9) into the same polar co-ordinate system (ξ, θ) for both material
regions (0 ≤ θ ≤ β and 0 ≥ θ ≥ −α) of the interface corner configuration

2. Establishing the transcendental solvability condition according to the boundary and transition
conditions

⇒ Det(λ, ...) = 0 (11)

The boundary and transition conditions have the usual form:
- Vanishing normal and tangent stresses (σθθ, σξθ) and vanishing normal dielectric displacements
(Dθ) at θ = β, θ = −α



- Continuity of normal and tangent stresses, both displacement components (uξ, uθ), electric po-
tential (φ, E1 = − ∂φ

∂x1
, E3 = − ∂φ

∂x3
) and normal dielectric displacements at θ = 0

Other boundary conditions can be applied by the given solution technique, too. The only re-
quirements are that they must result from physical reasons and have to give correctly formulated
problems.

3. Numerical determination of λ: ⇒ λk, k = 1, ...,∞ in (11)

4. For complex roots λk = νk + iµk the conjugate complex root λk = νk − iµk exists:
⇒ terms of the quality ξνk cos(µkln(ξ)), ξνk sin(µkln(ξ)) occur

5. Determination of the associated eigenvectors and eigenfunctions (and removing of the energetic
”useless” functions) to get the expansions

U(ξ, θ) =
∞∑
k=1

Ckξ
(λk+2)f

(U)
k (θ, λk), σξξ(ξ, θ) =

∞∑
k=1

Ckξ
λkf

(σ)
kξξ(θ, λk), ... (12)

with the unknown coefficients Ck

For solving whole boundary value problems of components having interface corner configurations, the
sole knowledge of the eigenfunctions introduced above is insufficient. The asymptotic eigenfunction
expansion in the neighbourhood of the interface corner tip must be connected to the solution in the
remaining part of the structure. Doing this, finite element nodes of a regular net can be established at a
distance of ξ = ξ0 from the corner together with the degrees of freedom ui(ξ0, θj) for the displacements
and the electric potential φ (Figure 2).
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Figure 2: Neighbour-
hood of an interface cor-
ner together with the fi-
nite element nodes

The main idea of the presented approach (which was developed in [9, 10] for
pure mechanical behaviour) consists in a replacement of the corner neigh-
bourhood (ξ < ξ0) effect to the surrounding body (ξ > ξ0) by introducing
a special stiffness matrix at ξ = ξ0 which can be assembled in a conven-
tional way together with the other element stiffness matrices to the global
stiffness matrix. The description of this procedure cannot be given here
because of the limited space. It is referred to [9, 10, 11] for more details.
The main essentials of the proposed approach result in the facts that the
asymptotic stiffness matrix does not depend on ξ0 and the oscillating terms
are circumvented numerically but still fully contained.

This makes it possible from the numerical point of view to ”live” with the oscillatory asymptotic
solutions at the interface crack tip if not any physical arguments forbid this behaviour from other
reasons. To avoid the oscillations it is necessary to introduce the corresponding kinematical assumptions
in the interface crack tip region.
Since the coefficients of the eigenfunctions Ck describe the electromechanical fields in the interface corner
region completely they can be applied as fracture parameters and used to formulate failure criteria.

FIRST TEST EXAMPLES

The asymptotic stiffness matrix was calculated by the help of modern computer algebra systems and
implemented as a user defined element within the commercial finite element code ABAQUS [1]. Results
of test computations will be explained. An interface crack specimen (Figure 3) of two different piezoelec-
tric materials (extension: 100*200 dimensionless units, crack in the middle of the specimen with a length
of 50, plane strain (3) conditions) is strained homogenously at the upper specimen end and clamped
right opposite. The electric potential is given at the right specimen side (x1 = 50, −100 ≤ x3 ≤ 100)
with zero values. For this specimen the material parameters are introduced by:

Upper half (PZT-4):

c11 = 1.39∗1011 N
m2 , c33 = 1.13∗1011 N

m2 , c12 = 7.78∗1010 N
m2 , c13 = 7.43∗1010 N

m2 , c44 = 2.56∗1010 N
m2

κ11 = 6.0 ∗ 10−9 C
Vm

, κ33 = 5.470 ∗ 10−9 C
Vm

, e15 = 13.44 C
m2 , e31 = −6.98 C

m2 , e33 = 13.84 C
m2



Lower half (hypothetical):

c11 = 2.39∗1011 N
m2 , c33 = 1.13∗1010 N

m2 , c12 = 4.78∗1010 N
m2 , c13 = 5.43∗1010 N

m2 , c44 = 2.56∗109 N
m2

κ11 = 4.0 ∗ 10−9 C
Vm

, κ33 = 2.470 ∗ 10−9 C
Vm

, e15 = 12.0 C
m2 , e31 = −4.98 C

m2 , e33 = 14.0 C
m2

1

.

Crack Interface

(lower half)

Φ

.

3

(upper half)

x

x

= 0

Figure 3: Piezoelectric
specimen under tension

Both material domains have the same pooling directions (x3). The homoge-
nous boundary and transition conditions given above lead to the roots λk
of the solvability condition (11) resulting in:

1. −0.5±
√
−1 ∗ 0.11733, 0.5±

√
−1 ∗ 0.11733, 1.5±

√
−1 ∗ 0.11733, ...

2. −0.5, 0.5, 1.5, 3.5, 4.5, 5.5, ...

3. 0.0, 1.0, 2.0, 3.0, 4.0, 5.0, ...

Each pair of the conjugate complex roots (1.) produces two linear indepen-
dent eigenvectors from the free constants di(λk) while the second part of the
roots (2.) have single eigenvectors and the third part (3.) generates three
linear independent eigenvectors for each concrete value.
In Figure 4 the stress components σ33, σ13 and the electric field E3 are
shown around the crack tip within a zoom radius ξz = 1.0. The crack
comes from the left (negative x1-axis) and the interface lies on the hori-
zontal straight line (positve x1-axis) on the ligament in front of the crack.
The solutions of usual finite element computations (”without asymptotics”)
are compared with solutions following from the technique introduced above
(”with asymptotics”, ξ0 = 0.01).

The results confirm the fact observed at pure mechanical analyses [9, 10] that the regular finite element
method cannot give the correct solution at interface crack tips in general. The regular finite element
representation of σ33 is familar to the asymptotic behaviour at a crack tip inside a homogenous isotropic
material and cannot ”feel” interface tip effects. Furthermore, the stress component σ13 of the same solu-
tion (”without asymptotics”) fulfils the given boundary conditions on the crack surfaces very bad only.
The differences between the solutions with and without asymptotics can also be seen on the represen-
tations of the electric variable E3. The poor performance of regular finite elements in the vicinity of an
interface crack tip may be explained by means of the fact that the polynomial shape functions cannot
reproduce both the radial ξνk− asymptotics and the oscillating behaviour of the form cos(µkln(ξ)) even
if the element size is extremely diminished. Regular finite elements produce an asymptotic behaviour
at interface crack tips which is severe different from that of the actual eigenfunctions.
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Figure 4: Piezoelectric solutions at an interface crack tip under tension
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ABSTRACT

Weproposeadamagemodelwith aprobabilisticapproachfor laminatesmadeof unidirectionalfibrereinforced
plies. Statisticalinformationis collectedthroughmultiple crackingtests.Thedefectsareconsideredastrans-
versematrix cracksandwe studythemby examining

�������
	��
����
,
��� � �
��� � �����
� � ��� and

��� � �
	�� � ������� � ����� � ���
laminates.
Parametersof acumulativedistributionfunctionof thefailurestrengtharedetermined.Probabilisticparameters
of the cumulative distribution are chosento be independentof the ply thicknessand multiaxial loading to
have intrinsic valuesfor describingthe ply. Probabilisticparametersfound previously areintroducedinto a
finite elementcomputationof laminatesusinga StatisticalVolumeElement(SVE). As experimentalresults,
numericalonespresentadispersionof thefailurestress.

KEYWORDS

Carbon/epoxyfabriclaminates,compositelaminates,defectsstatistics,crackdensity, transversecracking,mul-
tiaxial loading,probabilisticfailurecriteria.

INTRODUCTION

Thefracturebehaviour of fibre reinforcedcompositeshasan inherentvariability which resultsfrom thepres-
enceof defectsin the constituents.A probabilisticmodel including failure criteria, taking into accountthe
presenceof defectsfor predictingthestatisticalfracturebehaviour is proposedfor acompositelaminateunder
multiaxial loading.
Thestudiedcompositelaminateis astackof plieswhereeachply is madeof unidirectionalcarbonfibre(T300)
embeddedin anepoxymatrix (914). Differentstackingsof compositelaminates

���
����	��
�����
,
��� � �
��� � ������� � ���

and
��� � ��	�� � ������� � ����� � ��� aresubjectedto mechanicalloadswhich leadto damage.The damageis known

to consistof intralaminarcracks(fibre breaks,axial andtransversecracks)andinterlaminarcracksformedby
local separationof plies (delamination).We focuson transversecrackswhich give a variability of fracture
properties.



In orderto predictfailurestressesin compositelaminates,it is necessaryto take into accounttheprobabilistic
natureof defects.Suchanapproachconsistsof two parts: identificationof a populationof defectsandsimu-
lation of thestatisticalbehaviour of thematerialundermultiaxial loading.Thestatisticalaspectis introduced
in finite elementcalculationwith the StatisticalVolumeElement(SVE) describedby Baxevanakiset al. [1].
Thepaperis organizedin thefollowing way. Thefirst partdescribestheidentificationof transversecracksand
a multiaxial fracturecriterion. Thesecondpartpresentsthenumericalsimulationof thefractureof a laminate
composite.

TRANSVERSE CRACKING

Description of the test
Theaim of thetestis to estimatethepopulationof defectsthatgeneratestransversecracksduringthedamage
processof compositelaminates.Thematerialusedin thisstudyis acarbonfibre reinforcedepoxy(T300,914)
with theply propertiesreportedonTab. 1.

TABLE 1: MECHANICAL PROPERTIES OF CARBON/EPOXY PLY.

Material �! (GPa) �#" (GPa) $% &" (GPa) '& (" )+* (MPa) ,�* (%)

Ply 140 9.5 3.2 0.31 2150 1.1

In a symmetriclaminate,anaxial loadproducesan in-planestressstatein off-axis pliesconsistingof normal
stressesparallelandperpendicularto fibresandshearstresses.Following theorientationandthestacking,the
stressstatevaries. To have differentstressstatewe considerthreelaminates:

���
�-�
	��
�����
,
��� � �
�
� � �.����� � ��� ,��� � �
	�� � �/�0��� � ����� � ��� laminates.Samplesfrom thelaminatesarecut andtestedin anInstrontestingmachine.

Axial andtransversestrainsaremeasuredusingstraingauges.Oncetheedgesof thespecimensarepolished,
thespecimensareloadedto aselectedstrainlevel. Thepositionof everycrackis measuredin situby atraveling
optical microscope(Fig. 1 ). Thepositionandthe numberof cracksarecollectedfor eachply andfor each
level of deformationuntil thespecimenfails.

Results
To determinethelocal failurestressstateresultingfrom theglobalstressappliedexperimentally, weaccurately
simulateexperimentsby introducingcracksexactly at the positionsandat the deformationlevels they were
found experimentally. Figure2 shows how we calculatethe stressesin eachply for a deformationlevel at
whichacrackappears.
Wechoosethedamagevariabledefinedby Thionnet[2] as 132�4�5.6 ( 4.7 numberof cracksperunit lengthand6!7 thethicknessof theply) andwe definea quadraticcriterion )98:*;2=< ) �"?>A@�B � &" ( )C" is thetransversestress
and B  &" is theshearstressin thelocalreferenceand @ is acoefficientrepresentingtheeffectof defectsonshear)
for describingthedefectpopulationin a ply (Fig. 3 a). Thesevariablesarechosento describethepopulation
of defectsindependentlyof the ply thicknessandmultiaxial loading. First from the curvesof Fig. 3 a, we
determine@ 2 �CD����

, this valueis consistentto what is observed in literaturefor a deterministicmesoscopic
Tsai-Hill criterion.
Next, we gatherthe informationon defectscomingfrom differentplies. This is possibleonly if transverse
crackswereobservedjustbeforetheoccurrenceof thedelaminationbecauseourpseudo-tridimensionalcalcu-
lation doesnot take into accountthis phenomenon.This is thereasonwhy Figure3 b) shows theadditionof
two populationsin

���
���
	
�
�����
and

��� � �
�
� � �E�;��� � ��� laminates.Thepopulationof cracksof
��� � ��	�� � �F�;��� � ����� � ���

laminateis removedbecausethedelaminationappearsat thesametimeastransversecracks.Then,thepossible
modelof distribution for thetransversecracksis asigmoidaldistributionrepresentedby theEq. 1 :1�GH)+*JIK2�L�GM �0N�OQPSRPSTCUWV I (1)

with LX2 �CDY�[Z
is themaximumnumberof defects(nondimensional),)+\]2 �
�^DY_[`

scaleparameter(MPa),
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SIMULATION OF THE FRACTURE OF A LAMINATE COMPOSITE

Statistical Volume Element (SVE)
TheStatisticalVolumeElement(SVE)givesthepossibilityto introducethestochasticaspectin thenumerical
simulation. It is definedashaving onecritical defectwhich is in our casea crack. During experiments,we
observedthatthegeometryof thecrackhadthethicknessof theply (0.246mmto 0.738mm)andthewidth of
thesample(25mm). Sotwo dimensionsof theSVEaredirectlydefined.Thethird dimensionof theSVEis the
intercrackspacingat saturation.Only the

���
����	��
�����
laminatehasits cracksat saturation(1.41mm), laminates

with off-axispliesundergodelamination.Jeulin[3] assumesthatdefectsaredistributedaccordingto aPoisson
pointprocessandthatSVEbreakswith theweakestlink assumptiondescribedby Weibull [4] soits probability
to breakis givenby Eq. 2: gih GH)+*JIj2kM �0N�lnmpo�q�rtsuOfv R Uxwzy (2)

Knowing 1�G{)+*|I from theexperimentalstudy(Eq. 1 ) andusinga uniformrandomvariable
g}h

between0 and
1, weassociateto eachSVE a fracturevalue )+*d~���� obtainedby Eq. 3 :
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)+*d~���� 2 )+\�� ������� M > ��� GM � g *JIL���~&�+� �n�%�V (3)

Damage model for numerical simulation
Figure4 shows two meshesof a platerepresentingthesamplestudiedexperimentally: a finite elementmesh
and a statisticalmesh. The finite elementsare usedto calculateunderclassicallaminationtheory [5] the
stressanddisplacementstates.Thestatisticalmeshis madeof SVE’s which areintroducedto give thefailure
stressvariability of thesample.Thedifferentgray levelsrepresentthevaluesof the fracturecriterion )+*d~��+�
associatedwith eachSVE.Thetwo meshesaresuperimposedto givetheinput for numericalcalculation.
Theappearanceof damagein the laminateis simulatedasfollows. If in oneSVE, thecriterion )98:~&�+� which
is the meanof the criterion )98{��8Q� of all finite elementwhich belongto the SVE reaches)+*C~&�u� accordingto
Eq. 4, thedamageof theseelementsis simulatednumericallyby astiffnessreductiondescribedby Renardand
Thionnet[6]. )98Q~��9��2�� � ��8��W)98���8���+~&�+� � )+*d~���� (4)

Numerical results
A numericalsimulationis madeon

���
�-�
	��
�����
and

��� � �
��� � �?���
� � ��� laminateswith the modeldescribedpre-
viously, to compareit with experimentalresults. For both laminateswe have a low variability on behaviour
laws so the stress-straincurvesarelessinterestingthanthedensityof cracksrepresentedin Fig. 5, whereis
plottedthe damagevariable(alsocalledthe cumulative density 1 ) againstthe criterion )98:* ( )98:*�2�)+*d~��+�
for numericalresults).In thecaseof

���
�-�
	��
�����
laminate,theSVEbreaksin thesameway asexperimentallyas

shown in theFig. 5 a).
In thecaseof

��� � �
�
� � �F����� � ��� laminate(Fig. 5 b), theexperimentalandnumericalcurvesarenotsimilar, since
wedonot reachexperimentallythesaturation,thecalculationbeingdonewith thesizeof theSVEof

�������
	��
�S���
laminate.Numerically, by usingthesizeof SVE of

���
�-�
	��
�����
laminate,we introducemorecracksthanthere

arein reality. In addition,theparametersusedfor thestatisticalmodelpenalizethis laminateconfiguration.

CONCLUSION

We proposedexperimentalandnumericalschemesfor thedeterminationof defectspopulationparametersin
a ply. At the sametime, we defineda multiaxial criterion )98�2 GH) �" >k@[B � &" I ���:� , with @ 2 �CD����

. More
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we have informationon defectsmorethe parametersof populationandthe parameter@ will be preciseand
realistic.Next, we built a probabilisticdamagemodelby introducingstochasticfailurestresseswith theSVE.
Numericalresults

���
���
	����S�����
gaveacumulativedensitysimilar to theexperimentalone.Concerning

��� � �
��� � �K���� � ��� laminate,thecumulative densitywashigherbecauseof thechoiceof thesizeof theSVE.To modelthe
cumulativedensitymoreprecisely, wehaveto accountfor thetridimensionalstressstate,in orderto includethe
delaminationphenomenonsothattheclassicallaminatetheoryassumptionscouldnotbeconsideredanymore.

Theongoingwork is to applythemodelfor high stressesgradientzones(notchedplates).Figure6 shows
thenumericalinput. Thefailurecriterion is changed.Eq. 5 takesinto accountthefact thatwe have a higher
probabilityto breakin thevicinity of thecircularhole.

)98:~&����2�)+\��� � ��� ��}¡� ��8�� � �¢8Q� N�l G P£�¤�¥PST I V��~&�9� ¦§9¦§ �V � )+*C~&��� (5)
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ABSTRACT 
 
Crack deflection in discretely layered, graded composites is examined through 
experiments and finite element modeling.  Material and geometric parameters responsible 
for affecting crack deflection from an existing crack or notch are identified.  Fracture 
experiments with Cu/W graded composites reveal that elastic mismatch between the 
layers, and layer thickness are key parameters in determining stress fields at the base of a 
notch.  Numerical modeling indicates that the residual stress field, which is a function of 
the thermomechanical response (thermal expansion, elastic and plastic and behavior), has 
a significant effect on the crack deflection angle for most situations.  These results are 
discussed in the context of developing predictive models for crack propagation in graded 
structures.   
 
 
KEYWORDS 
 
Graded, crack kinking, crack deflection, residual stresses. 
 
 
INTRODUCTION 
 
The first step in establishing failure criteria for compositionally graded composites is to 
determine the crack path.  For cracks which lie asymmetrically within the gradient, a 
significant challenge to predicting crack paths lies in the fact that the crack tip stress field 
and the crack propagation criterion may change as a function of crack length.  Thus, 
understanding which material and geometric parameters control the crack tip stress fields 
is ultimately required in the development of predictive fracture models for graded 
materials.   
 



In this work, crack paths are examined experimentally, using Cu/W graded composites. 
These experimental observations comprise the first part of the paper.  The tendency for 
crack kinking is then examined using a finite element model. The effects of residual 
stress on altering the crack kink angle are discussed.   
 
 
EXPERIMENTAL OBSERVATIONS 
 
Cu and W commercially obtained powders were mixed in the appropriate ratios, and 
layered in a graphite die for hot pressing to produce graded cylinders with discrete layers 
each consisting of Cu with either 60 % W, 40% W, 20 % W or 0 % W, where 
percentages are on a volume basis.  Higher percentages of W were difficult to sinter to 
full density.  Hot pressing was conducted at 940ºC for 12 h, in vacuum, under an applied 
load of 40 MPa.  Details are available elsewhere [1,2].  The cylinders were cut into 
mechanical testing bars 3 x 8 x 30 mm, as illustrated schematically in Figure 1.  The 
gradient was symmetric to facilitate mechanical testing.  Each layer was either 2 mm or 4 
mm in thickness.  A 3 mm deep notch was placed using a diamond saw either within the 
center of the 20% W layer or the 40% W layer.  The bar was then placed in four point 
bending, and the load was increased until a crack propagated from the base of the notch.  
After the test, the angle of crack deflection away from the loading axis was measured 
using scanning electron microscopy.   
 
 

 
 
 

Figure 1:  Cu/W graded composite mechanical test specimen.  The 100 % Cu 
composition layer is located symmetrically in the center, to the right of the notch. 

 
 
Figure 2 shows an example of a fractured bar in which the notch was situated within a 2 
mm thick, 20% W layer, similar to the schematic in Figure 1.  It is apparent that the crack 
path is relatively straight, except for the region in the vicinity of the interface between the 
20 % W layer and the 0 % W layer, at which point the crack path eventually becomes 
parallel to the interface.  The initial crack deflection angle (that nearest the base of the 
notch) was measured for each specimen configuration, and the results are shown in Table 
1.  Each reported measurement consists of an average of 3 tests for that configuration. 
 
 
 



 
 
 

 
 
 

 
 
 
 
 
 
 
 

Figure 2:  Scanning electron micrograph of bar containing 4 mm thick layers, fractured 
in four point bending.  Notch was cut into 20 % W layer.  Crack deflection by 31° 

towards the more compliant pure Cu layer to the right is apparent.   
 
 

TABLE 1 
Measured Crack Deflection Angles (in degrees).  According to the convention used in the 

FE model, crack deflections towards the more compliant material (towards the right in 
Figure 2) are negative by definition. 

Layer Thickness Composition of Layer 
2 mm 4 mm 

20 % W -50 -35 
40% W -25 0 

 
 
FINITE ELEMENT RESULTS 
 
Details of the finite element model are briefly described here; details are available 
elsewhere [3].  The commercially available code ABAQUS [4] was used.  A four point 
bend beam (4PB) specimen geometry is analyzed here.  The mesh is shown in Figure 3.  
Incremental FEA is used, allowing the application of mechanical loading to a body that is 
already deformed by residual stresses.  The mesh is 25 mm long and 8 mm high. The 
discrete compositional gradient is formed by 11mm of pure copper, followed by 1 mm 
layers of 80%Cu-20%W, 60%Cu-40%W and 40%Cu-60%W, and by an 11 mm section 
with 20%Cu-80%W; all percentages are volumetric. A crack 3 mm long is cut 
perpendicular to the gradient in the center of the 60%Cu-40%W middle layer, as shown 
in Figure 3. Crack tip vicinity stresses resulting from two different conditions are 
superimposed. First, the thermal residual stresses resulting from thermal expansion 
coefficient mismatch and a change in temperature are obtained. Second, the stresses 
resulting from the applied load are evaluated. The residual stresses were obtained by 
applying an initial temperature of 300oC to all the nodes and subsequently cooling down 
to 25oC.  The applied stresses reported correspond to the maximum stress on the tensile 



surface of a homogeneous material.  Quad second order elements with three nodes 
collapsed on the crack tip were used. The midside node immediately away from the tip 
was positioned to a ¼ of the element length to make the element square root singular. 
Stress intensity factors were obtained from FEA for the residual stresses and for each 
applied load with and without residual stresses.  Standard rules of mixtures were used to 
estimate material properties [2]. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 

20% volume fraction increments
 (1mm discrete layers) P/2 P/2 

100%Cu 20%Cu-80%W

2 
1 

Figure 3:  Four point bend (4PB) specimen geometry used for finite element analyses.  
Extensive mesh refinement is present at the contact surfaces and the crack tip region. 

 
It was observed that the maximum principal stress around the crack tip exhibited a 
shallow maximum (over about 20°), and thus, a zero shear stress criterion was adopted.  
By fitting the numerical data with a curve, it was straightforward to determine the kink 
angle at which the shear stress became zero.  It was observed that the predicted kink 
angle, θm, did not depend on the applied stress when no residual stresses were present.  
However, in the presence of residual stresses, θm depended strongly on the applied stress.  
To relate the results to toughness, the applied mixed mode crack tip stress was converted 
to an equivalent stress intensity factor [3], and the results plotted as a function of θm, as 
shown in Figure 4.   
 
The dotted line in Figure 4 indicates the predicted value (-6.95°) when there is no 
residual stress.  This value is approached at very high loads (higher than shown here).  It 
is apparent that the effect of the residual stress is to rotate the crack tip stress field such 
that a positive crack kink angle is achieved for most applied loads.  For very tough 
materials (e.g., KIC > 25 MPa m1/2), the effect of the residual stress diminishes. 
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Figure 4:  Predicted crack kink angle as a function of effective applied stress intensity 
factor.  The positive crack kinking angles indicate that crack kinking towards the stiffer 

side of the composite. 
 
The dependence θm on the applied stress intensity factor, when residual stresses are 
considered, is clear when one considers that the total mode I and mode II stress intensity 
factors are the superposition of the respective residual and applied stress intensity factors.  
Thus, the residual stress intensity factor rotates the stress field. 
 
Relation of FEM Results to Experimental Observations 
Two major differences exist between the experiments and the numerical modeling, 
making it difficult to compare results between the two.  The first is that it is likely that 
plastic deformation is operative during the development of residual stresses, and during 
the applied loading, yet it is not accounted for in the numerical model.  Second, the FEM 
specimen geometry is not identical to the experimental four point bend geometry.  With 
these differences in mind, it is realized that the following comments are somewhat 
speculative.   
 
It is noted that the crack is always experimentally observed to propagate towards the 
softer and more compliant material.  In contrast, the numerical results indicate that in the 
presence of residual stresses, the predicted crack kink angle is positive, i.e., in the 
direction of the stiffer, less compliant material.  If one assumes that the specimen 
geometry for the experiment and the numerical model (i.e., compare Figure 1 and Figure 
3) is effectively the same, then it must be that plasticity substantially modifies the crack 
tip stress field.  Plasticity is important during the development of residual stresses; 
obviously, in a graded material, its effect may be non-uniform across the sample, possibly 



resulting in the rotation of stress fields.  Plasticity may also be important during 
mechanical testing, an effect which would also be asymmetric in a graded material.  FE 
models which account for plasticity in the copper are currently being developed to 
establish the precise role of plasticity. 
 
 
CONCLUSIONS 
 
The results here indicate that it is extremely important to take into account the effect of 
residual stresses when predicting the crack path in a graded composite.  In the present 
case it was observed that without accounting for residual stresses, the crack is predicted 
to kink towards the more compliant side of the gradient, but in the presence of residual 
stresses, the predicted crack kink angle is towards the stiffer side.  The reasons for this 
residual stress effect, and the dependence of the crack kink angle on the applied stress are 
obvious when one considers superposition of residual stress intensity factors and applied 
stress intensity factors.  Specifically, the mode mixity of the residual stress is different 
from that of the applied stress.  The result is that the predicted crack kink angle depends 
on the material toughness, with tougher materials exhibiting cracks that do not kink as 
much.   
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ABSTRACT 

 
 A rapidly moving crack in a brittle material is often idealized as a one-dimensional object moving through 
an ideal two-dimensional material, where the crack tip is a singular point. In real three-dimensional 
materials, however, tensile cracks are planar objects whose tip forms a propagating one-dimensional singular 
front. Let us now consider a crack front propagating through a heterogeneous medium populated by an 
ensemble of localized inhomogeneities (asperities). The front is distorted by its interaction with each 
asperity. Can the crack front, after many such interactions, still be considered a single coherent entity, or, 
must the dynamics of failure be described by ensemble of individual cracks in all but the most homogeneous 
materials? Here we present laboratory measurements of a new type of wave, crack front waves, CFW, which 
are generated by asperities and propagate along crack fronts in tensile fracture. We will show that CFW are 
highly localized nonlinear entities that propagate along the front at approximately the Rayleigh wave speed, 
relative to the material. They possess a characteristic, inherently nonlinear shape, reminiscent of solitons. In 
glass, whose fracture energy is nearly independent of crack velocity, CFW are very long-lived whereas in 
PMMA, where the fracture energy increases with crack velocity, CFW decay. CFW serve to both transport 
and distribute the energy fluctuations, induced by asperities, throughout the entire front. In this way, these 
waves may allow a crack front to retain its coherence despite repeated interactions with randomly dispersed 
material inhomogeneities.  
 
KEYWORDS Brittle fracture, localized waves, crack front waves, solitary waves 
 
 
Dynamic crack propagation in brittle fracture has been the subject of much recent attention. Much of this 
work has been invested in studying the dynamics and stability of rapidly moving cracks in Mode I fracture. 
Experiments have shown that above a critical propagation velocity, vc, of approximately 0.4VR, where VR is 
the Rayleigh wave speed, a single crack becomes intrinsically unstable.  At this speed, a single crack 

becomes unstable to frustrated microscopic branching events. This instability [1] has been observed in brittle 
polymers [1-8], glass [9, 10], and recently in crystalline materials[11]. Qualitatively similar effects have also 

been observed in models of ideal crystals [12-15], finite element calculations [16-18], and molecular 
dynamics [19, 20]. Recent experiments [10] have also demonstrated that the equation of motion for a single 

crack predicted by continuum elastic theory [21], provides excellent quantitative agreement with 
experiments in ideal quasi-2D amorphous materials both below and above vc, whenever a single-crack state 

(single-crack states can occur momentarily when v > vc) exists.  
 

In the work summarized above only ideal (defect-free) quasi-2D materials were considered.  The tip of a 
crack is idealized as a singular point progressing through an otherwise perfect two-dimensional material. As 
long as translational invariance exists in the third dimension, the above experiments have demonstrated that 
the assumption of two-dimensionality is justified.  What happens, however, when the translational 
invariance in the "ignored" dimension is broken? Let us consider a crack progressing through an, initially, 



ideal three-dimensional plate of finite thickness. Instead of a singular point, the "tip" of a crack is now a 
singular front, which extends throughout the sample's thickness. Let us now assume that the crack front 
meets an asperity, i.e. a localized inhomogeneity where the fracture energy is locally either higher or lower 
than in the surrounding medium. The asperity breaks the system's translational invariance in the direction 

normal to the crack's motion. We now consider its effect on the crack's motion.  
  

Ramanathan and Fisher [22] have recently shown, analytically, that the crack's interaction with an asperity 
will induce a new type of wave that will propagate along the crack front. Their analysis was based on Willis 

and Movchan's [23] calculation of the change in the energy release rate, G, induced by a localized 
perturbation to a crack front in the propagation direction.  This analysis indicated that an asperity could 
excite a wave, i.e. a local perturbation of the crack's velocity that could progress along the crack front at 
slightly less than vR, relative to the asperity.  This disturbance, predicted to exist within the fracture plane, 
was shown to be marginally stable for constant values of the fracture energy, Γ.  The wave was predicted to 

grow (decay) if Γ were a decreasing (increasing) function of the crack velocity, v. Morrissey and Rice [24, 
25] have observed these waves in finite element calculations of tensile fracture in elastic 3D materials with a 

constant fracture energy. They found that asperities along the crack path indeed generated persistent, 
localized waves of in-plane velocity fluctuations that propagated at velocities slightly below vR. After an 

initial decay, these waves continued to propagate along the crack front with constant shape and amplitude. 
 

Below we will describe experiments in which waves, similar in many respects to those predicted above, 
were observed [26]. In the tensile fracture of soda-lime glass and PMMA, we will show that the interaction 

of asperities with moving cracks indeed generates localized waves that propagate along the crack front at 
approximately vR.  The waves are stable in glass (nearly constant Γ) and decay in PMMA (Γ increasing with 
v). In contrast to the predicted waves, the crack front waves (CFW) observed in experiments have two 
surprising characteristics:  these waves exist both within and normal to the fracture plane and CFW have a 

unique characteristic profile.  
 

Our experiments were conducted in both PMMA and soda-lime glass plates of size 380×440 mm and 
thickness, h, between 2 < h < 6 mm. The cracks were driven in Mode I by applying static tension at the 
sample's vertical boundaries. We define the x direction as the direction of propagation of the crack front, y as 
the direction of applied tensile stress (0 < y < 440mm), and z as direction along the crack front. The plates 
were initially defect-free. Asperities were generally introduced along the outer faces of the plate (z=0 or 
z=h). Asperities with fracture energy less than that of the material were formed by scribing a thin line in the 
y direction on the plate faces. Asperities with fracture energy greater than that of the material were formed 
by adhering thin glue lines on the plate faces along the y direction. Both types of disturbances generated 
CFW upon interaction with a moving crack. Instantaneous crack velocities were measured at the plate faces 

by the technique described in [7].  Our velocity resolution at each point along the plate faces was 
approximately 10 m/s in PMMA and 50 m/s in glass. Velocity measurements were performed at a 10MHz 
sampling rate enabling velocity measurements approximately every 0.2 (0.05) mm in glass (PMMA).  The 
velocity measurements were later correlated with fracture surface measurements and optical photographs. 
The fracture surface profile was mapped to 10nm resolution in the y direction by the use of a modified 
Taylor-Hobson (Surtonic 3+) scanning profilometer with an x-z spatial resolution of 0.5 µm. The features on 
the fracture surface left behind by the CFW were also photographed by the use of incoherent illumination 
directed through the transparent samples. This light, passing through the fracture surface, was either focused 
or de-focused as it traversed through any surface features. This effect, similar in character to shadowgraph 

visualization, enabled the visualization of minute deviations from flatness of the fracture surface.  
 

CFW have both an in-plane and out-of-plane character, in contrast to the in-plane deviations of the front 
velocity predicted by [22, 24]. Evidence of the latter is in the residual tracks (normal to the fracture plane) 

that CFW leave behind on the fracture surface. Examples of typical CFW tracks on the fracture surface are 
shown in Fig. 1. As Fig 1a shows, the tracks are deviations of the fracture surface height. These deviations 
can be either upward (away from the mean plane of the fracture surface) or downward (into the mean plane 
of the fracture surface). The direction of these height deviations has no significance, as tracks formed on the 

both fracture surfaces are mirror images of each other.  
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Figure 1. Typical crack front waves generated on a fracture surface. (a) Profilometer measurements (scales 
are in µm).  The arrow shows the propagation direction. (b) Photograph of front waves generated, as in (a), 
by an external perturbation at the plate surface. Note both the initial decay (in (a)) and subsequent long 
lifetime of the waves as they are reflected at the plate surfaces.  (c) Photograph of front waves generated by 
localized micro-branching events. The arrow below (b) and (c) is 3mm in length and denotes the propagation 

direction. 
 

As the Fig. 1 shows, CFW are generated either by externally imposed asperities (Fig. 1a,b) on the plate 
surfaces or, intrinsically, by means of micro-branching events. In glass, micro-branching events are 
generally localized in the z direction and (as shown in Fig. 1c) occur along lines in the propagation direction 

[27]. We can understand the initiation of CFW by micro-branching events since, as predicted by theory, the 
origin of these waves is determined by local fluctuations in the fracture energy. When a micro-branching 
event occurs, energy is diverted into the daughter cracks that are bifurcating away from the main crack. 
Thus, from the perspective of the main crack, which was initially the sole source for dissipation in the 

system, a micro-branching event effectively increases the local value of the fracture energy in the system.  
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Figure 2. Photographs depicting the evolution of CFW generated by imposed asperities in soda-lime glass 
(a) and PMMA (b). Both cracks propagate from left to right and each photograph is 3 mm in height. The 
amplitude of the waves as a function of their propagation distance is shown in (c). CFW stably propagate in 
glass whereas in PMMA no stable propagation is observed. (d) The relative stability of CFW in these 
materials may be explained by the velocity dependence of the fracture energy,  Γ, with v in (right) PMMA 

and (left) glass.   
 

CFW are not limited to soda-lime glass. In PMMA, as shown in Fig. 2, CFW can also be generated by 
externally imposed asperities. In PMMA, however, the resulting waves are very quickly damped and have 
not been observed to stably propagate. In glass, CFW initially decay exponentially with a decay length 



scaling with the size of the initial disturbance (see [26]). The waves then stabilize with a constant amplitude 
and unique shape [26] and are, subsequently, very long-lived (Fig. 2c). When impinging on the free 

boundary at a plate's surface, the waves reflect with very little loss of amplitude. We have observed CFW to 
undergo up to 7 reflections while traveling distances over an order of magnitude greater than their size. 

   
As mentioned earlier, Ramanathan and Fisher [22] had predicted that CFW are marginally stable if Γ is  

independent of v. If  Γ(v), on the other hand, is an increasing function of v - CFW are predicted to decay.  
The fracture energy dependences of glass and PMMA on v (see Fig. 2d) are consistent with this prediction. 
While Γ(v) for PMMA is a clearly increasing function,  Γ is nearly constant for glass. The data shown were 

obtained [10] for velocities prior to the onset of the micro-branching instability. In PMMA we have found 
[8, 10] that the "bare" Γ(v) dependence after the instability. (Effectively, Γ(v) will increase for v>vc due to 

the increase in the total surface area formed by both the main crack and micro-branches.)  
 
 

 
 

Figure 3. The front wave velocity can be determined via intersecting CFW tracks for (a) a case where the 
crack front is normal to the propagation direction and (b) where the front is inclined at an angle β relative to 
the propagation direction. Once VFW = (1 ± 0.05) VR is known, this method can be used to measure both the 
crack velocity, v, and the angle β at the point of intersection. (c) Two comparisons of the independent 
measurements (lines) of v with measurements (points) obtained by means of v=VFWcos(α/2)/cos(β). The 
sharp peaks in v prior to vc=1500 m/s (in glass) result from the crack's interaction with the arrival of 

asperity-induced front waves. 
 

 The velocity of CFW, VFW, is very close to the Rayleigh wave speed, VR, relative to the material. This is 
consistent with both [22] and [24, 25].  We measure the CFW velocity by means of intersecting CFW tracks 

on the fracture surface. The intersecting tracks are formed by two distinct counter-propagating CFW. As, in 
general, CFW can be formed whenever the crack front interacts with any localized material inhomogeneity, 
intersecting CFW are common.  Two such intersections are illustrated in Fig. 3 for cases where the crack 
front is oriented normal to the propagation direction (Fig. 3a) and at an angle β relative to the propagation 
direction (Fig. 3b). Defining the angle α as the angle formed between two outgoing CFW tracks, VFW  is 

determined by: 
 

   VFW  = v cos(β)/cos(α/2)     (1) 
 
 
 



In this way we find [26] that VFW  = VR(1 ± 0.05).  Once we have established the value of VFW, we can invert 
Eq. 1 and use the values of VFW, α and β to measure the instantaneous value of v at any point where two 
CFW tracks intersect.  This is demonstrated in Fig. 3c, where independent velocity measurements are in 
excellent agreement with values of v obtained by inverting Eq. 1. In many applications where direct 

measurements of v cannot be performed, this new tool should prove to be useful. 
 

The existence of the tracks left by CFW on fracture surfaces has been noted for decades [28] in the fracture 
literature, and identified as "Wallner lines". In most instances, however, their origin has been misinterpreted. 
Wallner lines are defined as lines imprinted on the fracture surface as a result of the interaction between a 
moving crack front and shear waves, generated by an external source. The markings on the fracture surface 
come about as a result of the momentary deflection of the stress field at a crack's tip generated by a passing 
shear wave. In the well-known Kerchof method, this interaction has been used to advantage as a tool for 
crack velocity measurement (using the patterns imprinted on the fracture surface by means of externally 
broadcast, ultrasonic shear waves).  CFW however, are not Wallner lines. As illustrated by Fig. 4a, if the 
fracture surface markings were created by a radially propagating shear wave (generated by a point-like 
asperity), the tracks would have the following properties. Their amplitude would decrease as 1/r2, their 
propagation velocity would be that of shear waves, and they would not have a well-defined shape but, 
instead, mimic the initial conditions that created them. As we have shown (see Fig. 3), the propagation 
velocity of CFW is approximately VR, which is more than 2σ less than the shear wave velocity in glass. We 

have also demonstrated (see Fig. 2) that after an initial exponential decay [26], CFW amplitudes stabilize 
and these waves continue to propagate large distances with no appreciable change in amplitude.  Last, as 

shown in Fig. 4b, CFW have a unique, well-defined profile whose shape is independent [26] of the initial 
conditions that formed them.  Thus, although CFW are superficially similar to Wallner lines, the 

aforementioned properties show them to be qualitatively different entities.  

 
Figure 4. (a) A schematic picture depicting how surface markings might be formed by the interaction 
between the crack front and shear waves (i.e. the "Wallner line" mechanism). CFW properties are not 

consistent (see text) with this scenario. (b) CFW have a unique characteristic profile [26]. Shown are 
superimposed profiles of 3 different front waves. Each profile is scaled by the size of the initial asperity that 
formed it. The initial forms of the profiles used in (c) were very much different from their asymptotic 

profiles. The scales of the three profiles shown span over an order of magnitude. 
 

In conclusion, crack front waves appear to be a new type of elastic wave. Although they "live" on a crack 
front, they move at a constant velocity of approximately the Rayleigh wave speed relative to the medium. 
CFW are not linear waves. Their characteristic shape provides evidence of a nonlinear, soliton-like 
character. Upon interaction CFW are not destroyed but retain both their shape and amplitude [26]. In 
addition, these highly localized waves transfer energy [27] throughout the fracture surface. This together 
with their propagating nature may enable them to allow a crack to remain a single coherent entity – even in 
highly inhomogeneous materials, since, statistically, any local changes to the crack front induced by a given 
asperity will, by means of CFW, be distributed throughout the entire front.  
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INTRODUCTION 
 
Efficient and environmentally benign production of electrical power in fossil fired industrial gas turbines, either 
in single cycle or in combined cycle (gas turbine - steam turbine) plants will require components made of Ni-
base alloys. Although such materials were developed and are extensively used in aero engines, the much larger 
dimensions of the components in stationary gas turbines mean that the impact of the much larger scale fabrica-
tion on the microstructure and the flaw tolerance of the materials must be investigated. Furthermore, the load 
cycles are very different; in aero gas turbines, full power operation is only required at take-off and landing, 
whereas industrial turbines must operate at full power for prolonged periods of time.  
 
Only limited information exists in the open literature regarding the behaviour of technical cracks and the con-
trolling mechanisms of crack growth in Ni-base alloys. Safe operation and estimation of the reliability and the 
allowable types and numbers of operational cycles require knowledge concerning crack growth initiation result-
ing from the local inhomogeneities expected in each component, and concerning the growth behaviour under 
operational loadings, especially creep and creep-fatigue cycles. The impact of the working environment on de-
formation behaviour is of specific importance. Three candidate alloys for the turbine rotors and discs , and one 
alloy for the turbine blading were investigated: 
• solid solution hardened INCONEL 617; 
• γ´ hardened alloy Waspaloy; 
• INCONEL 706, precipitation hardened by γ´, γ´´ and η; 
• single crystalline CMSX-4, hardened by a large volume fraction of γ´ precipitates. 
 
EXPERIMENTAL DETAILS 
 
Materials 
The nominal composition and the microstructures of the four test materials are shown in Figure 1.The alloy 
INCONEL 617 is a Ni-Cr alloy solid solution strengthened by additions of Co and Mo and was originally de-
veloped as a sheet material for aero gas turbine combustion chambers. This alloy is a typical example of a 
forgeable material used in the solution heat treated condition. The material INCONEL 706 is a Nb containing 
Ni-Fe-base alloy with good forgeability for applications for large scale components. This alloy is strengthened 
by a complex structure of γ’, γ’’ and, dependent on the heat treatment, η phase precipitates. Waspaloy is a γ’ 
hardened material with a low C content leading to a small amount on M23C6 precipitates on the grain bounda-
ries. Because of the high Ti/Al ratio γ’ precipitates in a bimodal size distribution of primary and secondary γ’ 
particles. Both alloys may be candidates for applications as rotors or disks in steam turbines with very high 
steam temperatures of about 700 °C. Single crystalline superalloys, first developed for aero gas turbine blades, 
exhibit a significant improvement in creep and fatigue resistance over conventionally cast, equiaxed superal-
loys, allowing about 80C higher materials temperature in operation. Alloy CMSX-4 is a typical second genera-
tion, single crystal material with about 70 vol% γ´ and solid solution strengthening of the γ matrix by 3 wt.% 
Re. 
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igure 1: Nominal chemical compositions and microstructures of test materials 

est methods 
2.7 mm CT specimens (ASME standards E 399 and E647) were machined from the wrought materials with 
uide notches if necessary (10% of the thickness of specimen, 60° angle). Specimens were fatigue pre-cracked 
t room temperature up to a depth-to-width ratio of 0.3 - 0.4. Assuming linear elastic fracture conditions [1,2], 
he results were interpreted using the stress intensity factor, KΙ 

( w/af )
WB

FK 2/1
max

I ⋅
⋅

=       (1) 

here Fmax= maximum of applied force, B, W = dimensions of the specimen, a = crack length and  f(a/w) a 
eometrical factor.  

NCONEL 617, Waspaloy and INCONEL 706 tested at 700°C or higher do not behave linear elastically, but 

iscoplastically. If the opening velocity V  of the crack is considered, the integral of deformability (C*) is ob-
ained by  

•

     C ⋅= η       (2) Vnet

•

⋅σ*

or CMSX-4, single edge notched (SEN) specimens were manufactured from <001> orientated cast plates. The 
I function for SEN specimens under stress load is normally given by 

   caI ⋅K = πσ       (4)  
pecimens with corner cracks exhibit a much more complicated stress distribution ahead of the crack tip. This 
pecimen represents the realistic crack geometry within a component due its three dimensionality. Mathemati-
al results are given in [3,5,6], whereby a square edge crack surface area is estimated. One differentiates be-
ween the stress intensity factors along the surface of the specimen and in the direction of 45°. Then the stress 
ntensity factor across the whole crack surface may be estimated by 
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he approximations help in understanding the crack propagation of a corner edge crack [4]. The experimental 
bservations indicate that for CMSX-4 the KI-concept may be used at both test temperatures. 



 
RESULTS 
 
INCONEL 617 at 500°C 
A comparison of the behaviour of creep crack either obtained by the evaluation as fatigue- or as creep-crack 
curves (Figure 2) shows: the values of ∆KI in air and in vacuum are similar, the specimen in vacuum, however, 
developed a much higher resistance for creep deformation with higher ∆KI- values. In the Paris regime of the 
crack curve the slope measured in both test atmospheres is similar. The behaviour of the crack growth curve in 
open air may be derived by a parallel transfer of the curve obtained in vacuum. The microstructure in the crack 
path consists of three regimes, whereby the fracture strain lines are observed to be stronger in open air than in 
vacuum. 
 
After optimisation of the marker parameters [2,6], the marker lines are visible in the crack path surface. There 
are the same indications observed for this material at the test temperature. The crack initiation in air requires 
less stress intensity compared to vacuum; the Paris slopes are similar in both test environments, the end of de-
formability is higher in vacuum than in air (Figure 2). 
 

 
Figure 2: Results of crack growth experiments with INCONEL 617 in air and vacuum at 500°C, measurements 

by potential drop (PD) or by the marker technique [6] 
 
 
Creep crack growth of wrought alloys 
For the application of the wrought alloys INCONEL 617, INCONEL 706 and Waspaloy as large scale compo-
nents, the creep crack growth behaviour becomes important. The results shown in Figure 3 demonstrate the 
influences of the temperature and of the environment on the creep crack growth resistance in the temperature 
range of 650 - 750°C. Figure 3a shows a comparison of the three alloys at 700 °C; for INCONEL 706, an η-free 
and an η-containing variant were investigated. The η phase precipitates as a cellular structure on the grain 
boundaries (see Figure 1) which results in an increase of the crack growth rate by a factor up to 10 compared 
with to the η free variant. Waspaloy shows the best creep crack growth resistance of the three alloys, with the 
highest K value for the crack initiation. 



 
 
An example for the temperature dependence of the creep crack growth is given in Figure 3b. The exponent of 
the crack growth equation shows the highest value at 700 °C and the initial K value decreases with increasing 
temperature. The influence of the environment is demonstrated with the example of the η−free INCONEL 706 
variant at temperatures of 650°C and 700°C in Figure 3c. The creep crack growth rate is higher in air than in 
vacuum, but with increasing temperature influence of test environment diminishes. 
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igure 3: (a) Comparison of creep crack growth at 700°C in vacuum for INCONEL 617, INCONEL 706 (η-

containing and η-free versions) and Waspaloy; (b) effect of temperature on creep crack growth rate 
of Waspaloy in vacuum; (c) effect of temperature and test environment on creep crack growth in η-
free INCONEL 706.  

EN CMSX-4 at 750 and 1000°C 

he results of fatigue crack growth experiments with SEN CMSX-4 specimens are summarised in Figure 4. At 
50 and 1000°C, the fatigue crack growth behaviour of specimens with different orientations resulted in the 
xpected functional behaviour (“Paris-Erdogan”) of da/dN versus ∆KI (the cyclic stress intensity factor [3]. At 
50°C, the threshold values were higher and the slope of the Paris equation not so steep compared to the values 
t 1000°C. The influence of the crack path in an <001> oriented specimen seemed to be more marked at 750 
han at 1000°C. Specimens with a <100> crack path orientation came to a sudden fracture by a spontaneous 
hange to the {111} sliding planes. The <110> crack path orientation did not show this behaviour.  

igure 4 compares the fatigue and the creep fatigue behaviour at 1000°C. The edge crack specimen showed the 
ame threshold values for both types of test, but the creep crack curves did not exhibit any changes in the crack 
rowth rate. Therefore one may expect that creep-fatigue is more influenced by the deformation at the crack tip 
han by oxidation. If K as the stress intensity factor controlling the creep crack behaviour is used, the fatigue 
nd the creep-fatigue results lie in the same range. At high K values and crack growth rates, the differences 
etween fatigue and creep-fatigue became more significant. Because of these observations, one may conclude 
hat creep dominates the crack growth process at low ∆K or K values, and fatigue at high ∆K or K values. 
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Figure 4 :  Scheme of Crack growth behaviour of CMSX-4 in fatigue and creep fatigue crack growth tests [3]. 
 
 
Therefore, one may assume that the position of the crack front in relation to the {111} sliding planes is respon-
sible for the observed brittle fracture. At 1000°C and for low ∆K values and low crack growth rates, the crack 
growth behaviour may be understood as typical crack behaviour of small cracks. This behaviour could be ex-
plained by the crack closure because of plastic deformation at the crack tip, oxidation and depletion of the crack 
surface areas and the start of the γ´ rafting process. These influences blunt the crack tip and the stress singular-
ity decreases, so that the crack could be stopped or slowed down. At the low test temperatures, the influence of 
oxidation behaviour in the crack tip is not clearly demonstrated. 
 
The oxidation behaviour at the crack tip became more important at the higher test temperatures. The compari-
son of the crack growth experiments in air and vacuum proved that the oxidation process influences signifi-
cantly the crack initiation point or the initial stage of crack growth. Fractographic examinations using scanning 
electron microscopy (SEM) indicate for CMSX-4 (high volume fraction of γ´) a slightly different behaviour 
compared to equiaxed Ni alloys with γ´ volume fractions below 50%. In CMSX-4 at 750°C, high ∆K-values 
and high rates of crack growth, the fracture surface tended to shift to a {111} gliding plane, whereas at 1000°C 



 
this was not observed. The crack surface of CMSX-4 at 750°C air followed at low ∆K-values the γ channels or 
the γ/γ´ interface region. At high ∆K-values, a change in the crack surface growth to be the {111} plane was 
observed and a cutting of γ´ occurred. 
 
 
 
SUMMARY 
 
The influences of test temperature and of the environment (air versus vacuum) have been investigated Ni-base 
alloys representing two different alloy types: solid solution hardened INCONEL 617 and the single crystal γ`-
hardened CMSX-4. At test temperatures of 500 and 700°C there was no significant of test environment on the 
crack growth rate in the “Paris” region. However, a distinct influence of the environment on crack initiation 
was found.  
 
The results of creep-fatigue crack growth experiments on the alloy CMSX-4, using single edge notched speci-
mens at 750°C (maximum root-temperature) and for 1000°C (maximum airfoil temperature) showed that at 
750°C and below the cracks, controlled by K concept, followed a zigzag line by changing the orientation along 
the {111} and {100} gliding planes. An influence of atmosphere was observed at the beginning and at the end 
of the crack growth. At high temperatures, such as 1000°C, crack propagation along the {100} planes was 
found. 
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Abstract 
 

12 Cr heat-resisting steels have been developed for the high efficiency heat resisting steels of boiler and 
turbine and high temperature plant materials. These materials have been used under fatigue, creep and 
fatigue-creep multiplication conditions under corrosive environment and elevated temperature. It is 
necessary to clarify the effects of stress holding time, stress rising time, stress decreasing time, stress 
frequency on time-dependent fracture or crack growth under creep and fatigue-creep conditions at high 
temperatures. However, there are few papers in which each factor was systematically obtained. 

In this paper, creep test and fatigue-creep multiplication condition test were conducted using 
compact tension (CT) specimens of HT1200 steel at high temperatures of 600 °C, 650 °C and 700 °C. 
In order to clarify strength mechanism of this material, both load line displacement and crack growth 
length were measured. Micro-structural and macro-structural fracture surfaces were also observed by 
optical microphotography and scanning electron microscope and so on. 
 
 
Key words 
 
Fracture, Crack growth rate, Load line displacement, High temperature, Fatigue-creep multiplication 
condition , Stress intensity factor, Scanning electron microscope, Activation energy. 
 
 
1. Introduction 
 
Many components in high temperature applications are subjected to variable loading patterns during 
service such as creep, fatigue and creep-fatigue. Creep-fatigue behavior is a complex problem of 
cyclically applied loading at high temperatures where time-dependent, thermally activated process can 
occur. The crack growth rate under the conditions of the creep-fatigue interaction will reflect the creep 
process and the fatigue process dominant near the crack tip. The majority of early work on high 
temperature structural alloys was concerned with static creep or fatigue testing. The crack growth rates 
in these cases were correlated with the parameters [1-3] such as the stress intensity factor, C* integral, 
crack opening displacement and Q* parameter. 
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Recently, the combined effects of temperature and frequency on the crack growth rate under 
creep-fatigue interaction have been determined and analyzed on the basis of the Arrhenius thermally 
activated process [4,5]. It has been shown that the activation energy thus obtained decreases with 
decreasing hold-time. The stress wave shapes such as triangular form and trapezoidal form have a 
strong effect on the crack growth rate. Similar effects of temperature and frequency were observed in 
terms of the failure life . 

In this paper, the creep-fatigue tests were performed on the compact tension type specimens 
of 12 Cr steel at various combinations of temperatures and frequencies. The combined effects of 
temperature and frequency on the crack growth and the failure life were determined and analyzed based 
on the thermally activated processes. 
 
 
2. Specimens and Experimental Procedure     

    
The material used was 12 Cr steel (HR1200), and its chemical composition and mechanical properties 
are shown in Tables 1 and 2, respectively. The test specimens were of compact tension (CT) type with 
side grooves, as shown in Fig.1. The width W and the thickness B of the specimen were 50.8 and 25.4 
mm, respectively. All the tests were performed using the lever-arm high temperature creep-fatigue 
machine, which could apply stress cycles involving various hold-times to the specimens. The amount 
of crack growth was measured using the electrical potential method and calculated by Johnson’s 
formula. The stress wave form used for the creep-fatigue loading is shown in Fig.2. The gross stress σg 
and the frequency f are given as 
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Table.1  Chemical composition ( % )              Table.2  Mechanical properties 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1  CT specimen geometry and size           Figure  2  Stress wave form 
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where tH is the hold-time, tR the time for rising or descending stress rate. The tests were performed 
using four different hold-times tH of 2, 10, 60 and 600s., resulting in frequencies of 1.6 x 10-2, 1.4 x 10-2, 
8.3 x 10-3 and 1.5 x 10-3 Hz, respectively. The test temperatures were 600, 650 and 700°C and the 
temperature variation was ± 2 °C. The specimens were preheated, subjected to 10 % of the test load to 
maintain the alignment, at the test temperature for 16 hours and then loaded to a given stress cycle. The 
creep tests (tH =∞) were also performed under the constant stress at each temperature. 
 
 
3. Experimental Results and Discussion 
 
Figures 3 and 4 show the load line displacement ∆δ and the crack growth ∆a versus the time t 
normalized to the failure time tf, respectively, at temperature 650°C. The load line displacement grows 
gradually  until it is accelerated  around  t / tf  = 0.8.  The  ∆δ – t / tf  curves fall on the same line  
independent of the hold times. However, the ∆a – t/ tf curves depend on the hold time. There is the 
region of  nearly  constant  crack growth rate that occupied more than 60 % of the failure time tf , as  
shown in Fig.4. The crack growth rate da/dt is plotted as a function of the load line displacement rate at 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 3   Load line displacement ∆δ versus          Figure 4   Crack growth ∆a versus 

normalized time t/tf ( 650 °C )                        time t/tf  ( 650 °C )   
  
                                                     
           
 
 

 
 
 
 
 
 
 
 
 

 
 

Figure 5  Crack growth rate da/dt versus load line displacement rate dδ/dt ( 650 °C ) 
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temperature 650 °C in Fig.5. For creep (tH = ∞) and tH = 600 s, the da/dt – dδ/dt curves initially have a 
typical trend of nose-like shape and then da/dt is proportional to dδ/dt. For hold-times less than tH = 60s, 
dδ/dt is accelerated more than da/dt over the entire range of the experiment. 

The crack growth rate da/dt is plotted as a function of the stress intensity factor range ∆K for 
temperatures 650 and 700°C, in Figs.6 and 7, respectively. The stress intensity factor is given as 
follows. 

 

)W/a(f
WB

PK
1

=                            (3) 

where 

｝｛ 432
2/3 )W/a(60.5)W/a(72.14)W/a(32.13)W/a(64.4886.0

)W/a1(
)W/a2()W/a(f −+−+

−
+=  

It is evident that the crack growth rates, measured at each combination of temperature and frequency 
are largely different. As described above, there are two regions, region I for the constant crack growth 
rate expect for creep and region II for the accelerating crack growth rate. The constant or steady-state 
crack growth rate occupies more than 60 % of the failure life. Figure 8 shows the side view of fracture 
surface at the middle of the specimen thickness for tH=2s. Crack branching deviating from the main 
crack can be observed to occur at many sites under the creep-fatigue condition, while there exists no 
crack branching under the creep condition. The constant crack growth rate may be attributed to crack 
branching. 
 

 
 
 

 
 
 
 
 
 
 
 
 
 
 
Figure 6  Crack growth rate da/dt versus stress     Figure 7  Crack growth rate da/dt versus stress 

intensity factor range ∆K( 650 °C )               intensity factor range ∆K( 700 °C )   
              
                                                                                            

 
Figure 8  Side view of fracture surface at 650 °C 
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Figure 9  Dependence of constant crack growth rate da/dt on frequency f for various temperatures 

 
The combined effects of temperature and frequency on the constant crack growth rate are 

shown in Fig.9. The dependence of the crack growth rate on frequency can be explained in terms of the 
following relationship between the crack growth per cycle da/dN and the crack growth rate da/dt 
 

dN/fdadt/da =                                 (4) 
 
At high frequencies where da/dt is proportional to frequency, the crack growth per cycle is insensitive 
to frequency and cycle-dependent fatigue process is dominant. The da/dt decreases gradually with the  
decreasing frequency and the trend towards a horizontal line in Fig.9 at low frequencies corresponds 
with where da/dt is constant and time-dependent creep mechanisms will be expected to dominate. As 
the temperature increases, the difference of the crack growth rates between creep, fatigue and creep- 
fatigue interaction is small. Dependence of the constant crack growth rate on temperature can be 
explained on the basis of the thermally activated process, in terms of the relationship between da/dt and 
the reciprocal of absolute temperature T, as shown in Fig.10. The constant crack growth rate can be 
expressed as [5]. 
 

( )RT/QexpAKdt/da n
in −=                        (5)    

 
where A and n are the constants, Kin the initial stress intensity factor, Q the activation energy for the 
crack growth of the creep, and creep-fatigue interaction conditions, R the gas constant and T the 
absolute temperature. In this experiment, Kin is constant and the activation energy Q for each hold-time  
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

Figure  10    Dependence of constant crack growth rate da/dt on temperatures T 
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Figure 11   Variation of normalized activation energy Q/QCREEP with hold-time tH 
 
can be calculated from the slope of the curve. Although the activated energy tends to decrease as the 
temperature decreases for higher frequencies, the average value of Q over the range of the test 
temperatures can be obtained from the slope of the da/dt – l/T curve for each frequency. The value of Q 
normalized to the value of QCREEP for the creep crack growth is plotted as a function of the hold-time tH 
in min, as shown in Fig.11. The normalized activation energy Q/QCREEP decreases with decreasing 
hold-time and the activation energy Q can be expressed as 
 

( )[ ]HCREEP tBexpA1QQ ′−′−=                      (6) 
 
where, A' and B' are the constants. The value of QCREEP is 220.3 kJ/mol, the constants A' and B' are 
0.74 and 0.51, respectively. The dependence of the constant crack growth rate on temperature can be 
described based on the thermally activated processes by taking account of the hold-time under the 
creep- fatigue interaction condition. 
 
 
4. Conclusions 
 
The creep, fatigue and creep-fatigue interaction tests were performed on the compact tension specimens 
of 12 Cr steel at three different temperatures. The crack growth rates were correlated by the stress 
intensity factor and there is the region of the constant crack growth rate that occupies more than 60 % 
of the failure life. At high frequencies where the constant crack growth is proportional to the frequency, 
cycle-dependent fatigue processes are dominant. The trend towards the horizontal line at low 
frequencies corresponds to the creep processes where the crack growth rate is independent of frequency. 
Dependence of the constant crack growth rate on temperature can be described on the basis of the 
thermally activated processes by taking account of hold-time. 
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ABSTRACT 
 
The aim of this work is to identify the effect of steady torsion on crack growth. Crack growth was studied in 
a Ti6Al4V alloy at room temperature. Push-Pull tests (R=-1) with different levels of tension/compression 
were carried out with and without steady torsion. Round specimens according to ASTM E 606-80, with a 
pre-crack, were used and an assembly allowed to introduce the steady torsion. A Pulsed DCPD system with 
a very high resolution ( less then 1 µm ) was used to measure the crack growth. 
At each level of tension, with and without steady torsion, the shape of the da/dN-∆K curve was assessed. 
Closure effects, which are in Ti6Al4V alloys primarily associated with the roughness-induced mechanism, 
due to steady torsion were also assessed at different R (R = -1; -0,23; 0,1 and 0,5 ).  
The fatigue threshold for small cracks was studied in relation to the mechanisms of propagation of short 
cracks with and without steady torsion. 
 
 
Keywords:  fatigue; crack growth; multiaxial; steady torsion.  
 
 
INTRODUCTION 
 
A combination of a steady torsion and an alternated tension is common in many practical problems such as 
power shafts and other rotating parts of cars, trains and airplanes. 
The orientation of the principal axes associated with the alternating components remain fixed, and the steady 
torsion doesn’t introduce a mean stress on the direction of the alternating component. Nevertheless, it’s 
accepted that steady torsion changes the overall behavior of the components.  
The role of steady torsion on the propagation behavior of specimens under alternated tension has been 
studied by several authors. Hourlier and Pineau [1-4] and Tschegg et al [5] used round specimens with a 
circunferencial crack on different alloys: Al alloys, steels, and titanium alloys. This authors detected a 
pronounced reduction on mode I fatigue crack growth rate, and imputed this effect to crack closure produced 
by the macrofaceted “factory roof” type fracture surface. Pinho [6] studied the influence of a steady torque 
on a high strength steel with a semi-elliptical crack shape and different concentration factors related to 
several concordance radius. The specimens didn’t have a pre-crack. Pinho found the opposite behavior. Due 
to steady torsion, the mode I fatigue crack growth rate increases with steady mode III. Pinho also concluded 
that most of the cracks, in round specimens under alternated mode I and steady mode III are semi-elliptical. 
Only with high stresses and high stress concentrations factors the crack is circumferencial. And this happens 
only on a few specimens. 
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Tschegg et al [7] also studied the influence of steady torsion on the fatigue threshold, Kth. This author used a 
round 13 % chromium steel specimen with a circunferencial crack,  and found that steady mode III increases 
the fatigue threshold.   
In these studies, two mechanisms have been assumed as the causes of this behavior: work hardening at the 
crack tip; and closure effects. And the conclusion of most of the authors [1-5, 7] is that cyclic plastic 
behavior is not the dominant mechanism. Closure effect induced by roughness is assumed as the main 
mechanism. This effect is more relevant with an imposed steady mode III.  
In Ti6Al4V alloys, in mode I crack growth, the closure mechanism is attributed mainly to roughness, Ogawa 
and Ravichandran [8,9]. 
In this work, the authors will try to explain that, under alternated tension and steady torsion, and a semi-
elliptical crack, roughness may not play an important role as happens with circunferencial cracks, and cyclic 
plastic behavior of materials may be more relevant then roughness.   
 
 
MATERIALS AND METHODS 
 
Material and specimens 
 
The material used in this investigation is a Ti6Al4V alloy. The chemical composition (wt.%) is Al:6,1; V: 
4,21; Fe:0,20; Ni:0,01. The material was delivered on the mill annealed condition: 2h, 735±15ºC, air cool. 
The mechanical properties are listed in table 1. The specimens used are round specimens according to 
ASTM E 606-80, with a precrack. (fig.1). Stress concentration factors are respectively, for tension and 
torsion: 2,32 and 1,67. 

 
 
 
 

 
 
 
 
 
 
 

Figure 1 . Specimen geometry according to ASTM E 606-80, ∅=12 mm and L=133 mm. Pre-crack: a0=100 
µm; thickness = 300 µm; length = 2200 µm; curvature radius ρ=150 µm. Kt (tension)=2,32; Kt 

(torsion)=1,67 
 

Table 1 : Mechanical Properties of Ti6Al4V 
σced (0,2%) 

MPa 
σr 

(MPa) 
E 

(MPa) 
989 1055 1,15*105 

 
Methods 
 
Fatigue tests were conducted at two levels of alternated tension, ∆σ, and one level of torsion, τ, as indicated 
in table 2, in laboratory air using a sinusoidal loading with different  ratios of tension, (R= -1; -0,23; 0,1; and 
0,5) under loading control at a frequency of 8 Hz on a servo-hydraulic testing machine. The steady torsion 
was introduced using an assembly with dead weigth. At each level of tension and torsion the shape of the 
da/dN-∆K curve was assessed. Tests presented in this work are representative tests of more than 50 tests.  A 
Pulsed DCPD system with a resolution better than 1 µm [10] was used to measure the crack growth. Fracture 
surface examinations were made using an optical microscope. 
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Table 2 : Testing Conditions. Stresses don’t include stress concentration factors. 
Test R ∆σ [MPa] τ [MPa] σy

máx [MPa] σ1 [MPa] 
1 -1 698 0 349 349 
2 -1 698 349 349 573 
3 -1 884 0 442 442 
4 -1 884 442 442 716 
5 -1 1060 0 530 530 
6 -1 1060 530 530 858 
7 -0,23 698 0 575 575 
8 0,1 698 0 796 795 
9 0,5 411,5 0 823 823 

10 0,5 411,5 349 823 951 
 
RESULTS 
 
The relationship between fatigue crack growth and ∆K, at different R levels is presented in fig. 2. (tests 
1,2,7,8,9,10). Tests for  R=-1 (∆σ = 698 MPa) and R=0,5, with steady torsion are also at the same graphic. 

Ti6Al4V
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R=0,5
R=0,5 with torsion
R=-1 with torsion

100

Figure 2 : Relationship between fatigue crack growth and stress intensity factor range, ∆K, at different R 
levels. Tests with R=-1 (∆σ = 698 MPa) and R=0,5 are presented with torsion and without torsion.  

 
The results can be summarized as follows: 
 
1. When the R value increase, the fatigue crack growth curve tend to the left; 
2. For R=-1 (∆σ = 698 MPa) tests with steady torsion tend slightly to the right, mainly on small crack 

regime; 
3. For R=0,5 (almost closure free), tests with steady torsion tend slightly to the left; 
4. On the small crack regime, steady torsion seems to be more important for R=0,5 than for R=-1. 
5. The fatigue crack Threshold, Kth, seems to decrease with steady torsion. 
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Figure 3 : Relationship between fatigue crack growth and  stress intensity factor range, ∆K, at different 
levels of ∆σ, and R= -1.  
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Fig  3 show the results of some other tests with different levels of alternated tension (tests 1-6) , under R= - 
1. Tests 2,4, and 6 have steady torsion. 
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Figure 4 : Relationship between fatigue crack growth and stress intensity factor range, ∆K, at different levels 
of ∆σ, and R= -1. a) Tests without steady torsion. b) Tests with steady torsion.  
 
This results, for R= -1 can be summarized as follows: 
 
1. Without steady torsion, as ∆σ increases, the fatigue crack growth curve tends to the right (fig.4 a). On 

the small crack regime the influence is more relevant and Kth increases with ∆σ. 
2. With steady torsion, as ∆σ increases, the fatigue crack growth curve tends to the left (fig.4 b). On the 

small crack regime the influence is more relevant and Kth decreases with ∆σ. 
3. As ∆σ increases, the difference on crack propagation rate between curves with steady torsion and 

without steady torsion, increases also (fig. 3);  
 
Macroscopic observations of fracture surfaces 
 
Figs. 5 - 6 show macroscopic photographs of fracture surfaces of tests with R=-1, with and without steady 
torsion. Fig. 6 have an alternated tension of 698 MPa, and fig. 7 have an alternated tension of 1060 MPa.  

Figure 5 : Macroscopic appearance of fracture surfaces. ∆σ = 698MPa. a) without torsion; b) with torsion 

b) a) 

 

Figure 6 : Macroscopic appearance of fracture surfaces. ∆σ = 1060 MPa. a) without torsion; b) with torsion. 

b) a) 

 
In fig. 7 we can observe macroscopic photographs of the fracture surfaces of tests with R=0,5, with and 
without steady torsion. 
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a) b) 

Figure 7 : Macroscopic appearance of fracture surfaces.  R=0,5. a) without torsion; b) with torsion. 
 
The results can be summarized as follows: 
 
1. As the R value increase, the macroscopic fracture surface is smoother; 
2. For R=-1, steady torsion produces the so called “factory roof” effect. This effect is more relevant as the 

level of ∆σ  increases. 
3. For R=0,5 steady torsion doesn’t introduce the “factory roof” effect; 
4. “Factory roof” effect, at R=-1, seems to be present since the very beginning of the tests. For crack 

lengths less than 0,1 mm. 
 
DISCUSSIONS 
 
In terms of propagation life it’s clear that decreasing R (fig.2) the fatigue crack growth curve tends to the left 
and it’s observed that the fracture surface becomes smoother. This result is in accordance with theories [8-
9,11-12]. When imposing steady torsion, the surface roughness increases because of the so called “factory 
roof” effect. This is true only for R=-1, and not for R=0,5. For R=0,5 it’s observed that the propagation rate 
with steady torsion is slightly higher than without steady torsion. If there is no effect of surface roughness 
one may conclude that another mechanism than surface roughness is responsible for this behavior. Let’s 
assume that this mechanism is related with cyclic plastic behavior of this alloy (or plastic zone size).  
For R=-1 (fig.2) there is no significant difference on propagation rate in tests with and without steady torsion 
at an alternated tension of ∆σ = 698 MPa. When the amplitude of tension increases, curves of tests without 
steady torsion tend to the right (fig.4 a) while curves of tests with steady torsion tend to the left (fig.4 b). 
This could mean that cyclic plastic parameters push the curve to the left, but another mechanism, which may 
be surface roughness (without steady torsion) and “factory roof” effect, with steady torsion, pushes it to the 
right. As a result it’s observed that those two mechanisms, surface roughness or “factory roof” effect, and 
cyclic plastic behavior compete with each other. It’s interesting to observe that, without steady torsion, when 
stresses increase, roughness effect prevails, and curves tend to the right. This is because plastic effect is not 
relevant. When steady torsion is imposed, cyclic plastic effects become more important then roughness or 
“factory roof” effect. And this is more relevant when stresses are high. The difference between curves with 
and without steady torsion increase with increasing alternated tension (fig. 3).  
On the small crack regime it’s observed that the tendency of the threshold, Kth, is the same as for long crack 
regime, but it’s even more relevant. This behavior is opposite to the behavior in the work of Tschegg, Pineau 
and Hourlier [1-5]. This authors worked with round specimens with a circumferential crack. Fig. 7 show the 
fracture surfaces of tests with a circumferencial crack and with a semi-elliptical crack. Both with steady 
torsion. As it’s observed, it seems that with a circumferential crack, the effect of the faceted structure is 
greater, because the surface of the crack is much bigger. With a semi-elliptical crack the effect of the faceted 
structure may not be so relevant because the surface of the crack is smaller. 

Ti6Al4V with a 
semi-elliptical crack

34CrNiMo6 with a
cincumferencial crack [6] 

Figure 8 : Macroscopic appearance of fracture surfaces under a test with R=-1 with steady torsion. 
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Maybe this is the reason why when imposing steady torsion, curves of crack propagation rate tend to the 
right, in work of Pineau, Hourlier and Tschegg, and tend to the left in this work.  
Work of Tschegg [7] conclude that steady torsion increases threshold, Kth.This work concludes the opposite. 
The reason may be the same as for long crack regime. 
Another possible explanation may be on cyclic plastic behavior of different materials with and without 
steady torsion. Steady torsion may have a softening or hardening influence on the  cyclic plastic behavior of 
the materials. And this may be another possible reason for the behavior of this alloy in this work. 
In high cycle fatigue, and with high frequencies, because plastic effects are small, roughness effect may 
prevail over cyclic plastic effects. 
 
 
CONCLUSIONS 
 
The main conclusions of this work can be summarized as follows: 
 
1. With semi-elliptical cracks, between the two mechanisms which are present at the tip of the crack, cyclic 

plastic behavior seems to prevail over roughness or “factory roof” effect; 
2. This effect causes crack propagation curves to move to the left with imposed steady torsion; 
3. This tendency is more relevant for high stresses and in the small crack regime; 
4. Fatigue threshold for small crack regime follows the same tendency. 
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ABSTRACT 
 
An analytical investigation of the growth behavior of an edge crack in a rectangular sheet specimen made 
of a solid propellant was performed. The specimen was subjected to a uniform displacement along its 
upper and lower faces. The solid propellant was simulated as a hyperelastic material with constitutive 
behavior described by the Ogden strain energy potential. A nonlinear finite deformation analysis of the 
stress and displacement fields was performed using the finite element code ABAQUS. A very detailed 
analysis of the stress field in the vicinity of the crack tip was undertaken. The deformed profiles of the 
crack faces near the crack tip were determined. The results of stress analysis were coupled with the strain 
energy density theory to predict the crack growth behavior including crack initiation, stable crack growth 
and final termination. Crack growth resistance curves representing the variation of crack growth 
increments versus applied displacement were drawn. 
 
 
KEYWORDS 
 
Crack growth, Solid propellant, Finite element analysis, Hyperelastic material, Nonlinear behavior, Finite 
deformations. 
 
 
INTRODUCTION 
 
Solid propellants are particulate composite materials, containing hard particles embedded in a rubber 
matrix. On the microscopic scale, a highly filled propellant can be considered as nonhomogeneous. When 
the material is strained, damage in the form of microvoids in the binder or debonding at the 
matrix/particle interface takes place. As the applied strain in the material is progressively increased the 
growth of damage takes place as successive nucleation and coalescence of the microvoids or as material 
tears. These processes of damage initiation and evolution are time-dependent and they are mainly 
responsible for the time-sensitivity of the nonlinear stress-strain behavior of solid propellants. Their 
mechanical response is strongly influenced by  the loading rate, temperature and material microstructure. 
 
A considerable amount of work has been performed by Liu and coworkers [1-3] to study crack growth 
behavior in solid propellants. They investigated the characteristics of damage zone near the crack tip and 
crack growth behavior in cracked specimens of a solid propellant. From experimental results they 
established that the damage characteristics have strong effects on crack growth behavior. Crack growth 
consists of crack tip blunting, resharpening and zig-zag crack growth. 
The objective of the present work is to study the characteristics of the damage zone near the crack tip and 



the crack growth behavior in edge and centrally cracked sheet specimens of a solid propellant. The stress 
field in the cracked plates is evaluated by modeling the solid propellant as an incompressible visco-
hyperelastic material. A very detailed finite element analysis in the vicinity of the crack tip takes place. A 
methodology based on the strain energy density criterion is developed for the determination of the critical 
stress at the onset of crack initiation and the history of stable crack growth up to final instability. 
 
 
CONSTITUTIVE BEHAVIOR 
 
Solid propellants are modeled as hyperelastic materials. The behavior of hyperelastic materials is 
described in terms of a strain energy potential U(ε). The more frequently used forms of the strain energy 
potentials for modeling approximately incompressible isotropic materials are the polynomial form and the 
Ogden form. 
 
The form of the polynomial strain energy potential is 
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where U is the strain energy per unit of reference volume, N is a material parameter, Cij and Di are 
temperature dependent material parameters, I 1  and I  are the first and second deviatoric strain invariants, 
defined as 
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with the deviatoric stretches JJ ii ,3/1 λλ −= is the volume ratio, λi are the principal stretches, and Jel is 
the elastic volume ratio without thermal expansion effects. 

The form of the Ogden strain energy potential is 
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N is a material parameter, and µi, αi and Di are temperature dependent material parameters. Because the 
powers αi can be chosen by the user, the Ogden form usually provides a closer and more stable fit to the 
test data for a similar number of material constants in the strain energy function, especially at large 
strains. If all of the Di are zero, the material is fully incompressible. If D1 is equal to zero, all of the Di 
must be equal to zero. 
 
For cases where the nominal strains are small or only moderately large (<100%), the first terms in the 
polynomial series usually provide a sufficiently accurate model. The simplest form of the polynomial 
function is the form with N=1, which is the compressible form of the classical Mooney-Rivlin law: 
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When C01=0 the strain energy function corresponds to the compressible form of the neo-Hookean law. 
 
FINITE ELEMENT ANALYSIS 



 
The finite element method was used to solve the boundary value problem of an edge cracked specimen 
subjected to a uniform displacement along its upper and lower faces. The specimen is a rectangular sheet 
of width w=76.2 mm and height h=25.4 mm (Fig. 1). The thickness of the specimen was small enough to 
assume that conditions of plane stress prevail. An initial edge crack was introduced in the mid height of 
the specimen parallel to the specimen width. The crack length took the values a=2.54 mm, 15.24 mm and 
30.48 mm. The specimen was made of a solid propellant. It was subjected to a uniform displacement u0 
along its upper and lower faces. The stress-strain curve of the propellant in tension is shown in Fig. 2. 
 
A nonlinear large deformation analysis was performed by the ABQUS computer code. The discretization 
of a small region of the specimen crack tip are presented in Fig. 3. The applied displacement u0 was 
increased incrementally. Results for the strain energy density, dW/dV, along the crack axis direction, are 
shown, in Fig. 4 for a=15.24 mm and for applied displacement u=0.0847 mm, 0.1694 mm and 0.2541 
mm. 
 
 
PREDICTION OF CRACK GROWTH 
 
Crack growth consists of three stages: crack initiation, subcritical or slow growth and unstable crack 
propagation. These stages of crack growth will be addressed in a unified manner by the strain energy 
density criterion. The criterion was introduced by Sih , and it was used by Gdoutos and co-workers [4-6] 
for the solution of a host of problems of engineering importance.According to the strain energy density 
theory crack growth takes place when the strain energy density at an element ahead of the crack tip 
reaches a critical value. This value is calculated from the stress-strain curve of the material in tension. 
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where σij and εij are the Cartesian stress and strain components. Equation (1) applies to all materials either 
linear (nondissipative) or nonlinear (dissipative).For the case when material failure initiates from the tip 
of a preexisting crack in a solid propellant attention is concretrated on the distribution of the strain energy 
function along the circumference of a circle centered at the crack tip. This circle represents the process or 
core region in which the continuum model fails to describe the state of stress and strain. The crack will 
grow in the direction of the minimum strain energy density function, (dW/dV)min. Onset of crack 
extension takes place when (dW/dV)min becomes equal to ( /  (referred to in sequel as 
(dW/dV)

)mindW dV c

c) which is directly determined from the area underneath the stress-strain diagram of the material 
up to the point of fracture. Crack growth initiation is expressed by 
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where (dW/dV)c is a material parameter.The value of the critical stress σi that triggers crack growth is 
determined from equation (5). The condition for stable crack growth is expressed by 
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where rm (m=1,2,...,j) are the crack growth increments. Crack growth becomes unstable when the critical 
crack increment rc is reached. rc is a material parameter and is calculated from rc=Sc/(dW/dV)c, where Sc 
is material parameter.The graphical procedure for the determination of the critical applied displacement u 



for initiate of crack growth are presented in Fig. 4 for a crack length a=15.24 mm. In this figure r0 is the 
radius of the core region within which the continuum model ceases to be able to represent the state of 
stress and strain. For analysis purposes in the present study r0 was taken equal to r0=0.014 mm. Based on 
the strain energy density criterion a series of crack growth increments are determined until the crack 
growth increment reaches the critical value rc=1.6 mm. The R-curve for this case is shown in Fig. 5. The 
deformed profile of the crack face near the crack tip for applied displacement u=0.4235, 1.2705, 2.1175 
and 2.9645 mm is shown in Fig. 6. Results for the critical stress for crack initiation and growth for 
various crack lengths is shown in Fig. 7.  
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Fig. 1  Geometry of edge-cracked specimen 
 
 

 
 
Fig. 2 Stress-strain curve of the solid                   Fig. 3   Finite element grid pattern in a small 

propellant in uniaxial tension                      region near the crack tip. 
 
 
 



 

 
Fig. 4 Determination of the critical value Fig. 5 Crack growth resistance curve. 
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Fig. 6 Deformed profile of cracks faces  Fig. 7 Variation of the critical applied displace- 

near the crack tip for various     ment u for crack initiation and unstable  
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ABSTRACT

This study investigates the crack growth initiation and subsequent resistance in ductile, open cell
foams. We consider a macroscopic crack in a cellular structure in mode I loading and under small
scale yielding conditions. The elasto-plastic response of the cell wall material is described by a bilin-
ear stress-strain relation and fracture of the cell walls is characterised by a fracture energy per unit
area. Suitable normalised problem parameters are identi�ed in a dimensional analysis. Crack growth
is simulated numerically by removing elements from a �nite element model. In this way, evolving
plastic zones and macroscopic K-resistance curves are calculated. Speci�cally, the dependence of the
macroscopic fracture properties upon the parameters of the cell wall material is addressed. The results
are compared with analytic estimates which are derived on the basis of simple considerations. The
results include the �ndings that the toughness of the foam scales linearly with the fracture strength of
the cell walls and quadratically with the relative density of the foam.

KEYWORDS

ductile fracture, crack resistance, R-curve, honeycombs, foams

INTRODUCTION

Metallic foams have unique property pro�les and are considered for a number of engineering ap-
plications such as e.g. cores of sandwich constructions. An increasing use of such materials calls for an
investigation of their failure mechanisms. Previous studies of the fracture properties of cellular mate-
rials seem to have been limited to the case of brittle base materials and to the prediction of a critical
stress intensity factor. For example, Gibson & Ashby [1] derive an estimate for Kc by calculating
the bending moment in a cell wall adjacent to the macroscopic crack tip from the asymptotic singular
stress �eld of linear elasticity-theory. The local stresses associated with bending of the cell walls can
then be expressed in terms of the applied K, and the fracture strength of the cell wall determines Kc.
Similar approaches have been followed by Choi & Lakes [2] and Chen & Huang [3], where the
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Figure 1: Cellular structure with a macroscopic crack under small-scale yielding conditions

latter used the crack tip asymptotics of a micro polar continuum theory. The authors are unaware of
any micro-mechanical studies on the inuence of the cell walls' ductility upon the macroscopic fracture
properties of a cellular solid; this is the objective of the present paper. We consider two-dimensional
irregular cellular structures as plane models for a metallic foam containing a macroscopic crack under
mode-I loading and employ the assumption of small scale yielding. By introducing a local failure cri-
terion, the initiation toughness, crack resistance curves and plastic zone evolution are then calculated
numerically.

MODEL SPECIFICATION

We consider two-dimensional hexagonal structures with a macroscopic crack according to Figure 1.
The beams (thickness t, average length l; termed 'cell walls' in the sequel) that make up the structure
are assumed to be suÆciently slender so that their shear compliance can be neglected compared to
their bending compliance (t=l� 1). The cell wall material is characterised by a uniaxial bilinear stress
strain relation of the form

� = �=E � < �y
� = �y=E + (� � �y)=H � > �y

(1)

in terms of the true stress �, true strain �, Young's modulus E, yield strength �y and constant hard-
ening modulus H. The assumption of small-scale yielding allows for the prescription of displacements
on a boundary remote from the crack tip as given by the mode-I K-�eld. The applied K is gradually
increased as a loading parameter until the stress in one of the beams attains the fracture strength
�f of the cell wall material. This marks the beginning of a local fracture process which itself is not
modelled in detail. Rather, we assume that it a�ects the macroscopic fracture response of the cellular
material only through the amount of work dissipated due to the fracture of the beam. Thus, we take
the fracture properties of the cell wall material to be suÆciently described through the fracture energy
per unit area of beam cross section �0. Crack propagation is then simulated by disconnecting a beam
from the respective vertex with the requirement that the work of fracture equals �0 times the cross
section of the beam A.

NORMALISATION AND ESTIMATES

Stress intensity factor

A characteristic value for the fracture toughness which also serves as a normalisation for the stress
intensity factor is introduced as

KY =
p
�l �y(t=l)

2 : (2)

This expression can be derived on the basis of elementary considerations by assuming that the local



deformation is bending dominated and that the displacement �eld around the crack tip is that of a
linear elastic solid whose sti�ness scales with (t=l)3. The dimensionless stress intensity factor is then
de�ned as ~K = K=KY.

Dimensionless problem parameters

The parameters of the model allow for the following set of dimensionless quantities upon which the
dimensionless fracture toughness depends.

� = t=l ; �y=E ; �f=�y ; H=E ; ~�0 = �0=(E�
2
yl) ; (3)

where � = t=l, up to a factor of proportionality, can be interpreted as the relative density of the
honeycomb; ~�0 is, up to a constant factor, the work required to break a beam divided by the elastic
strain energy contained in a beam under pure bending when the yield strain is attained at the outer
�bres.

Plastic zone

A simple estimate for the plastic zone can be derived by introducing a yield function of the cellular
material and inserting the asymptotic elastic stress �eld into it. In this way, a contour is de�ned inside
of which the stresses exceed the yield value and which thus serves as an estimate for the plastic zone.
Assuming a yield function quadratic in mean- and deviatoric stresses, which has been shown to be a
good approximation for irregular hexagonal honeycombs Chen et al. [4], the above procedure leads to
the estimate

rp(')=l =
5:06

2 + �2

~K2

�2
[sin2('=2) + �2(1 + cos')] (4)

for the plastic zone contour in terms of polar coordinates centred on the crack tip. Here, � is related to
the ratio of uniaxial to hydrostatic yield strength ! � �u=�h via �

2 = 2!2=(4� !2) and � denotes the
ratio of uniaxial yield strength for the irregular and regular honeycombs. In (4), the values ! = � = 0
and � = 1 correspond to a regular honeycomb.

NUMERICAL TECHNIQUE

The numerical evaluation of the above described model is performed with a �nite element method.
The beams are discretised with up to 7 cubic elements and the honeycomb slab is bounded by a circle
of radius R � 85l where the displacements are prescribed according to the mode-I K-�eld. When the
fracture strength �f is reached in one of the elements, that element is removed from the �nite element
model { thereby disconnecting the fractured beam from a vertex. This element removal is performed
with a built-in routine of the �nite element code ABAQUS which �rst replaces the element with the
forces and moments it exerts on its neighbouring nodes and subsequently reduces these section forces
to zero over a prescribed load-parameter interval. By choosing this interval, i.e. �K, appropriately,
~�0 can be adjusted to the desired value. In this way, crack propagation is simulated and K-resistance
curves are calculated.

RESULTS

The following cell wall material parameters are chosen as representative of those for aluminium alloy
foams:

�y=E = 0:1% ; �f=�y = 2:0 ; H=E = 0:1 ; ~�0 = 3:0 : (5)
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Figure 2: Predicted crack path in an irregular honeycomb

Crack path and plastic zones

A typical prediction of crack path is shown in Figure 2 with loading taken to the point where 15
cell walls have failed. This structure is generated by randomly perturbing the vertex positions of a
regular hexagonal honeycomb, the amount of perturbation being uniformly distributed between �15%
and +15% of the average beam length. Note that the broken beams do not form a continuous crack
path with leading to a unique position of the macroscopic crack tip; the broken beams divide the
structure into a multiply connected domain and this disconnected crack advance can be viewed as
a crack bridging phenomenon. The plastic zones at initiation and at �a = 8l are shown in Fig. 3
together with the estimate (4), in which ! = 0:7 and � = 0:8 have been used (These values have been
extrapolated from the calculations in Chen et al. [4] for the chosen level of imperfection in the foam.)
The plots in Fig. 3 have been obtained by marking with a cross the plastic vertices of 5 di�erent
realisations of an irregular honeycomb in the same plot. Thus, the intensity of the markers can be
viewed as the ensemble average for the magnitude of the plastic strain around the crack tip. The
estimate (4) for the plastic zone is in reasonable agreement with the numerical results with regard to
both shape and size.
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Figure 3: Plastic zones for the irregular honeycomb at initiation (left) and for �a = 8l (right)
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Figure 4: K-resistance curves for two values of fracture strength (left) and hardening modulus (right)

Crack resistance

Crack resistance curves in the form of a Stress intensity factor vs. crack elongation plots have been
obtained by averaging, at each stage of the crack propagation, the KR-values of 5 di�erent realisations.
Typical results are shown in Figure 4 where the error-bars indicate the standard deviation from the
corresponding mean value. The left plot illustrates the inuence of an altered cell wall fracture strength
(�f=�y 2:0 ! 2:65) and the plot on the right that of an altered hardening modulus (H=E 0:11 !
0:059). As could be expected, increasing the former and decreasing the latter both leads to elevated
KR values: In the �rst case, a larger applied K is needed to break the �rst beam because these can
sustain larger stresses. In the second case, the deformation of the mesh boundary and, hence, K needs
to be larger for the stresses to reach the unaltered fracture strength.
Because the shape of the R-curves remains essentially the same in all of the plots in Figure 4, we
can characterise the inuence of the cell wall material parameters by calculating only the initiation
toughness as a function of these parameters. The corresponding results are depicted in Figure 5 in a
log-scale representation, showing that ~Kc increases linearly with the normalised fracture strength and
decreases with the hardening modulus according to a power law with an exponent � �1=3.
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Figure 5: Initiation toughness vs. normalised fracture strength (left) and hardening modulus (right)



A result not shown here is that the dimensionless crack resistance remains practically unchanged upon
changing the relative density � from 5% to 10%. This means that the inuence of the relative den-
sity is adequately described through the normalisation introduced earlier, i.e. the dimensional fracture
toughness of the honeycomb scales quadratically with �. Further results include the �nding that, of
the parameters listed in (3), the yield strain �y=E has negligible inuence on the crack resistance.
In contrast, numerical experimentation revealed that an increase in ~�0 leads to large changes in the
applied stress intensity factor during the process of removing an element (i.e. fracture of a beam) {
with the e�ect that, at the end of a particular removal step, the stress may have attained the fracture
strength in several other elements. In this case, the proposed method fails to describe the process
adequately since it does not allow for the sequential fracture of beams at the crack tip. Nevertheless,
we conclude that the slope of the R-curve will increase with increasing ~�0.
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ABSTRACT 
 
In this article, initiation and subcritical growth of surface cracks in graded materials due to sliding contact is 
considered. The investigation of the crack initiation process requires the evaluation of tensile cleavage stress 
on the surface, whereas subcritical crack growth is generally controlled by the stress intensity factors. After a 
brief introduction, the coupled crack/contact problem for a semi-infinite graded medium loaded by a rigid 
stamp is outlined, the stress intensity factors are calculated and some sample results are presented. 
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INTRODUCTION 
 
Graded materials, also known as functionally graded materials (FGMs) are multiphase composites with 
continuously varying volume fractions and, consequently, thermomechanical properties. Used as coatings 
and interfacial zones they reduce the stresses resulting from the material property mismatch, increase the 
bonding strength, improve surface properties and provide protection against adverse thermal and chemical 
environments. Many of the present and potential applications of graded materials involve contact problems. 
These are mostly load transfer problems in deformable solids, generally in the presence of friction. In such 
applications the concept of material property grading appears to be ideally suitable to improve the surface 
properties and wear resistance of the components that are in contact. From the standpoint of failure 
mechanics an important aspect of contact problems is surface cracking which is caused by friction forces and 
which invariably leads to fretting fatigue. In most applications material property grading near the surfaces is 
used as a substitute for ceramic coatings. Hence, the surface of the composite medium consists of one 
hundred percent ceramic. As a result the “maximum tensile stress” criterion may be used for crack initiation 
on the surface. The main objective of this study is to investigate the problem of contact mechanics and the 
associated fracture phenomenon in graded materials subjected to repeated loading by a rigid stamp. In 
particular the influence of the coefficient of friction and the material nonhomogeneity parameters on the 
stress intensity factors is examined. The problem is considered under the assumptions of plane strain and 
Coulomb friction. 
 
Studies in contact mechanics were originated by Hertz [1]. A thorough description of the underlying solid 
mechanics problems in homogeneous materials maybe found for example in [2]. Sample results for 



frictionless contact problems in a semi-infinite graded medium are given in [3]-[5]. The details of the 
analysis of contact mechanics for elastic solids with graded coatings and extensive results regarding the 
stress distribution are discussed in [6]. 
 
 
FORMULATION OF SLIDING CONTACT/CRACK PROBLEMS 
 
The general description of a sliding contact/crack problem in a graded medium is shown in Figure 1. 
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Figure 1: The general description of the crack/contact problem in a graded medium 
 

The load is applied through a rigid stamp of arbitrary profile and it is assumed that the conditions of plane 
strain and Coulomb friction are valid and h d h a h>> >> >>, ,   b

ud mplic
 where h  is the thickness of the medium. 

Thus, the graded medium may be treated as being semi-infinite. In this y for si ity it is further 
assumed that the shear modulus of the medium may be approximated by 

st
µ µ γx xbg bg= 0 exp  and the effect of 

the variation of Poisson’s ratio ν  on such quantities as stress intensity factors is negligible [7]. In the 
coupled crack/contact problem described in Figure 1 the unknown functions are the crack surface 
displacements and the contact stresses defined by 
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where η  is the coefficient of friction, κ ν= −3 4  for plane strain and κ ν ν= − +3 1b gb g/  for plane stress. 
The input functions are the crack surface tractions and the stamp profile given by 
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By using the equations of elasticity and the definitions given by 1-5, the mixed boundary value problem 
described in Figure 1 may be reduced to a system of singular integral equations of the following form: 
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From Eqns. 6-8 the singular behavior of the unknown functions ,  and  is determined by using a 
function-theoretic method. The limiting case of a c

f1 f2 f3
= = 0  is of some theoretical and physical interest. In this 

case by defining 
 

f t t d t g t1 1bg b g bg= −α δ ,   f t t d t g t2 2bg b g bg= −α δ ,   f t t b t g t3 3bg b g bg= −α β ,         (10) 
 

the condition of boundedness of σ yy x,0b g, σ xy x,0b g, 0 < <x d  and f ybg,  0 < <y b  would give the 
following characteristic equations to determine δ β,   and α  
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One may note that these results are independent of µ0  and the material nonhomogeneity constant γ  and 
dependent on η  and κ  only, meaning that the stress singularities for graded and homogeneous materials are 
identical. Generally the contact stresses are concentrated toward the trailing end of the stamp. For c  it 
may easily be shown that [6] 

> 0

 
f x x c d x g x1 1bgb gb g bg= − −θ δ ,   f x x c d x g x2 2bgb gb g bg= − −θ δ ,  

 
cot ,πθb g= 0   cot ,πδb g= 0   f y y a b y g y3 3bgb gb g bg= − −ω β ,  
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Note that for η > 0  the stress singularity at y a=  is greater than that at y b= . The powers of singularity at 

 for ,  as well as at 0 for a b c, ,   and d c > 0 a > 0 a c= = 0  are shown in Figure 2 as functions of the friction 
coefficient η . From the standpoint of cracking η > 0  is the physically meaningful case for which α  is real 
and, for high values of η , can be greater than the corresponding uncracked value ω . This unusual result 
given by Eqn. 12 has also been verified independently by using Mellin transforms. 
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               Figure 2: Variation of exponents α , ω  and β  with friction coefficient η  
 

From Eqns. 7-9 it may be observed that the characteristic roots δ θ β ω, , ,    and α  are multiple valued. The 
particular values of these exponents within the acceptable range − +1,  1b g are determined from physical 
considerations. For the crack δ = −1 2/  and θ = −1 2/  for  and c > 0 θ = 0  for c . For a c= 0 = = 0  and 
η > 0  the dominant (and acceptable) root of Eqn. 12 is real and α < 0 . In the general stamp problem at an 
end point  (or b ) a ω  (or β ) is positive if the contact is smooth and negative if the stamp has a sharp corner 
[6]. 

 
Once the exponents δ θ β ω, , ,    and α  are determined the weight functions w ribg and the form of the 
solution of the integral equations may be obtained by normalizing the intervals a t  and b< < c t d< <  to 
− < <1 1r  and by expressing the unknown functions as (see Eqns. 1-3 and 6-8) 
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where  are the Jacobi polynomials associated with the weight functions  and  are unknown 
coefficients (

Pn w j Cin
j = 1, , 2  3 ). In the general form given by Eqn. 14 it is assumed that  (and c > 0 −∞ < < ∞a ). 

In the special cases of ( ) and (c a= = 0 c a= >0, 0 ) we have (θ α ω α= ,  = ) and (θ = 0 ), respectively. 
The integral equations are solved by truncating the series in Eqn. 14 and by using a suitable numerical 
method. After solving the integral equations, the a ties of physical interest, namely the stress intensity 
factors and the in-plane stress on the surface 

 qu nti
σ yy y0,b g may be obtained from 
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where  and  are the modes I and II stress intensity factors and ,  and  are known kernels 
associated with the in-plane stress component 

k1 k2 h1 h2 h3
σ yy y0,b g. From the standpoint of crack initiation the critical 



point on the surface is the trailing end ( y a= ,  Figure 1) of the contact region where the cleavage stress 
σ θθθ r,b g is positive and may be obtained from  

in bg= +

a d/

d− =g/ .

 
σ θ σ θ σ θ σ θθθ r xx yy xy, s cos sin cos ,b g bg bg bg−2 2               (17) θ

 
In the notation of Figure 1, from (17) it may be shown that θ cr = 0 , and σ σθθcr yy a= 0,b g. 

 
 

SAMPLE RESULTS 
 
Some sample results giving the modes I and II stress intensity factors for a graded medium containing a 
surface crack of length d  and subjected to a sliding rigid flat stamp hown in Figure 3. (Figure 1,  are s c = 0 ). 
The stiffness variation of the medium is given by µ µ γx xbg bg= 0 exp . On the top row of Figure 3 the full 
lines are obtained from the FGM solution for γd = 0 0001. , whereas the closed circles are given by the 
corresponding homogeneous medium. The results clearly show the strong influence of the stamp location 

 and the material inhomogeneity parameter γd  on the stress intensity factors. Note that, as formulated 
the problem is one of mixed-mode. Consequently, crack growth would be curved. Also, in the absence of 
additional in-plane tension,  could be negative, implying crack closure which can be treated in a 
straightforward fashion. 
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Figure 3: Stress intensity factors in an FGM half-plane with a surface crack loaded by a rigid stamp (Figure 
1, c ), = 0 κ = 2,  η = 0 4. ,  b ab 01  .

 
 



For a graded medium th bsence of a crack and loaded by a sliding flat am the normal component of 
the contact stress 

in e a st p 
σ xx y0,b g,  and the in-plane surface stress a y b< < , σ yy y0,b g, , are given in 

Figure 4 for various values of 
−∞ < < ∞y

γ  and for η = 0  and for η = 0 4. .  Note that for η = 0  the stress distribution is 
symmetric, whereas for η > 0  ω β>  and the stresses are concentrated near the trailing end y a= .  Also, at 

 y a= σ yy y0,b g has a singularity of the order a y−b gω , implying that y a= ,  is a likely location of crack 
initiation. 
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Figure 4: The contact stressσ xx y0,b g and the in-plane stress σ yy y0,b g on the surface of a graded medium 
loaded by a flat stamp. 
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ABSTRACT 

 
Crack initiation behavior in piezoelectric ceramics is examined for different choices of boundary conditions. 
They are referred to as the fundamental boundary-value problems when electric field/stress and electric 
displacement/strain are specified. The mixed boundary-value problems involve specifying electric 
displacement/stress and electric field/strain. Crack-growth is assumed to occur when the volume energy 
density function that accounts for interaction of mechanical and electrical effects reaches a threshold 
depending on the piezoelectric ceramic material properties. The crack driving force is shown to increase 
monotonically for positive and negative applied electric displacement or electric field. Such a trend prevails 
for the fundamental boundary-value problems as it is to be expected on physical grounds. The applied 
electric field and displacement have little influence on the energy density solution for the mixed boundary 
conditions.  
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1. INTRODUCTION 
 
Piezoelectric ceramics can be made to have “pole” directions where the dipole moments are aligned. These 
directions need not coincide with those of material anisotropy. Their interactions could involve a rotation 
and/or reflection of axes depending on whether the deformation is of the in-plane or out-of-plane type. A 
special feature of electrical and mechanical interplay is that a piezoelectric material could produce an 
electric field when deformed and vice versa. This makes piezoelectric ceramics attractive for making 
electronic devices that may include transducers, sensors, etc. Their reliability in service, however, can often 
be short changed by premature cracking. To this end, much attention has been given to analyzing the state 
of affairs near a sharp crack and the condition under which an existing crack would start to propagate. Past 
works [1-5] have reported inconsistencies between analytical and experimental results, particularly those 
concerned with application of the classical energy release rate concept. More recent works [6-10] showed 
that the energy density criterion had more success for resolving several of the previously unexplained 
fracture phenomena. 
  
Solutions based on linear piezoelasticity theory have shown that the stress, strain, electric displacement and 
electric fields possess the inverse square root of r singularity at a sharp crack tip. Here, r stands for the radial 
distance measured from the crack front. The ways with which the aforementioned four boundary conditions 

  



affect crack initiation have been discussed and analyzed using different approaches. Widely applied in the 
literature [1-5] is the energy release rate criterion. It relies on the exchange of global energy with the 
increase of local crack surface area. When electro-mechanical coupling effects are present, it is not apparent 
whether all the energy would be converted to the creation of new crack surface. This is similar to 
elasto-plastic fracture where the plastic energy being part of the total energy does not contribute to the 
increase of crack surface. It is involved only in a passive manner to reduce a portion of the total energy that 
would have otherwise be present in crack surface extension. Such a distinction is not and cannot be made in 
the energy release rate treatment. Linear theory has often been blamed as the scape goat for inadequacies 
that are embedded in the failure/fracture criterion, not because of the lack of nonlinearity. 
 
The volume energy density criterion [11,12] does not have the inherent constraint of applying a global 
energy quantity to determine local crack driving force unless all of the energy is converted to the increase of 
crack surface. It focuses attention on the failure of a local element. Crack extension is regarded as the loci of 
failed elements. The global energy is not involved locally although the correct stress-strain analysis has to 
be made for determining the local stress and strain fields. 
 
 
2. TRACTION AND CHARGE FREE CRACK 
 
The anti-plane shear crack model has been used extensively in fracture mechanics because of its simplicity 
in formulation. Referring to Fig. 1(a), a line crack of length 2a is centered in a large body that is assumed to 
extend to infinity in all direction x, y, and z. 
 

 
 
2.1 Boundary conditions 
The body is sheared at infinity with mechanical stress ∞τ  or strain ∞γ . Either electric displacement D  or 
electric field E  is applied in conjunction with the mechanical stress 

∞

∞ ∞τ  or strain ∞γ . The four possible 
combinations are ( ;E ), (∞τ ∞ ∞γ ;D ), ( τ ;D ) and (∞ ∞ ∞ ∞γ ;E ). They will be referred to, respectively, as 
Case I, II, III and IV. This is summarized in Table 1. The corresponding quantities F

∞

j and Gj (j = I, II, etc.) 
are given by 
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TABLE 3 
Classification of boundary conditions 

 
      Cases              Specified quantities     Intensity factor coeff. 

Fundamental problems   
        I                   τ∞  and  E∞                      FI ; GI         
        II                   γ∞  and  D∞                     FII ; GII 
 
Mixed problems 

     
 

       III                   τ∞  and  D∞                      FIII ; GIII                  
       IV                   γ∞  and  E∞                      FIV ; GIV 

 
Eqs. (1) and (2) are coefficients that define the stress, strain, electric field and displacement factors in the 
work to follow. 
 
More specifically, the boundary conditions are 
 

∞τ=σzy   or   ∞γ=γ zy   for                 (3) ∞→+ 22 yx
together with 

∞= EEy   or   ∞= DyD   for                (4) ∞→+ 22 yx
 

For a crack free of surface tractions and charge (i.e., an insulated crack), the conditions are 
 

0zy =σ ,  D 0y =   for 0y;ax =<                  (5) 
 

The pole is directed along the z-axis as shown in Fig. 1(b). Reversing the direction of E∞ and D∞ is 
equivalent to reversing the direction of poling. 
 
2.2 Asymptotic solution 
It can be solved for the two unknowns uz and φ from which the stresses, strains, electric field and 
displacements throughout the medium can be obtained. For the present discussion, it suffices to consider 
the asymptotic expressions [5]: 
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The stress and strain intensity factors in eqs. (6) and (7) are defined by 
  

         a)GeFc( j15j44III π−=τK ,    aFjIII π=γK                  (10) 
 

where j = I, II, etc. The electric field and displacement factors in eqs. (8) and (9) are given by 
 

aGK jE π= ,    a)GFe( j11j15D π∈+=K                  (11) 
 

The electro-mechanical coupling effects are included by the factors in eqs. (10) and (11) via the constants Fj 

  



and Gj given in eqs. (1) and (2). The local polar coordinates (r,θ) in eqs. (6) to (9) are measured from the 
crack tips; they are shown in Fig. 1(a). Note that all quantities possess the r/1  singularity, a characteristic 
that is unaffected by piezoelectricity. In this case, the angular functions of the stresses and strains in eqs. (6) 
and (7) are also the same as those for purely elastic materials.  
 
 
4. VOLUME ENERGY DENSITY APPROACH 
 
According to the volume energy density criterion [9,10], attention is focused on the failure of an element 
nearest to the crack tip as shown in Fig. 1(a). Linear piezoelasticity provides the expression: 
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which simplifies considerably for anti-plane shear deformation: 
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Since the right hand side of eq. (13) are known from eqs. (6) to (9) inclusive, dW/dV can be computed with 
the aid of eqs. (1) and (2). 
 
4.1 Crack initiation threshold 
In view of the singular behavior of the quantities in eqs. (6) to (9), dW/dV is proportional to 1/r which tends 
to be become unbounded as r→0. Unboundness of dW/dV is excluded from the solution by letting r→ro 
being the limit of r. For small values of r, the volume energy density can thus be written as 
 

r
S
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in which S is known as the energy density factor. It may be regarded as the crack driving force. For r = ro, it 
suffices to examine S for the condition of crack initiation. if only mechanical shear stress τ∞ is applied, then 
dW/dV can be computed simply as 
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which gives S . The onset of crack initiation would be assumed to coincide with S = S)c4/(a 44
2
∞τ= c, a 

critical value while τ∞ would correspond to the critical shear stress. for an isotropic elastic material c44 
corresponds to the shear modulus of elasticity and S  [13]. )G4/(a 2
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4.2 Boundary-value problems 
Let pτ and qγ stand for the ratios E∞/τ∞ and D∞/γ∞, respectively. By means of eqs. (13) and (14), S can be 
calculated from the asymptotic expressions in eqs. (6) to (9). the results for Case I and II in Table 1 take the 
forms 
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Similarly, let pγ and qτ stand for the ratio E∞/γ∞ and D∞/τ∞, respectively. In the same way, the S-factor 
expressions for Case III and IV are 
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The condition of a uniform electric field can be more readily simulated at the surface of the piezoelectric 
material in contrast to the electric displacement boundary condition. Frequently used in the laboratory is 
Case I in eq. (16). 
 
4.3 PZT-5H piezoceramic 
A glance of eqs. (16) to (19) reveals that only three constants c44 , e15 and 11∈  are involved for the anti-shear 
problem. Their numerical values for the lead zirconate titante (PZT-5H) piezoceramic can be found in Table 
2 [14]. 
 
 

TABLE 2 
 Constants of PZT-5H piezoceramic [14] 

 
c44 (N/m2)      e15 (C/m2)     11∈  (C/Vm2) 
3.53×1010       17.0          151×10-10 
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Figure 2: Normalized energy density factor versus E∞/τ∞  Figure 3: Normalized energy density factor versus D∞/γ∞ 
 

Plotted in Fig. 2 are the variations of the normalized volume energy density factor S  with 
the load parameter E

)c4/a/( 44
2

c ∞τ

∞/τ∞. In general, the curve rises as pτ is increased positively or negatively; it possesses 
a minimum for negative pτ very close to the origin. On physical grounds, the crack driving force 
represented by S would increase with increasing applied electric field. Similar results are obtained for 

 versus D)4/a/(S 44
2

c ∈γ∞ ∞/γ∞ as shown in Fig. 3 where the minimum corresponds to positive qτ near the 
origin. As it is to be expected, S increases for positive and negative applied electric displacements. The 
trends of the curves in Figs. 2 and 3 are opposite to those found in [5] by using the energy release rate 
criterion where the crack driving forces decrease and become negative when the applied electric field and 
displacement are increased. This is contrary to experimental observations. 
 
Refering to the material parameters in Table 2, it can be seen that 11∈  is several orders of magnitude 
smaller than c44 in eq. (27) for Case III. Hence, S would remain nearly constant and not affected by the ratio 
E∞/γ∞. Case IV in eq. (19) yields a symmetric curve about qτ = 0 for the S versus qτ plot. The mixed 
conditions in eqs. (18) and (19) are only of academic interest since they are difficult to produce in the 

  



laboratory. 
 
5. CONCLUSIONS 
 
Anti-plane shear crack initiation behavior for piezoceramics is investigated to study the electro-mechanical 
interaction effects. Applied is the volume energy density criterion for analyzing how different boundary 
conditions would affect the crack driving force which remains positive definite under all conditions. This is 
a necessary requirement that must be satisfied on physical grounds. Numerical results are presented 
graphically for the PZT-5H piezoelectric material. These conclusions are contrary to those obtained from 
the energy release rate criterion [5] for the same problem. The crack energy release rate becomes negative 
as the electric field or displacement is increased, a condition that seems to contradict rational reasoning. In 
other words, it is inconceivable that a crack would arrest if the applied electric and/or mechanical load is 
increased. These unphysical predictions invalidate the usefulness of the energy release rate. Such 
contradictions do not arise when the volume energy density criterion is used. 
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ABSTRACT 
 
Crack path development under mixed mode loading is an important and still not completely understood 
aspect of fracture process. A detailed understanding of this process could have several valuable benefits for 
failure prediction and for design of tougher materials using a crack path deflection toughening mechanism. 
The methods of linear fracture mechanics may give qualitative results, but do not accurately predict the 
crack path development, especially when the crack path is simulated for a certain distance due to a 
cumulative error. To improve the modeling process, nonlinear aspects of fracture process were introduced 
into consideration to determine the crack path direction criterion under more realistic conditions. A 
numerical procedure for solving this nonlinear problem has been introduced. A case illustrating the basic 
aspects of the solution method and the results is described using a deflecting line plastic zone as an example. 
The method is applicable to any nonlinear relationship within the deflecting process zone and is particularly 
useful for crack path analysis in composites. 
 
 
KEYWORDS 
 
Fracture, crack path, failure in composites, crack growth in nonlinear materials, crack growth in 
heterogeneous materials. 
 
 
INTRODUCTION 
 
The objectives of the presented investigation are aimed at determining the effect of nonlinear material 
behavior within the crack tip process zone on the crack path formation direction. The influence of the crack 
path deflection effect on the overall material toughness could be significant, as demonstrated by Rubinstein 
[1] for brittle materials. However, the current crack path prediction methods are not adequate for cumulative 
curvilinear crack path predictions. Generally, local crack path deflection in brittle materials is determined by 
one of three criteria: (a) maximal energy release rate, (b) maximal local KI acting at the crack tip, or (c) zero 
local KII acting at the crack tip. Most commonly used is criterion (c). Although physically all these criteria 
are similar, and one would expect them to predict the same crack path direction, there is a difference. For 
example [1], in case of a straight crack loaded under pure Mode II loading conditions, the resulting 
predictions would vary from a possible deflection in the direction of 75o (criterion a) to 83o (criterion c) 
depending on what criterion is used. For formation of a single crack kink the difference may be considered 
to be insignificant, but for continuous crack path curving and kinking over a finite distance, the difference 
will be noticeable. In a controlled experiment [2] with an accurate numerical analysis [3, 4], an attempt was 



made to determine which of the three mentioned criteria actually controls the crack path development. It was 
found [4] that none of the mentioned criteria could be selected as the determinative one, and that the crack 
path actually does not follow any of them. Buzzard, Gross and Srawley [5] demonstrated that under certain 
conditions, the crack in fact could propagate under Mode II loading without changing direction. These 
observations led to assumption [4], that a nonlinear process zone, which is present in all considered cases  [1, 
5, 6, 7, 8], plays a significant role in crack path development even if in some cases the size of the process 
zone may appear to be insignificant on a large scale.  Even in seemingly brittle materials, as observed by 
Chudnovsky et al. [1], a nonlinear process zone is present on microscale. The present investigation attempts 
to include the influence of the nonlinear process zone on crack path development. The nonlinear effects are 
of particular importance in the analysis of crack path development in composite materials, especially 
composite systems which exhibit linear elastic behavior everywhere and a special crack opening 
displacement - local traction relationship within the process zone, usually identified as a bridging zone.     
 
The modeling principles of the crack path deflection mechanism presented here are aimed at application to 
materials which exhibit nonlinear behavior within the crack tip process zone while remaining elastic in the 
surrounding region. To include nonlinear material behavior within the crack tip process zone in the model, a 
proper computational procedure has been developed. Typically, the process zone in these materials is small 
as compared to the crack size; thus, some cases may be studied using small-scale analysis principles. A 
numerical procedure based on the integral equation technique has been developed for solving the resulting 
nonlinear problem. Several critical aspects typical for these nonlinear problems will be discussed. 
Specifically, the scaling problem, nonlinear zone size determination techniques, the numerical stability of 
the possible solution procedures, and ill-posed numerical schemes practiced for these types of problems will 
be discussed. Several solutions for kinked cracks under mixed mode loading will be presented and compared 
for different material properties exhibited within the process zone. The developed methods will be especially 
useful for failure modeling and crack path prediction in heterogeneous materials such as reinforced ceramics, 
concrete, and some metal alloys, and for development of smart materials.  
 
The method developed in conjunction with this investigation is capable of handing various conditions within 
the process zone. However, as a representative example, primary attention in this report is given to the case 
of a process zone consisting of an inclined, under angle θ, rectilinear segment of a plastically deformed zone, 
Figure 1. The case of θ = 0 is the well-known Dugdale plastic zone model [9]. Several interesting aspects of 
this nonlinear problem could be learned and understood based on this example. As is often the case in 
nonlinear numerical analysis, this problem may be easily misled into an ill-posed numerical scheme. This 
aspect of the analysis will be discussed in the following section. 

θ

K∞

K∞

R

 
Figure 1. Considered problem 

 
 
SOLUTION SCHEME  
 
The considered problem has a specified remote load K∞, which represents a mixed mode loading. The 
condition on the inclined segment, in this special case, states the yielding condition, 
 



 σθθ = σy. (1) 
 
The inclination angle, θ, and the length of the inclined plastically deformed segment, R, are unknown 
variables. This simple fact is sometimes neglected and only the inclination angle is treated as an unknown 
variable, especially when a curvilinear crack path is simulated. Most typically for development of a direct 
numerical scheme, one needs to specify the length of the inclined segment or the inclination angle. Several 
examples could be presented wherein a finite element scheme was set with a specified length of inclined 
segment. In fact, the development of a direct computational scheme for this highly nonlinear problem could 
be complicated by convergence problems and mesh size dependency. To avoid that, the following indirect 
scheme is proposed, which allows the problem to be treated as a linear problem at every significant 
computational step.          

= + +
σy

σy

K II 
K I 

K I 
K II 

Problem 3 Problem  1 Problem 2

 
Figure 2. Superposition scheme. 

 
The considered problem, as specified in Figure 1, can be represented as a superposition of three problems 
illustrated in Figure 2. Problem 3 has loading only on the kinked segment; Problem 1 is a problem of a 
kinked crack under Mode I loading; and Problem 2 is a problem of a kinked crack under Mode II loading. 
Problem 3 results in two local stress intensity factors, KI

3 and KII
3 at the tip of the kink Both of them must be 

compensated for by the local stress intensity factors of Problems 1 and 2, KI
1, KII

1 and KI
2, KII

2. The 
relationship between these three sets gives a set of two equations:    
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The inclination angle, θ, determines the relationships between the applied load components KI, KII, and the 
corresponding local values of the stress intensity factors as  
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i here runs values 1 and 2, and on the right hand side of (3) this index corresponds to the loading Mode. The 
functions f i

I(θ) and f i
II(θ) can be generated using a scheme given by Rubinstein [1], or used directly from the 

data given in [1].   
 
Setting the length of the kink to a unit of length, substituting equations (3) into equations (2), one obtains a 
linear system for determination of the remote load that will generate a unit length plastic kink inclined at a 
specified angle θ, if solution of problem 3 is known. Thus, the following solution scheme can be employed 
using the inverse order for a unit length kink and a unit yield stress: (a) set a value for the inclination angle; 
(b) solve problem 3 and determine numerically the values of KI

3 and KII
3; (c) solve system (2) with (3) for 

KI, KII, using the given functions f i
I(θ) and f i

II(θ). The result is the load required to produce a unit length 
plastic kink at a specified angle, Figure 3. To obtain a general solution, these data in Figure 3 can be rescaled 
using the following relationship for the absolute value of the remote stress intensity factor, (4). 
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Figure 3. Applied load generating a unit-length inclined plastic zone (σy=1) 

 
Relationship (4) uses the results of the scaling analysis for the described nonlinear case. This relationship is 
not a general one. Using the data in Figure 3, or the corresponding parametric form of that data and (4), one 
can determine the inclination angle and the length of the inclined plastic zone for an arbitrary loading. It is 
also convenient to use the loading stress intensity factor in a complex variable form. For the described case, 
the relationship between the loading phase and the inclination angle does not depend on the loading 
magnitude [10].  After one numerically generates the function representing this relationship, the inclination 
angle can be directly determined; then, using the data in Figure 3 and relationship (4), one obtains the length 
of the plastic kink.  
 
 
CONCLUSIONS 
 
A computational scheme for the analysis of crack kinking in materials with a nonlinear process zone has 
been developed. An example of the inclined Dugdale zone has been considered to illustrate the 
computational procedure.  Further details of this procedure and examples could be found in [10].   
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ABSTRACT  
 
The behavior of a crack growing at or near the proximity of a bonded region has historically been 
approximated and modeled in a somewhat qualitative manner.  To quantify how such cracks differ from 
those within homogeneous materials, parametric computational studies are performed for stationary cracks 
near a bimaterial interface.  Finite element solutions for various compact tension [C(T)] specimen geometries 
under plane strain conditions are used to judge the limits of applicability of homogeneous creep fracture 
solutions. The bimaterial model is composed of two distinct isotropic, homogeneous materials that differ 
only by properties that describe the inelastic behavior.  In most cases, an intermediate, finite heat-affected 
zone (HAZ) is included in the base metal (BM) to weld metal (WM) model.  Previous investigations have 
limited this third material region to assignment of homogeneous properties; this study features a HAZ with a 
graded blend of base and weld metal properties.  This numerical model more closely matches the fused 
region of actual in-service members, such as seam-welded high temperature steam pipes. Domain integral 
techniques are used to compute the C(t)-Integral and transition times for all cases.  Predictions from 
parametric studies can then be consolidated using curve-fits of crack tip field parameters, transition times, 
etc. as a function of the HAZ thickness and position, inelastic property mismatches, and other independent 
model parameters.  Results indicate that the incorporation of a functionally graded HAZ region leads to more 
conservative estimates of the fracture parameters. 
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INTRODUCTION 
 
Currently, many studies concerning time-dependent fracture of distinct or welded bimaterials have been 
limited to cases where the initial crack and its propagation are coplanar with the center of the weld material, 
Segle, et al. [1, 2].  However, since the predicted states of stress ahead of the crack tip are substantially 
influenced by the mismatch of properties of the surrounding materials, the nature of the local stress intensity 
is mixed-modal.  The consequence is out-of-plane crack extension. 



 
Functionally graded materials (FGMs) feature continuous variation of one or more material properties across 
one or more spatial directions. Typically they are interlayers, such as a HAZ, separating two larger material 
sections, each with negligible property variation. Most investigations that incorporate a transition layer 
approximate this HAZ with homogeneous properties that are derived from the average of the surrounding 
base and weld metals. In this study the HAZ is continuously graded in order to achieve more accurate 
descriptions of the stress and strain situation near the crack tip. 
 
By conducting a parametric study of time-dependent fracture, we develop relationships for the influence of 
the crack plane-to-interface distance on the C(t)-domain integral.  Also by obtaining the near tip stress fields, 
we use approximate means to understand the direction of crack bifurcation.   
 
 
FINITE ELEMENT MODELING 
 
Until recently, usual bimaterial fracture models were composed of two distinct perfectly-bonded, isotropic, 
homogeneous constituents. The initial crack was coplanar with their interface.  The models used in this study 
are extensions of those used for the homogeneous case with several modifications. To more accurately 
represent a typical weldment, for example, models are composed of two bonded homogeneous, isotropic 
materials, each occupying either the region above or below the crack plane; however, in cases featuring a 
graded transition layer, a HAZ is introduced in a region between the homogeneous weld and base metal 
regions.  This deviation from the standard homogeneous FEM model requires additional adjustments in the 
model. 
 
Although the routine used to create these ABAQUS meshes has the capability of producing various model 
sizes with various stationary crack sizes and far-field and near-tip mesh densities, this study restricts the 
specimen size, W = 25.4 mm (1.0 in), and initial crack size, a = 12.7 mm (0.5 in). The thickness is B = 6.35 
mm (0.25 in).  For the time-dependent cases the specimen is subjected to an ambient temperature, Ta = 
538°C.  The model is shown in Fig. 1. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 Figure 1: A finite element mesh used in the current investigation. 
 
 
RESULTING FRACTURE PARAMETERS 
 
In this time-dependent study, elastic-secondary creep behavior models were assumed.  Slight variations of 
the base metal inelastic properties were assumed for the weld, while the HAZ metal was modeled with 
average properties of the weld and base metals. In every case the elastic properties are identical.  The 



commonly used 2¼Cr-Mo steel exhibits the following properties at close to one-third of its melting point, 
: elastic constants, E = 160 GP and ν = 0.3, Norton secondary creep constants, n = 4.7 and A = 

2.0×10
538T = °C

-17 MPa-nhr-1. 
  
This elastic match and creep property mismatch should cause changes in the transition time and the steady-
state value of the C(t)-Integral, C*, only. Visualizations of the time-dependent effective stress fields were 
obtained for a variety of models and illustrated in Fig. 2.   In the case of weldments, elastic matching permits 
the stress fields near the material interfaces to be initially symmetric with regard to the crack plane; however, 
as each of the materials relaxes over time, the steady state stress distribution is not symmetric.  This stress re-
distribution along each material interface is discontinuous due to the inelastic mismatch and is more intense 
in the more inelastically compliant, or softer, HAZ and WM regions.  For cases where the transition layer or 
the eccentricity are small but positive, the intensity and variation of the stresses along the interface are 
greater.   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2:  Stress (in ksi) evolution for bimaterial (first row), weldment with blended HAZ
(second row), and eccentric bimaterial (third row) specimens. Each weldment specimen
features an inelastic overmatch of χA = 100 and χn = 1 at T = 538°C. For each specimen the
effective stress field is shown at various times: t t

WMT≈ (first column), 
BMT≈t t (second

column), t t (third column). ,
WM BMT Tt

 
 
 
 
 
 
 
For simplicity, it is common to define the material property overmatch, χ, as the weld-to-base ratio of any 
material property, for example χA = AWM/ABM = 10. For each behavior regime, the crack plane distance 
quantities, eccentricity, e, and transition layer thickness, t, are varied for particular material mismatches.  As 
the eccentricity decreases, the initial crack is embedded more deeply within the base metal. The contour 



integral approaches values that resemble those of base metal homogeneous model.  Likewise, as the 
eccentricity reaches a large positive number, the C* converge to C*

WM, respectively. The variation of C* can 
be related with a power law.  For each of the material mismatch cases for perfect weldments, e = 0, the 
resulting C* are observed to nearly follow the logarithmic average of the integral values of two material 
constituents; furthermore, as the HAZ region thickness increased the contour integral values move towards 
C*

HAZ, exponentially. For most cases, the fracture parameters can be fit with the following exponential form: 
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where b and D are the coefficient and exponent, respectively, which may be obtained explicitly via 
regression analysis. Each assumes the separate dimensions and should be influenced by the property 
mismatch. Function b takes on units of the ordinate fracture parameter {C*, tT}, while D is dimensionless. 
Using this relation, we can quantify b based on the results of the trivial bimaterial model. For e = t = 0, this 
quantity is close to the logarithmic average of the fracture parameters of the homogeneous members, and is 
usually bounded by these quantities. 
 
 
FUNCTIONALLY GRADED MATERIALS 
 
Most numerical fracture investigations model transition layers with homogeneous properties. This is not the 
most accurate depiction of in-service welded members. The majority of investigations that incorporate 
spatial dependence limit this gradation to only elastic mechanical properties. In a very small number of 
studies the yield strength is varied. The variation of material properties across a section is usually prescribed 
according to some linear function of distance. We extend this method to grade the hardening coefficients and 
exponent of the heat-affected zone.  
 
The HAZ is sandwiched between materials that are homogeneous. Therefore, it is reasonable that the 
material behavior at each of its boundaries must match that of the weld and base metal. By replacing sharp 
property variations with continuous material functions, the states of stress and strain in actual service joints 
and members are perhaps more realistically represented. Micro-hardness tests of welded specimens show 
that the variation in Vickers hardness changes linearly between base and weld metal regions. Consequently, 
these sections, which encompass HAZs, correlate to linear yield strength variation from region to region. 
These indentation profiles, shown by Miyazaki et al. [3], can be combined with either Ramberg-Osgood or 

Norton power law rules to indicate that the hardening coefficient exhibits exponential spatial dependence 
across the HAZ.  Models with variation of strain hardening coefficient, AHAZ(y), have been simulated under 

TABLE 1

HAZ Model
Normalized Transition 

Time, tT/tTBM

Normalized C(t)-Integral, 
C(t)/C*BM

No HAZ 0.0216 45.9654
Median HAZ 0.0327 29.4524
FG Linear HAZ 0.0366 25.9942
Base Metal 1 1
HAZ Metal 0.1 10
FG Exponential HAZ 0.0528 18.3862
Weld Metal 0.01 100
FG Continuous HAZ 0.0487 19.1354

FRACTURE PARAMETERS FOR VARIOUS HAZ SECTIONS



identical boundary conditions.  These results are normalized by the homogeneous base metal results. The 
predicted C* is higher for models using the blend or median method than models with functionally graded 
HAZs. Table 1 summarizes this conservative trend. 
 
LOCAL PHASE ANGLE 
 
The mode mixity for a bimaterial is uniquely described by a set of local phase angles. Introduced by Shih [4], 
the solid angle, ψ, which is also equivalently denoted as the mode mixity parameter, Mp, is found from the 
interface traction vector. It is given as 
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This expression effectively assigns non-dimensional values within the interval (-1,1) to distances ahead of 
the tip of the crack.  Since cracks tend to propagate toward the traction vector that is perpendicular to the 
maximum normal stress, Mp is expected to indicate the direction of crack extension. Isotropic and 
homogeneous models always produce local phase angles equal to zero. Conversely, when the material 
constituents on either side of the crack are dissimilar, a non-trivial solution is always obtained. This 
phenomenon occurs for any material behavior regime. The results of Li et al. [5] show that the singularity 
fields near the crack tip are mixed mode, and the magnitude of the shearing mode increases with mismatch in 
properties.    
 
Most investigations into the heterogeneous case have assumed that the crack is not only located on the 
interface, but is also restricted to growth along the weld line. Only recently have studies progressed to off-
weld crack studies.  By including this metric in parametric examination of numerically modeled C(T) 
specimens, we can further understand the influence of the initial position of the crack plane on the time-
dependent fracture behavior of bimaterials.  The stress fields in time-dependent bimaterials are primarily 
active between the transition times of the base and weld metals, tTWM and tTBM. This transient behavior is 
exemplified in Mp for models with various transition layer thickness, t, modeled with blended and 
functionally graded material properties.  
 
The weld material occupies the upper region in the model; consequently, positive local phase angles indicate 
that the direction perpendicular to that of the maximum normal stress points toward this more creep strain 
compliant section. This is the case for each model studied. In Fig. 3, models with a finite HAZ thickness 
predict local phase angles that would favor crack bifurcation into the direction of the weld metal. When the 
fracture specimen is simulated with a graded section of some specified thickness, Mp is consistently 
increased by a factor, which varies based on the bimaterial overmatch. After the transition time of the base 
metal is reached, Mp smoothly converges to the steady state local phase angle, denoted by Mpss. 
 
This technique is also applied to specimens that have eccentrically located cracks. The results indicate that 
for either negative or positive eccentricities, the local phase angle points toward the more creep strain 
compliant material. When the crack is located within the base metal (negative eccentricities), these values are 
(1) increased by at least a factor of two and (2) achieved at times closer to tTBM. In addition, similar to models 
that include a HAZ, the factor is influenced by the level of the overmatch. 
 
CONCLUSIONS 
 
In addition to other fracture parameters, the mode mixity exhibits slight changes with respect to specimen 
dimensions and material property mismatch.  This traction vector points toward the more compliant material 
for the subinterface and HAZ thickness models studied. By replacing a blended HAZ with a functionally 
graded HAZ, the stress concentrations at the interfaces are less extreme and the estimates for the predicted 



fracture parameters are closer to the reference or base metal; however, the direction of the traction vector is 
increased by a factor. Collective consideration of a range of thickness or crack plane eccentricity values 
indicates that the crack is likely to kink into the softer material and then meander back towards the interface.  
Ultimately, this must be verified by a crack propagation analysis.  
 
Most bimaterial studies limit crack propagation to the direction along the initial crack plane. Future studies 
featuring crack extension should incorporate propagation along a direction that is controlled by the evolution 
of the near tip stress and strain fields. The subject matter of interface fracture of non-linear and time-
dependent materials needs more attention.  Since there is no generalized analytical solution for the variation 
of the stress, strain, and displacement fields near the crack tip, the results of this study can only be confirmed 
and extended by performing branching crack analyses and experiments.  

Figure 3: Convergence of local phase angles for median (a) and functionally graded (b) HAZ. 
χA=100 and  χn=1 for each model.
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ABSTRACT 
 
Acoustic emission (AE) techniques are applied to clarifying fracture mechanics in cementitious materials.    Crack traces due to 
mixed-mode cracking are numerically analyzed by applying the boundary element method (BEM).  Here, in order to determine the 
critical stress intensity factor prior to nucleating the fracture process zone, AE rate process analysis is applied to the three-point 
bending tests of notched concrete beams.   AE-SiGMA analysis is implemented to characterize kinematics of cracks, classifying 
crack types and determining crack orientations.   Thus, mixed-mode crack propagation in cementitious materials is clarified by AE 
analysis based on fracture mechanics..   
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INTRODUCTION 
 
The increase of aging structures and the disastrous damage due to earthquakes updatedly demand for clarifying the failure 
mechanisms of concrete structures.  To this end, crack propagation in cementitious materials has been recently studied on the basis of 
fracture mechanics.  Acoustic emission (AE) techniques have been extensively studied in concrete engineering, where it is known 
that one promising approach is the application of AE to fracture mechanics.  Concerning the theoretical treatment, the generalized 
theory of AE was established on the basis of elastodynamics [1].  It is already clarified that AE waves are elastic waves due to 



dynamic crack motions in cementitious materials [2].   Based on these fundamental research, to classify crack types and determine 
crack orientation, the moment tensor analysis is implemented as the SiGMA  (simplified Green’s functions for the moment tensor 
analysis) code [3]. 
 
In the present paper, crack propagation in notched concrete beams is studied.  The boundary element method (BEM) is applied to 
trace crack extension based on the linear elastic fracture mechanics (LEFM).   The critical stress intensity factor KIC is such a key 
parameter in the analysis that the value is estimated from AE rate process analysis [4].  Then, crack kinematics is clarified by applying 
the SiGMA analysis and compared with results of the BEM analysis. 
 
      
THEORETICAL BACKGROUND 
 
Rate Process Analysis 
When concrete contains a number of critical microcracks, active AE occurrence is expected under compression due to crack 
propagation from the microcracks.   In contrast, AE activity in sound concrete is known to be stable and low prior to final failure.   
Thus, to formulate AE activity under loading, the rate process theory was introduced [4].  Probability function f(V) of AE occurrence 
from stress level V(%) to V+dV (%) is formulated, 
 
                                    dN/N = f(V) dV.                                  (1)  
 
Assuming a hyperbolic function of the probability, 
 
                                     f(V) = a/V + b.                                  (2) 
 
.Eventually, a relationship between the number of total AE events N and stress level V(%) is derived as, 
 
                                   N = C Va exp (bV),                                 (3) 
 
where a and b are empirical coefficients and C is the integration constant.  Then, a tangential equation is derived at the maximum 
stress level V = 100%, and an intersection with the stress level is determined as V’, 
 
                                   V’ = 1 – 1/(a + b)                                  (4)  
 
This stress level could correspond to initiation of crack propagation prior to nucleating the fracture process zone.  Consequently, the 
load P’ to determine the critical stress intensity factor KIC is determined from the ultimate load Pmax times V’ (P’ = Pmax x V’).  As a 
result, KIC is determined from the load level right before developing the fracture process zone in cementitious materials, satisfying the 
condition of small-scale yielding. 
 
BEM  Analysis 
Elastic solutions of displacement u(x) are mathematically represented as, 
 

                     C uk(x) = ∫S[Gki(x,y)ti(y) - Tki(x,y)ui(y)]dS,                       (5)         

 
where u(x) and u(y) are displacements, and t(y) are tractions.  Gik(x,y) are Green’s functions and Tik(x,y) are the associated tractions 
with Green’s functions, 
 
                             Tik(x,y) = Gip,q(x,y) Cpqjk nj.                               (6) 
Here Cpqji are the elastic constants, and Gip,q(x,y) are the spatial derivatives of Green’s functions.  n is the normal vector to the 
boundary surface S.    In BEM, eq. 5 is directly digitized and numerically solved, where C=1/2 and all points x and y are prescribed 



on the boundary S. 
 
According to LEFM, the angle of crack extension θ is obtained from the maximum circumferential stress [5], 
  

KIsinθ + KII(3cosθ - 1)  =  0.                              (7) 
 
Here KI and KII are the stress intensity factors of mode I and mode II, which can be computed from the displacements on the crack-tip 
elements in BEM.  Introducing the critical stress intensity factor KIC, the initiation of crack extension is governed by, 
 

cosθ/2[KIcos2θ/2 – 3/2(KIIsinθ) = KIC.                           (8) 
 
Implementing the above criterion of eqs. 7 and 8 into BEM, the automatic analysis of crack propagation in an arbitrary orientation 
has been developed by employing the two-domain BEM [6]. 
 
SiGMA Analysis 
In order to model a crack as an AE source, the boundary surface S in eq. 5 is replaced by crack surface F.  Taking into account the 
discontinuity, b(y,t), of displacements on the crack surface, eqs. 5 and 6 are reformulated as, 
  

                    uk(x,t) =∫F Tki(x,y,t)*bi(y,t) dF = Gkp,q(x,y,t)*S(t) Cpqij njli∆V,              (9) 

 
where l is the unit direction vector and S(t) is the source-time function of crack motion.  ∆V is the crack volume.   Introducing 
moment tensor Mpq = Cpqkllknl ∆V, eq. 9 is simplified, 
       
                             uk(x,t) = Gkp,q(x,y,t) Mpq*S(t).                              (10)                       
 
Based on the far-filed term in eq. 10, a simplified procedure suitable for a PC-based processor was developed.  The procedure is 
implemented as a SiGMA (Simplified Green's functions for Moment tensor Analysis) code [3].   Since the moment tensor is 
symmetric and composed of six independent unknowns mpq, multi-channel observation of the first motions at more than six 
channels is necessary and sufficient. 
 
From AE waveform, the arrival time and the amplitude of the first motion are determined.  In the source location procedure, location 
y is determined from the arrival time differences.  From the amplitudes of the first motions at more than 6 channels, the components 
of the moment tensor are solved.  The classification of a crack is performed by the eigenvalue analysis of the moment tensor.  The 
eigenvalues of the moment tensor for a general case could be decomposed as X, Y, and Z which denote the shear ratio, the deviatoric 
tensile ratio, and the isotropic tensile ratio, respectively.  AE sources of which the shear ratios are less than 40% are classified into 
tensile cracks.    The sources of X > 60% are classified into shear cracks.  In between 40% and 60%, cracks are referred to as mixed 
mode.     In the eigenvalue analysis, three eigenvectors are also determined, and then the vectors l and n which are interchangeable are 
recovered. 
           
 
EXPERIMENT 
                                                     
Three-point bending tests of notched concrete beams were conducted.   To apply AE rate process analysis and SiGMA analysis, 
notched beams of dimensions 10 cm x 10 cm x 40 cm were made of concrete.  By sawing the specimens, a notch of either 5 cm 
depth or 7 cm depth was made with 1 mm thickness.   The compressive strength of concrete was 37.9 MPa, the tensile strength was 
3.03 MPa and Young’s modulus was 29.7 GPa after 28 day moisture-cure.  The load was applied monotonously up to the final 
failure, monitoring AE events.   AE sensor was of 1 MHz resonance.  Total amplification was 6o dB and the frequency range was 10 
kHz to 1 MHz.  A sketch of the specimen and AE sensor array is given in Figure 1.  AE rate process analysis was conducted in 
center-notched specimens (the notch of solid line) by employing one-channel system, while six-channel system was employed to 



apply the SiGMA procedure to off-center notched specimens (the notch of broken line).   
 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
RESULTS AND DISCUSSION 
 
The Critical Stress Intensity Factor 
AE events were observed in the three-point bending tests of the center-notched specimens.   Results are given in Figure 2.   AE 
activity is approximated by eq. 3 and then the stress level V’ is determined.  As a result, the critical stress intensity factors were 
computed as 0.827 MPa m1/2 for 5 cm notch and 0.723 MPa m1/2 for 7cm notch.  These values were checked by Barenblatt’s 
criterion, 
 

d > (KIC/σt)2,                                    (11) 
 

where d is the notch depth and σt is the tensile strength.    It is obtained that d > 4.96 cm for 5 cm notch and d > 3.06 cm for 7 cm 
notch.  The criterion is just satisfied in the case of 5 cm notch and completely for 7 cm notch. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
To investigate an applicability of these values, BEM analysis was conducted for the center-notched specimens.  Results are shown in 
Figure 3.  In the case of 5 cm notch, an analytical result on the load versus crack-mouth opening displacement (CMOD) relation 
becomes unstable after reaching the peak value, while the relation of 7 cm notch is stable and in reasonable agreement with 
experimental results.   Consequently, The value KIC = 0.723 MPa m1/2 is selected for the analysis of the off-center notch. 
 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
Crack Traces 
Crack propagation was observed in the three-point bending of the off-center notched specimens.   Three traces observed are given in 
Figure 4.   BEM analysis was conducted to simulate the crack propagation.  As can be seen, remarkable agreement with 
experimental results is observed.  Thus, an applicability of eqs. 7 and 8 to analyze the crack trace of mixed-mode propagation. in 
concrete is confirmed. 
 
Crack Kinematics 
Results of SiGMA analysis for the off-center notched specimen is shown in Figure 5.  Cracks identified are plotted at their locations.  
Those of tensile cracks are indicated by arrow symbol of which directions are identical to opening directions, while those of 
mixed-mode and shear are represented by cross symbol of which two directions correspond to the motion of crack and the normal 
vector to the crack surface.   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Surface cracks observed at both the top and the bottom surfaces are indicated by broken lines.   It is observed that both types of cracks 
are generated and fully mixed at their locations.   Still, it seems that the shear cracks are observed as close as the final crack surface, 
indicating that the shear cracks are mostly generated along the existing crack surfaces.  To compare with the analytical results by 
BEM, the ratios of the stress intensity factors KI/KII in the analysis are plotted against the crack extension length as given in Figure 6.   
It is clearly observed that the ratios are mostly larger than 1.0, implying that the dominant motions are of the opening mode.   After 
propagating around 3.5 cm, the ratio abruptly decreases smaller than 1.0, indicating the presence of the dominant shear motions.   
Thus, the mixed nature of crack propagation in concrete is clarified, although the dominant mechanisms are of mode I. 
 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
CONCLUSION 
 
Crack propagation in notched concrete beams is studied numerically and experimentally.  Resulst are concluded, as follows: 
(1) In the case of 7 cm notch, KIC value estimated is fully satisfied with Barenblatt’s criterion.  The analytical result on the 
load-CMOD relation by BEM is stable and in reasonable agreement with experimental results.  The feasibility of the procedure to 
estimate KIC in cementitious materials is demonstrated. 
(2) Crack traces observed in the off-center notched specimens are simulated by BEM.  Remarkable agreement with experimental 
results on crack surfaces is observed.  The applicability of LEFM to analyzing the mixed-mode  crack propagation is confirmed. 
(3) From SiGMA analysis, it is observed that both types of cracks are fully mixed during crack extension in the off-center notched 
beam.  The ratios of the stress intensity factors KI/KII are studied brom the results of BEM analysis.  It is found that cracking 
mechanisms are mostly of mode I, although there is a stage where mode II is dominant. 
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Figure 1: Experimental set-up and AE sensor array for an off-center notched specimen. 
 
Figure 2: Results of AE rate process analysis in the three-point loading tests. 
 
Figure 3: Results of load-CMOD curves and BEM analysis. 
 



Figure 4: Crack traces. 
 
Figure 5: Results of SiGMA analysis. 
 
Figure 6: Ratio of the stress intensity factors KI/KII vs. crack length. 
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ABSTRACT 

 
Fibre Reinforced Polymers (FRP) are a useful alternative to external strengthening 
with steel plates. Their typical applications are flexural and shear strengthening of 
reinforced concrete beams and wrapping of columns. 
In this paper, a study of crack onset and propagation is reported, in order to improve 
knowledge of the global behaviour of r.c. beams strengthened by FRP.  
The results of an experimental programme based on tensile tests on both 
unstrengthened and Glass Fibre Reinforced Polymer (GFRP) strengthened concrete 
specimens are proposed. 
Based on Fracture Mechanics, a theoretical study of the stress field around the crack 
tip, and in particular at the concrete-FRP interface is presented. The Stress Intensity 
Factor at the interface are evaluated. The results afford an opportunity for some 
considerations about crack propagation: the first crack always appears in the 
concrete. Then the crack propagates to the concrete-composite interface. When the 
shear stress at the interface is low (applied load not high and crack edge 
displacement not big), the only way where the crack can propagate is into the 
concrete.  

KEYWORDS 
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INTRODUCTION 

FRPs were first applied in the mechanical and aeronautical fields of engineering, and 
in recent years they have spread to civil and structural engineering. FRPs are a 
useful alternative to traditional steel reinforcement, because of their lightness, 



corrosion resistance and very high tensile strength. Typical applications are flexural 
and shear strengthening of reinforced concrete beams [1,2,3] and wrapping of 
columns [4]. Both experimental and analytical-numerical researches have been 
performed in order to study the failure mechanisms. The first researches on the FRP 
application to civil structures involved a macroscopic scale [5],[6]. The principal 
failure modes found are: 
• compression and shear failure of concrete, 
• tensile rupture of FRP, 
• peeling and debonding of FRP. 
 
This macroscopic approach can give useful information about the global behaviour 
of concrete elements strengthened with FRP. But, especially in the last case, it is 
important to investigate the crack onset and propagation in order to follow the local 
crisis up to the global failure of the concrete element.  

EXPERIMENTAL  

The final goal is to study the effect of the FRP strengthening applied to the concrete 
structures in bending. This preliminary experimental programme is aimed at 
studying the correlation between the crack propagation in the concrete and the crack 
propagation at the interface.  
 
Testing specimens 
For this reason, tensile tests were carried out. In this way a simple case has been 

studied, because the specimen has a very regular geometry and the loading 
arrangement is well defined. The shape and dimensions of the specimens are 
sketched in Figure 1. The particular shape was designed in order to have a stress 
state not disturbed by anchorage effects in the central part of the specimen. GFRP 
sheets were glued to the plain surfaces, on opposite sides. A notch was milled on one 
side, under the composite, to establish the crack starting point. Five similar 
specimens were tested. One plain concrete specimen was tested too. 
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Figure 1: Arrangement of the concrete 
specimen tested in tension 



 
Test set-up 
The test set-up is shown on Figure 1. The specimens were instrumented with 
electrical strain gauges (ESG), 6 mm long, placed as follows: 
- two ESGs on the same section, one on concrete and the other on GFRP (#5 and 

#6), in order to detect the difference between the strains during testing;  
- two ESGs on the concrete (#2 and #3), close to the notch, 45° to the longitudinal 

axis; 
- two ESGs (#1 and #4) as the previous ones, but at 20 mm from the notch. 
Two displacement transducers LVDT-5 mm  were used to measure of the elongation 
of the specimen. 
Nevertheless, the local measurements supplied by the ESGs appeared to be unable to 
give sufficient information about the crack propagation direction around the 
cracking area. For this reason some photoelastic images were taken during the tests. 
The photoelastic sheet was glued to the concrete, in the area of interest. A digital 
video-camera was used to record the tests. 
 
Experimental results 
Photoelastic images 
In figures 2.a and 2.c the most significant pictures from the video-camera are shown. 
Note the change in strain state during loading. Figure. 2.a shows the propagation of 
the first crack: an area of strain concentration localised close to the notch can be 
noted.  
With loading increasing, the crack propagates into the concrete to the concrete-
GFRP interface, as  can be observed in Figure 2.c.  
By means of the photoelasticity,  it is easy to see the propagation direction: the 
fracture mode is a mixed mode at the start of the crack. Then, the crack propagates 
into the concrete towards the concrete-composite interface with mixed mode, too. 
This propagation mode has also been observed by other researchers [7]. Finally, the 
crack propagates in the concrete, perpendicular to the loading direction (Figure 2.c). 
 
Strain measurements   
In Figure 3 the readings from the two longitudinal strain gauges are plotted vs. load. 
The strain in the GFRP is higher than in the concrete, after the crack reaches the 
interface; this is because the concrete cracking causes a stress transfer from the 
concrete to the composite. 
Figure 4 shows the diagonal strain in the concrete from the ESGs placed at +45° and 
–45° from the axis of the notch. 
We can note higher strain values for the ESG #3. This difference can be caused by 
the strain localisation as pointed out by the photoelastic image (see Figure 2/a). 



 
 

 

 

 

 

 

a: first crack in the 
concrete  

b: sketch of the 
first crack onset 

c: crack 
propagation  

d: sketch of the 
crack propagation 

Figure 2: Photoelasticity  
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Figure3:Total Load vs. Longitudinal 

Strain 
Figure 4: Total Load vs. Diagonal Strain 

ANALYTICAL APPROACH 

A simple analytical approach is presented, aimed at evaluating the Stress Intensity 
Factor for this experimental case.  
An analogous problem has been analysed in [8] for a cracked beam element in r.c. 
beams.  
In this case, a concentrated load P simulates the behaviour of the GFRP 
strengthening which hampers the opening of the crack. The existent models based on 
Fracture Mechanics [9,10] for a simple strip have been used and they are illustrated 
in Figures 5 and 6, respectively. 
For a crack with a distributed tension, the stress intensity factor (SIF) is 

( )ξπσσ FaK I = , 
where,  KIσ is the stress intensity factor due to a distributed tension σ and ξ is the 
normalised crack height[9], 
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Figure 5: crack with distributed tensile 

stress 
Figure 6: crack with concentrated load 
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For a crack with a concentrated load the value of the stress intensity factor is  

( )ξPIP Y
bh

PK
5.0

= , 

where KIP is the stress intensity factor due to a concentrated opening load P, h, b are 
the height and the width of the specimen, respectively, and ξ is the normalised crack 
height[10], 
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So, the final stress intensity factor KIT can be evaluated as 
 

IPIIT KKK −= σ . 
For the case under study, the calculated value of  is higher than the value 
of . For this experimental test, the load applied to the specimen is not too high to 
allow the crack propagation at the interface concrete-FRP strengthening. This could 
happen if the shear stresses reach critical values at the concrete-resin interface. 

IPK
σIK

The crack propagation, as can be seen on the photoelastic images, takes place in the 
concrete, at the crack tip.  



CONCLUSIONS 

The first results of this research suggest that the crack propagation in the concrete 
strengthened by GFRP can be studied by means of Fracture Mechanics. The 
experimental tests give useful information about both the stress and strain state 
around the crack and the direction of the crack propagation. The values of SIF can 
be calculated and they suggest some failure mode of the concrete element 
strengthened. In particular, if the constraint of strengthening is good, the SIF suggest 
that the crack can not propagate at the interface and then it propagates around the 
other tip in the concrete. Research is still in progress in order to apply these 
preliminary results to the r.c. beams strengthened by FRP in bending, and then to 
define some correlation between the crack in the concrete and the crisis at the 
concrete-FRP interface. 
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ABSTRACT 
 
The paper is concerned with the application of the Hillerborg fictitious crack model in mixed mode I-II 
fracture of concrete. It is shown that the cohesive normal traction between opposite crack faces removes all 
stress singularities at the crack tip, provided that the direction of the crack propagation follows a path of 
minimum potential energy. In addition, the stresses at the crack tip are hydrostatic. Therefore, these stresses 
do not reveal a preferable direction of crack propagation. Also, as stresses are finite, stress intensity factors 
are all zero and KI-KII concepts cannot reveal a direction of propagation. A new concept of determining the 
direction of crack propagation based on a “predictor-corrector” principle is presented, in which, firstly, the 
crack is advanced tangentially into the uncracked concrete, the predictor. Thereafter the direction is updated 
using a corrector. Based on the J, L and M integrals of the conservation laws, two proposals for the updated 
direction are presented. 
 
 
KEYWORDS 
 
Non-linear fracture mechanics, fictitious crack model, mixed mode fracture, crack propagation, conservation 
laws, boundary element method. 
 
 
INTRODUCTION 
 
The original concept of the fictitious crack model proposed by Hillerborg [1] relies on the existence of a σ-δ 
relationship, i.e. a relationship between normal stresses and crack opening width, and that a crack propagates 
when the stress at the crack tip exceeds the tensile strength. Mixed mode fracture was not originally 
considered. However, Peterson [2], although investigating mode-I fracture only, implied that the fictitious 
crack model is valid also for mixed mode fracture, and proposed that the crack would propagate in a 
direction perpendicular to the first principal stress. Ingraffea and Samoua [3] applied the fictitious crack 
model using the FEM-method in mixed mode fracture, determining the direction of crack propagation based 
on KI-KII concepts. 
 
However, by observing stresses and corresponding external loads, the author found in his research that the 
cohesive normal traction between opposite crack faces removes all stress singularities at the crack tip, 
provided that the direction of the crack propagation follows a path of minimum potential energy. In addition, 
the stresses at the crack tip are hydrostatic. Therefore these stresses do not reveal a preferable direction of 
crack propagation. Also, as stresses are finite, stress intensity factors are all zero and KI-KII concepts cannot 



reveal a direction of propagation either. The direction of crack propagation determined by one of the 
principles above will therefore be coincidental, the paradox arising, that one gets an answer for an 
“incorrect” current crack tip position only, at which stresses are infinite and not hydrostatic. 
 
The energy release rates for various changes in defects can be determined by evaluation of the J, L and M 
integrals as shown by Eshelby [4] and Budiansky/Rice [5]. Applying their results, the author presents two 
proposals for determining the direction of crack propagation based on a direction of maximum change in 
energy release rate, as determined by the J, L and M integrals. All results presented are based on the 
application of the boundary element method (BEM). 
 
THE BEM-METHOD AS VEHICLE FOR THE FICTITIOUS CRACK MODEL 
 
The basic equation in the boundary element method is the extended Somigliano's identity, valid for both 
internal points and for points on the boundary:  

Ω+Γ=Γ+ ∫∫∫
ΩΓΓ

dqbqsudspqsudquqspsusC jijjijjijjij )(),()(),()(),()()(    (1) 

where uij(s,q) and pij(s,q) are the fundamental solutions for displacements and tractions respectively for a 
unit point load. uj(q) and pj(q) are the displacements and tractions respectively at the boundary. bj(q) is the 
body force, Cij(s) is a matrix depending upon the boundary shape, Ω is the domain considered and Γ the 
corresponding boundary. The reader is referred to literature for the fundamentals of the boundary element 
method, for example Brebbia et al [6]. Applying the multi-domain BEM-method, the fracture process zone 
could be embedded directly in the boundary element method by means of non-linear interface conditions, 
depicted by matrix S in Fig. 1. However, the principle of superposition as devised by Peterson [2] for mode-I 
fracture is more appropriate for the objectives in this paper. In this method the boundary element method 
merely serves as a device to determine influence coefficients.  
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Figure 1 The multi-domain BEM-method for the fictitious crack model. 

The objective is, for a given crack tip position, not necessarily the correct one, to determine an external load 
that complies with the following conditions: 1) the first principal stress in front of the crack tip equals the 
tensile strength and 2) normal stresses and crack widths in the crack process zone comply with the σ−δ 
relationship.  
The external load naturally causes deformations and the crack to widen. On the other hand, the traction in 
the fracture process zone attempts to attract the two crack surfaces to each other. To determine the external 



load, the stresses at the crack tip and the crack width along the crack surface are firstly determined for a unit 
external load. Secondly, for unit normal tractions at all the nodes along the crack surface, the stresses at the 
crack tip and the crack width along the crack surface are determined (see Fig. (1)). The total stress  at 
the crack tip is thus composed of a linear combination of the stress from the external load and stresses from 
the cohesive tractions as follows: 

tip
ijσ

tip
pijkcoh
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tip
kij

tip
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,  σσλσ += ∑

=

        (2) 

where index p indicates the stresses from the unit external load and index k the stresses from the individual 
unit cohesive tractions along the process zone. Similarly, the crack width at the nodal points along the crack 
surface δi are composed of a linear combination of crack width from the external load and crack width from 
the cohesive tractions along the crack surface: 
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where δi,p are the crack width from the unit external load and δik the crack width from the individual unit 
cohesive tractions along the process zone. 
 
Having determined the influence coefficients above, the external load and the crack width profile that 
comply with the objectives above, can now be determined. This can only be accomplished iteratively. To 
assure convergence, a displacement-controlled procedure must be used. The crack opening opposite the 
crack tip, say δn, is used as control parameter. For a given value of the control parameter nδ , the cohesive 
tractions pcoh,i are firstly initialised, for example setting pcoh,i=ft. With this initial guess, a load factor is 
determined from Eqn. 4: 
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       (4) 

The crack openings δi at the other nodal points can now be determined and from the σ−δ relationship the 
cohesive tractions at the nodal points are updated. A new load factor is computed and so forth until the 
cohesive tractions stabilise. From Eqn. 5 the stress tensor at the crack tip is hereafter evaluated and the first 
principal stress is determined: 
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The value of the control parameter is hereafter iteratively altered, for example using the bi-section method, 
until the requirement σ1=ft is satisfied. 
 
OBSERVING VARIOUS CRACK TIP POSITIONS 
 
A three point bending beam with a flat notch placed in the shear zone is now considered. The depth of the 
beam is d=400mm, the width b=1000mm and the length l=1600mm. The notch has a depth of d'=100mm 
and is situated a distance a=400mm from the centre line of the beam. The size of the support areas are 
ls=16mm, whereas the point load at the centre of the beam is distributed over an area of lp=32mm. Due to 
symmetry only half of the beam is modelled. A straight crack originating at the root of the notch, having a 
length of h=100mm is considered. The concrete tensile strength is ft=4MPa, the modulus of elasticity 
E=40GPa and the fracture energy G=100N/m, the σ−δ relationship varying linearly. 
 
Applying the principles described in the previous section, the stress distribution in front of the crack has 
been observed for various positions of the crack tip, expressed by means of the angle v, by which the crack 
direction deviates from vertical. In Fig. (2) the normal traction, the tangential traction and the tangential 
normal stress, all with respect to the sub-domain boundaries, are plotted for crack tip positions 
corresponding to v=15º, v=20º and v=25º. It is easily recognized that for v=15º and for v=25º the tangential 
traction tends towards infinity, however, with opposite sign for the two crack tip positions. At v=20º, the 
tangential traction at the crack tip almost equals zero. The normal traction and the tangential normal stress 



are almost continuous across the crack tip and it can be concluded that stress singularities are not present for 
this particular position of the crack tip. 

External load

 
Figure 2 Observing external load and associated stresses for various crack tip positions. 

In Fig. (2) the external load is plotted for the various crack tip positions as well. It is observed that the 
external load is minimal for v=20º, i.e. for the crack tip position at which the stress singularities are all 
removed. The important observation is made that, following a crack path other than the one corresponding to 
continuous smoothness of stresses at the crack tip, one does not follow a path of minimum potential energy 
configuration. 
 
DEFECT VARIATIONS AND RELATED ENERGY RELEASE RATES 
 
The conservation laws are the direct consequence of the basic equations of the theory of elasticity. Knowles 
and Sternberg [7] have shown that, when these equations are all satisfied, the following integrals:  
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vanish for arbitrary closed integration paths S surrounding a homogeneous singly connected isotropic elastic 
domain. In Eqn. 6-9 W is the strain energy density, ni is the unit outward normal vector of S, ui is the 
deformation vector, εij is the first order strain measure, pi is the traction vector at S, corresponding to the unit 
outward normal vector and finally, x and y are coordinates of points at S. The subscripts refer to components 
in a global Cartesian reference frame (see Fig. (3)). 
 
If a defect is present in the domain and the integration path S completely surrounds the defect, these integrals 
differ from zero and express energy changes in the domain corresponding to certain defect variations. 
Eshelby [4] has shown that the energy release rate for an infinitesimal translation δr can be determined by 
means of Jx and Jy, whereas Budiansky/Rice [5] have shown that the energy release rate for an infinitesimal 
rotation and an infinitesimal expansion can be determined by means of L and M. This may be summarized in 
the following formulae, which give the energy release rate associated with infinitesimal variations of 
defects:  
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Figure 3 Various defect variations, translation, rotation and expansion, in an elastic domain. 

 
PREDICTING THE DIRECTION OF CRACK PROPAGATION 
 
Based on the energy release rates presented in the previous section, two proposals for predicting the 
direction of crack propagation are now made. The proposals are depicted in Fig.(4). The current crack tip is 
positioned such that the stresses are completely smooth. Firstly the crack tip is advanced a distance ∆ in the 
tangential direction, a direction adhering to the Jy=0 or L=0 principles. For this predicted crack, the external 
load and the tractions in the process zone are determined, using the principle of superposition requiring the 
first principal stress to equal the tensile strength. Secondly, for this configuration the energy release rate with 
regard to the predicted crack is determined and the direction of crack propagation is derived from the virtual 
displacements of the predicted crack, as shown in Fig.(4). In proposal A the predicted crack is given virtual 
translations, whereas in proposal B the predicted crack is expanded and rotated. The energy release rate for 
the two proposals respectively is: 
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Figure 4 Proposals for predicting the direction of crack propagation. 

From Eqn.(13), using the principle of maximum energy release rate, the direction of crack advance α is now 
determined from : 
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For the beam studied previously, the direction of crack propagation is plotted in Fig.(5) for various 
directions of the crack predictor. It was seen previously that the minimum energy configuration was 
achieved for a crack tip position corresponding to approximately v=20º, with a rather flat functional 
variation within the interval v=17° to v=22°. With proposal A the corrected direction of crack propagation is 
rather insensitive to the direction of the crack predictor and lies in the interval v=15.8-17.3º, however, 
slightly below the expected direction of propagation. Proposal B is very sensitive to the direction of the 
crack predictor. However, within a range of ±3º, the proper direction of crack propagation is determined 
fairly accurately. 
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Figure 5 Prediction of the direction of crack propagation for various directions of the predictor. 

 
CONCLUSION 
 
In mixed mode fracture applying the fictitious crack model, the direction of crack propagation may be 
accurately predicted by evaluation of the J, L and M integrals. Directions based on Jy=0 and L=0 criteria are 
derived. These directions closely predict a path corresponding to minimum potential energy. 
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ABSTRACT 
 
In a series of uniaxial tensile test on single-edge-notched sandstone specimens, the effect of stiffness of 
the test set-up on the stability of crack propagation were studied. A specimen is loaded between cables to 
minimize restraint in the boundary conditions. Variation of cable length represents a variation of the 
machine stiffness. The cable length is 200 mm, 150 mm, 100 mm and 50 mm respectively. The tests were 
conducted under closed-loop deformation control. A new control system based on the maximum 
deformation rate near the notch was developed to achieve a stable test. A long distance microscope was 
employed to trace the crack propagation and the location of the crack tip. The results show that the cable 
length does affect the stability of crack propagation. In general, local instabilities occur inevitably for all 
four different cable lengths. In the cable test the loading situation is defined very well, and with known 
location of the crack tip, very accurate inverse analysis of softening stress-crack opening relation becomes 
possible.   
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INTRODUCTION 
 
Many fracture models of brittle or quasi-brittle materials need tensile properties as input parameters. 
Uniaxial tensile tests are commonly used to determine these properties and parameters in such materials. 
The measurement of tension softening behavior often requires a single crack stably propagating through 
the specimen. In order to maintain stability after the peak load the tests can be controlled by LVDT's and 
the PID settings of the regulation amplifier. However, despite the feed back system, instability appears to 
occur frequently, like sudden load drop and snap-back in load-deformation diagrams. Crack stability in an 
experiment can be affected by several factors as composition of material, stiffness of test set-up, response 
of control system, boundary condition, loading rate, specimen size and measuring length of the control 
LVDT. Some attempts have been made to investigate the stability problems in a test of quasi-brittle 
material, such as [1,2,3,4]. However, the subject is still far from being well understood.  
 
Freely rotating boundary conditions provide a clear loading condition for a specimen and allow for the 
propagation of a single crack. Flexure of hinged specimens has been identified as an important aspect of 
their post-peak failure behavior [5,6]. However, it is difficult to make perfect hinges and often some small 
constraint will be imposed in one or more directions. Since this constraint is fundamentally unknown it 
can be difficult to reproduce experimental results by fracture mechanics analysis or by means of finite 



element computations. To further reduce the effects of constraints, cable supports have been developed 
and tested.  
 
The objective of the study is to obtain a better understanding in the causes of instability in uniaxial tensile 
tests on brittle or quasi-brittle materials. A series of tensile tests has been performed on single-edge-
notched sandstone specimens that were loaded between cables. Four different cable lengths were tested, 
which represent different stiffness of a test set-up. Some interesting phenomena observed from the test are 
reported. 
 
 
SPECIMEN AND TEST SET-UP 
 
Specimen Preparation  
In this study, Yellow Felser sandstone was used to produce the specimens. This type of sandstone consists 
of clay matrix and aggregate particles (mostly quartz and feldspar) with size of 0.05 ~ 0.7 mm [7]. All the 
specimens were sawn from one large block in the same direction. The size of the specimen is 90*45*10 
mm. The width is chosen as 45 mm in order to assure that the whole area where the crack is expected to 
propagate could be completely covered by the view of a long distance microscope. The thickness is 
chosen small so that three-dimensional effects could be avoided as much as possible. A single notch with 
5 mm depth and 2 mm width was sawn for initiating a crack. After sawing, the specimens were stored in 
the lab for longer than 6 weeks in order to obtain constant moisture content. Furthermore, in order to 
improve visibility of the crack under a long distance microscope, the surfaces of the specimens were 
brightly painted before testing. 
 
Test Set-up 
The uniaxial tensile tests have been conducted in a servo-controlled hydraulic test machine (10 kN Instron 
8872) as shown in figure 1. A specimen was glued on platens and loaded between two cables in order to 
eliminate boundary effect as much as possible, and to allow for the propagation of a single crack. In this 
series of test, four different cable lengths were used to investigate the effect of the stiffness of the set-up 
on the stability of crack propagation. The selected cable lengths are 200 mm, 150 mm, 100 mm, 50 mm, 
respectively. Three to five LVDT's were mounted on the specimen to measure the deformation in the 
middle region of a specimen where a crack is expected to develop. The vertical measuring length for a 
specimen is 15 mm. When five LVDT’s were used, three of them were positioned on the rear face and 
two on the front face (microscope side) of the specimen to allow the microscope to follow the crack tip.  
 
In addition, the vertical displacements of the top platen and bottom platen were measured in order to 
observe the rotation of the platens during crack propagation. For this purpose, two aluminum discs were 
connected to the rectangular specimen platen to provide for a sufficiently large measuring area. Three 
LVDT’s are pointed to the upper disc and another three pointed to the bottom disc. A special frame has 
been built to mount these six LVDT’s.  
 

 
 

Figure 1: Test set-up



The control method plays a crucial role in the whole loading procedure to obtain a stable test. In earlier 
tests done by Van Vliet [9], the maximum deformation at any time was used as control variable. This 
system allowed for stable crack propagation studies in large sandstone and concrete specimens (up to 
2400 mm long). Drawback was that manual adjustment of the PID settings was needed with decreasing 
stiffness of a fracturing specimen. In the present study, a new control system has been developed in which 
the system continuously compares the deformation rates of the two LVDT’s close to the notch. Either of 
these LVDT’s is active. The inactive LVDT will become active whenever its deformation rate is larger 
than that of the active LVDT plus some threshold value. For example, in Figure 2(a), LVDT 10 and 
LVDT 13 are the controlling LVDT’s mounted next to the notch. LVDT 13 is at the front side of the 
specimen (microscope side) and LVDT 10 is at its rear side. Figure 2(b) shows which control signal being 
active at a specific moment in time. When output value is 0.95 the LVDT 10 provides the control signal 
and when the output value is 0.1 the LVDT 13 provides the control signal. The test results show that this 
control system gives a stable tensile test and it is even capable to handle snap-back behavior. 
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  Figure 2: Control signal 

 
In order to trace the crack propagation and location of the crack tip, a long distance optical microscope 
(Questar, QM100 MK-III) is employed in combination with a CCD camera. Reference [8] gives a 
detailed technical description on the Questar remote measuring system.  
 
Horizontal Displacement of Cables 
Theoretically, when a specimen is loaded in uniaxial tension through cables, no horizontal displacement 
will occur during crack opening. However, considering imperfections in the test set-up, it was felt that 
this should be checked. Therefore, a number of tensile tests were conducted in which the horizontal 
displacements of the cables were measured. 
 
The longest cable (200 mm) was selected, which may show the most significant horizontal displacement. 
The horizontal displacements at the top of the lower cable were measured in-plane and out-of-plane of the 
specimen by means of two inductive transducers. This type of transducer uses a magnetic field to measure 
the distance between a cable and the head of the transducer. In order to distinguish between systematic 
errors and the real horizontal displacement of the cable, tests have been performed by loading both 
sandstone specimens (including cracking) and an aluminium specimen (deforming elastically without 
cracking). The results are shown in Figure 3 and table 1.  
 
The results of sandstone tests show that the measured horizontal displacements of the lower cable are 
much smaller than in the aluminium tests. This indicates that the opening of a crack in the specimen does 
not introduce a horizontal displacement of the cables. The measured displacements are due to the 
elongation and rotation of the cable under tensioning. Therefore, in the subsequent experiments and data 
interpretation, it is assumed that the external load is properly aligned during the whole loading process. 
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 Figure 3: Load-cable displacement diagrams 

 

EXPERIMENTAL RESULTS AND DISCUSSIO
 
To investigate the effect of the cable length on stab
performed with cable length of 200 mm, 150 mm
specimens were loaded in uniaxial tension under
failure occurred. The following shows the typical re
 
Crack Propagation  
For all the tests, load-deformation diagrams were r
not visibly affected by the cable length. By means 
crack path was followed during the whole loading
under the selected magnification of the microscop
and propagated straight through the middle area of
image has been enhanced to make the crack better
the cable length was observed. When the m
approximately 150 µm, the crack propagation s
deformation reaches about 200 µm, the crack open
stop almost completely. Apparently, at this stage 
and the eccentricity is large. Bending dominate
specimen beyond the crack mainly rotate around th
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ABLE 1 
ESTS OF ALUMINIUM AND SANDSTONE 

Horizontal displacement of the cable (µm) 
In-plane Out-of-plane 

183.3 ---- 
196.7 449.4 
50.0 162.1 
73.4 171.3 
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ility of crack propagation, a series of 37 tests has been 
, 100 mm and 50 mm respectively. In these tests, the 
 a constant loading rate of 0.02 µm/s until a sudden 
sults obtained from the successful tests.   

ecorded, which show that the shapes of the curves are 
of a remotely controlled long distance microscope, the 
 procedure. The location of the crack tip was recorded 
e. In most of the tests the cracks initiated at the notch 
 the specimens, as shown in Figure 4. In the figure, the 
 visible. No correlation between the crack pattern and 
aximum deformation measured near the notch is 
peed slows down gradually. Furthermore, when the 
ing continues to increase, but the crack tip appears to 
the stiffness of the intact segment becomes very low, 
s the specimen behavior. The two segments of the 
e center of the intact area. 

notch 

le of the recorded crack pattern 



Representative load-deformation diagrams for the tests using four different cable lengths are presented in 
Figure 5 (a) to (d). In these curves, δ is the average of the deformations measured by the two LVDT’s 
close to the notch. 
 
In general, it appears that the longer cables (200 and 150 mm) give a more stable crack propagation and 
larger crack opening at failure than the shorter ones (100 and 50 mm). This could be explained from the 
(small) flexural stiffness of the cables. Particularly the short cables have some flexural stiffness and 
provide some constraint in the out-of-plane direction.  
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            Figure 5: Load-deformation diagrams for four different cable lengths  
            and an example of enlarged instability (snap-back) shown in the inset 

 

nomena 
ties are visible in a load-deformation diagram as small dips. Tests with longer cables 
ntain more instability than tests with the shorter cables (Figure 5). Evidently, in the longer 
ergy is stored which makes the set-up less sensitive to corrections of the control system. 

stem first attempts small corrections but when these show to have little effect it will over-
ce the force strongly, producing a dip. In all tests the tail parts of the curves show to be 
 the rest of the diagram. The reason is that at this stage the residual stiffness of the 
mes small due to the development of the crack, the stiffness of the cables does not 
control system any longer. The current control system therefore was considered an 
o an earlier control system based on the maximum deformation in specimens used in [9]. 

ture of all load-deformation curves is that substantial drops are present around the peak-
cates that the system experiences considerable changes at this stage. Just before the main 
the biggest amount of strain energy is stored in the system of specimen and cables that 
r sensitivity to react any sudden changes. When a crack is initiated a qualitative change 
ecimen. A big amount of energy releases suddenly at a high rate, and the system is not fast 

ow the correction of the control system. As a consequence, over-reaction occurs in the 
ults in bigger drops in the load-deformation diagrams.  

t point showing instability is at the final stage just before failure. This behavior is possibly 
the secondary bending moment formed in the intact area in front of the crack tip due to 
ased load eccentricity during crack propagation. In a uniaxial tensile test between cables, 

ibution at the cross section of a crack can be schematized as shown in Figure 6 (a), (b) and 
uent stages of crack propagation. The stress at crack tip is assumed as tensile strength 
e fictitious crack model. Stress in the intact area in front of the crack tip is distributed 

as in the area behind the crack tip, the stress distribution follows softening behavior.  



As the location of the applied force in the cable is exactly known (hardly any horizontal displacement of 
the loading cables were observed) and the location of the crack tip at failure is known to some accuracy, 
the test can be used for extracting softening data of the material to a high degree of accuracy. At present 
the analysis is in progress. As a result of the eccentric loading on the cracked specimen (Figure 6c) the 
area in front of the visible crack tip is loaded by the force Fint and the bending moment Mint. This situation 
will be used to assess the conditions just before final catastrophic failure. 
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                 Figure 6: Stress distribution at different crack stages 

 
CONCLUSIONS 
 
1. The current control system, which is based on the rate of crack opening at the notch tip, is very well 

suited for obtaining stable load-deformation diagrams under uniaxial tension irrespective of the 
machine stiffness. The machine stiffness was varied through a variation of the length of the cables 
through which the specimen was loaded. 

2. The tests showed local instabilities, which were successfully handled by the control system except for 
the catastrophic failure at large crack openings. 

3. The loading situation in the specimen is very clear. The point of load application is well defined, and 
since the tip of the crack is known to some accuracy, inverse analysis of tension softening properties 
of the tested material is possible with high accuracy. 
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ABSTRACT 
 
In-situ measurements were done to get information about crack tip deformation processes in different 
polypropylenes. For the measurements a conventional fracture mechanics test arrangement for three point 
bending tests coupled with a stereo microscope and a camera was used. In this way a directly correlation of 
load and deflection with crack extension and crack tip opening displacement is possible and crack resistance 
curves (R-curves) can be achieved. On principle the method is a single specimen method. 
The influence of ethylene content and elastomer content on the crack opening displacement at the crack 
initiation point is demonstrated on different polypropylene (PP) materials: homopolymers, random 
copolymers, blends and heterophasic copolymers. 
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INTRODUCTION 
 
The knowledge of the physical crack initiation process is the basis for the quantification of deformation 
determined fracture processes. It is generally well known that the fracture process is initiated by the crack tip 
blunting and stretch zone formation. The crack initiation occurs by opening the crack tip after exceeding a 
critical deformation. The blunting process depends on stress state, microstructure, testing velocity and 
temperature. Therefore, polymers show no unique crack tip blunting and initiation behaviour by reason of their 
structural variety and their specific critical behaviour which depends on testing velocity and temperature. 
Crack tip blunting and initiation processes in polymers are a combination of crazing, local shear deformation 
and voiding, which depends on the structure, the material state and the testing conditions. For this reason 
crack initiation processes of polymers are not inevitable in accordance with the classical stretch zone concept 
[1,2]. Different investigations about crack tip blunting and crack tip deformation processes are done, e.g. in 
[3-6] for amorphous and in [3,7-13] for semicrystalline polymers. The process of transition from a blunted to 
a growing stable crack is controversial discussed for quite some time. In principle two mechanisms of crack 
tip deformation processes are provable. Both are influenced by the molecular structure. Results of different 
investigations exist which include problems of stretch zone determination on fracture surfaces [14-17]. 
 



EXPERIMENTAL 
 
Materials 
Different polypropylene (PP) materials were investigated: homopolymers, polyethylene (PE)/PP random 
copolymers, heterophasic copolymers with different interparticle distances A, and PP/EPR (ethylene 
propylene rubber) blends with different EPR content (Table 1). The average particle diameter of the 
elastomeric phase in the blends (≈ 2 µm) and in the heterophasic copolymers (≈ 1.5 µm) are comparable. 
Additionally the EPR phase of the heterophasic copolymers includes lamellas of crystalline PE [18,19]. 

 
 

TABLE 1 
 INVESTIGATED PP MATERIALS 

 
term material description 

PP  1, 2 homopolymers polypropylene 
RaCo 1, 2 random copolymers 4 mol.-% and 8 mol.-% ethylene 
Blend 1, 2 PP/EPR blends PP 1/EPR = 85/15 and 80/20 
HeCo 1, 2 heterophasic copolymers matrix PP 2, A = 2.12 µm and A = 1.38 µm 

 
In-situ testing 
For the in-situ tests a conventional fracture mechanics test arrangement for three-point bending tests was 
coupled with a stereo microscope and a camera. Uniform time-scale enables direct correlation between the 
load-time and deflection-time signals and the crack extension as well as the crack tip opening displacement. 
Injection moulded single edge notched bend specimens with the dimensions 80 x 10 x 4 mm3 were used. The 
specimens were notched with a razor blade. To prevent shear lips side-grooves (radius r = 0.1 mm) were 
mill-cut. Measurements were done using a support span of 40 mm and a strain rate of 0.001 s-1. 
The crack tip opening displacement (CTOD) δ and the stable crack growth ∆a were taken from the recorded 
videos, J values were determined from the measured load-deflection curves (Eqn. 1) according to [20]:  
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where Ael and Apl are the elastic and the plastic part of generally deformation energy and ηel and ηpl are 
geometry functions. 
The in-situ investigation allows the separation of the crack tip blunting process and the crack growth 
process. The blunting line was fitted using a linear equation (2). Crack growth curve was fitted with the help 
of a power law (3). 
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The crack initiation point was determined visually during analysing the video. This results were compared 
with results from δ-∆a curves, where the intersection of blunting line and crack growth curve was defined as 
crack initiation point. 
For the investigation of deformation behaviour and damage in the crack tip region sections of about 5 µm 
were microtomed at – 100 °C using a MICROM microtome and a glassy knife. The investigated specimens 
were both fully unloaded and fixed in several bended states. The crack tip region of the latter ones was fixed 
with an embedding resin and cutting was done after curing of the resin. Microscopical observations were 
done at a ZEISS Axiolab Pol using crossed polars and a SEM PHILIPS XL 30. 
 



RESULTS 
 
Typical results of the measurements are shown in Fig. 1. Received load-deflection curves were normalized 
to the effective area, which depends on the actual crack length. The homopolymer breaks unstable at a crack 
length of about 0.6 mm whereas the modified materials do not break under the testing conditions chosen. 
Analysing the recorded video the crack initiation points were defined (see the arrows in Fig. 1). Crack 
initiation takes places below the maximum of the curves, but clearly above the linear region. 
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Figure 1: Normalized load vs. deflection for several PP-copolymers and the PP-homopolymer.
Arrows indicate the visually defined crack initiation point. Scale bar length: 1 mm. 

 
From the in-situ determined δ values and crack lengths δ-∆a curves can be plotted and crack initiation values 
were determined [21]. This single specimen method allows the determination of fracture mechanics values 
without relaxation and blunting effects, which is the main advantage in comparison with the partial 
unloading method. Furthermore the crack lengths are measured, not calculated. 
CTOD at the in-situ determined crack initiation point depends on morphological and structural parameters 
(Fig. 2). For the heterophasic copolymers there is a critical value at a interparticle distance of about 2 µm.  

0 2 4
0

0.1

0.2

0.3

0.4

0.5

Heterophasic
 Copolymers

δ i 
  [

m
m

]

A   (µm)

0 5 10 15 20

Blends

 

0 2 4 6 8

  Random
Copolymers

 

 

Figure 2: CTOD at the in si
parameters. 
"∞"

 EPR Content   (wt.-%)  Ethylene Content   (mol.-%)

tu determined crack initiation point δi in dependence on structural 



Undergoing this value leads to a strong increase of δi –values. In dependence on EPR- and ethylene content 
the crack initiation values increase. Critical values are not able to determine due to the less number of 
investigated materials. 
In conventional fracture mechanics tests the CTOD at crack initiation can be determined from δ-∆a curves as 
the intersection of the blunting line and the crack growth curve. Therefore the comparison of the CTOD 
values defined from δ-∆a curves with the visually defined ones (Fig. 3) is of a special interest. This 
procedure serves to check the experiment. For most of the investigated materials there is a good agreement 
between them. 
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Figure 4 demonstrates that for polymers the elastic and viscoelastic deformation parts of general CTOD are 
very high. That means, that measurement of stretch zone dimensions on fracture surfaces can lead to an 
underestimation and blunting lines determined with this method are also underestimated. The quantity of the 
“error” in the first place depends on material and loading conditions. 
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Figure 4: Ratio of the loaded and of the fully unloaded specimen for several PP-materials at a 
deflection of 5 mm. 

 
The fracture process of the investigated PP- materials is demonstrated in Figure 5. In the first stage of 
blunting which corresponds to a seeming linear material behaviour in the load-deflection diagrams first 
damage occurs in front of the crack tip. For the homopolymers (Fig. 5/1a and b) and random copolymers 
deformations are of craze-like type. The whole blunting process (Figs. 5/1c and 5/2a) takes place without 



translation of the crack tip and includes beside the seeming linear material behaviour a not neglectable non-
linear part (see Fig. 1, position of the crack initiation points). The process is more a stretching in tension 
direction than a curving. Strong, large craze-like deformations are visible not only in the centre but also at 
the sharp edges between the blunted tip and the flanks of the initial razor notch (Figure 5/1c). The pre-crack 
flanks control shape of the large middle craze. The crack initiation is characterized by a more “gradual” than 
an abrupt transition from blunting to growing. The shape of the crack tip does not change clearly. The 
moving crack tip is not very sharp. Figures 5/1d and 5/2b show growing cracks in the different materials.  
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Figure 5: J-∆a curves of a PP-homopolymer and a heterophasic copolymer. Deformation states in the 

crack tip region: (1 a-d) homopolymer; (2 a,b) copolymer; scale bar length: 200 µm. 

Figure 6: Crazing in the damaged region in front of the crack tip (scale bar length 50 µm) 
 



Craze and microcrack paths in front of the crack tip are trans- and interspherulithic, which can be seen in 
Figure 6. For the elastomer modified materials the shape of the damaged region in front of the crack tip is 
different compared to the homopolymers (Figures 5/2a and b). Its shape is circular like and in the SEM 
failure of the rubber/matrix interphase can be seen. So-called “croids” are forming [18]. 
 
 
CONCLUSIONS 
 
In-situ testing using a stereomicroscope is a suitable method to get information about deformation behaviour 
in front of the crack tip. It can be used as a single specimen method because the crack front of the side- 
grooved specimens is nearly linear, not round shaped.  
Crack opening displacement at the visually defined crack initiation point was in good agreement with the 
CTOD determined from intersection of blunting line and fitted δ-∆a curve. The obtained crack initiation 
values depend on the ethylene content and on the elastomer content for the random copolymers and the 
blends or heterophasic copolymers respectively. For all materials crack initiation takes place without a clear 
change of tip shape. No stretch zone could be proved on fracture surfaces. 
In homopolymers and random copolymers there is a crazed region in front of the crack tip in the elastomer 
modified materials, i. e. blends and heterophasic copolymers, however “croiding” was found. 
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ABSTRACT

Mode I, quasi-static, steady state crack growth is analyzed for rate dependent materials under plane strain
conditions in small scale yielding.  The solid is characterized by an elastic-viscoplastic constitutive law and
the plane ahead of the crack tip is embedded with a rate dependent fracture process zone.  The macroscopic
work of fracture of the material is computed as a function of the crack velocity and the parameters
characterizing the fracture process zone and the solid.  With increasing crack velocity a competition exists
between the strain rate hardening of the solid, which causes elevated tractions ahead of the crack tip that
tend to drive crack propagation, and the rate strengthening of the fracture process zone which tends to resist
fracture.  Results for material parameters characteristic of polymers show that the toughness of the material
can either increase or decrease with increasing crack velocity.  To motivate the model, the cohesive zone
parameters are discussed in terms of failure mechanisms such as crazing and void growth ahead of the
crack tip.  The toughness of rubber modified epoxies is explained by employing the fracture model along
with micromechanical void cell calculations.

KEYWORDS

Steady state fracture, elastic-viscoplastic material, cohesive zone model

1. INTRODUCTION

In this work the toughness of a rate dependent material is determined as a function of certain intrinsic
material properties.  An elastic-viscoplastic constitutive law characterizes the bulk material deformation
and a rate dependent cohesive zone law describes the separation ahead of the crack tip.  A steady state
finite element formulation, Dean and Hutchinson [1], is used to determine the stress and strain fields
around the moving crack and to relate the critical applied energy release rate to the intrinsic material
toughness.



Figure 1 is a schematic of a crack propagating in an elastic-plastic solid under Mode I, plane strain, small
scale yielding, steady state conditions.  The displayed shape of the plastic zone is the result of a calculation
for an elastic-perfectly plastic, rate independent material.  The plastic zone shape for rate dependent
materials is similar in both size and shape.  Far from the crack tip the stresses follow the Mode I elastic K
field.   As the crack propagates through the solid the crack tip is surrounded by active plasticity, elastic
unloading and plastic reloading sectors, Drugan et al. [2].  Far behind the crack tip there is a wake of
residual plastic strains where the material has unloaded elastically.
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Figure 1:  The plastic zone near a steadily propagating crack in an elastic-perfectly plastic material.

2. GOVERNING EQUATIONS

We adopt a rate dependent elastic-viscoplastic constitutive model of the form used by Marusich and Ortiz
[3] and Xia and Shih [4],
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where σ = 3

2
s sij ij  is the effective stress, sij ij kk ij= −σ σ δ1

3
 is the deviatoric stress tensor, σ y  is the static

tensile yield strength, ˙ ˙ ˙ε ε εp
ij
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3
 is the effective plastic strain rate, ε̇o  is a reference plastic strain rate

and m is the plastic strain rate sensitivity exponent.

The components of the plastic strain rate are then given by
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Finally, the elastic strain rates are given by
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ij kk ijE E
= + −1

 (4)

where E and ν are the isotropic Young’s modulus and Poisson’s ratio.  Notice that this form of the

constitutive law allows for a well-defined region of elastic response which is required for the small scale
yielding approximation to be used.

The rate dependence for the fracture process zone is taken to follow a similar functional form as that for the
bulk solid.  In order to facilitate the finite element calculations it is assumed that there is always an initial
linear portion in the traction-separation law.  Hence, the crack opening displacement, δ , is the sum of an
elastic (linear) and a plastic part.  The cohesive traction obeys
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where λ1 is a shape parameter of the static traction-opening law (see Tvergaard and Hutchinson [5]), σ̂  is
the peak stress of the static form of the traction-separation law and δc is the critical crack opening where
tractions drop to zero.  The second shape parameter of the traction-separation law is λ2 .  The plastic

opening rate, δ̇ p , is described by
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where δ̇o  is a characteristic crack opening rate, t is the normal traction acting on the crack plane, q is the

rate exponent of the fracture process zone and to
pδ( ) represents the static form of the traction-separation

law.  We also impose the condition (8) requiring that the total crack opening, δ , must always be less than
the critical crack opening, δc, for all applied opening rates otherwise the traction must drop to zero.  A
more detailed description of the traction-separation law can be found in Landis et al. [6].



3. RESULTS

Dimensional analysis suggests that the macroscopic steady state toughness depends on the following
dimensionless parameters
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where ȧ  is the crack velocity and
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is the approximate size of the plastic zone when the applied energy release rate, K, is equal to Ko, where
Ko is related to Γo  through (10).  Previous studies on rate independent materials have demonstrated that
the last 4 parameters in (9) are of secondary importance.  For this study the parameters E yσ = 50 ,

ν = 0 35. , λ1 0 15= .  and λ2 0 5= .  are used.
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Figure 2:  Steady state toughness versus peak cohesive strength for a rate independent cohesive zone law.

The first set of results shown in Figure 2 are for a solid with rate exponent m = 10 and a rate independent
fracture process zone.  The rate independent fracture process zone is a limiting case of Equations (6-8) with
˙ ˙δ ε δo o c( ) → ∞ or q → ∞ .  Figure 2 plots the steady state toughness as a function of the peak cohesive

stress in the fracture process zone.  For values of σ̂ σ< 2 y  the plasticity in the bulk solid is not of sufficient

intensity to induce a significant amount of dissipation and the steady state toughness is only slightly greater
than Γo .  For exceedingly slow crack velocities the model reduces to a rate-independent elastic-perfectly



plastic material where the solid cannot sustain normal tractions greater than approximately 2 96. σ y  ahead

of the crack tip.  Hence, if ˆ .σ σ> 2 96 y  then the fracture process zone cannot separate and Γss  is infinite.

At finite crack velocities the strain rate effects in the solid become relevant.  Increasing crack velocities
allow for elevated normal traction acting on the crack plane.  However, the normal traction ahead of the
crack tip cannot exceed σ̂  which limits the intensity of the plastic deformation and hence the toughness of
the material decreases as crack velocity increases.  The effects shown in Figure 2 are analogous to strain
hardening or strain gradient hardening effects in rate independent materials, Wei and Hutchinson [7].  The
general trend is that material hardening elevates tractions ahead of the crack tip which promote the
separation of the fracture process zone.

The introduction of a rate dependent fracture process zone sets up a competition between the hardening of
the solid and the strengthening of the cohesive zone.  As such, trends in the steady state toughness are not
as straightforward as those for the rate independent fracture process.  Furthermore, Γss  is sensitive to the

two rate parameters associated with the fracture process, q and δ̇o .  It is likely that q and δ̇o  will be
difficult to measure directly, leaving their determination to micromechanical models of the fracture process.

Figure 3 plots Γss  as a function of σ̂  for various crack velocities.  The rate exponent for the fracture
process was taken to be equal to that of the solid for these simulations, q m= = 10.  Focusing first on the

solid curves with the normalized reference crack opening rate ˙ ˙δ ε δo o c( ) = 1, we note that steady state

toughness now increases as the crack velocity increases.  Within the range of Γss  shown, the strengthening
of the fracture process dominates the hardening in the bulk solid.  The two dotted lines on Figure 3 are
results for a normalized crack velocity of ˙ ˙a Ro oε( ) = 100  and reference crack opening rates of
˙ ˙ .δ ε δo o c( ) = 0 1 10and .  For a given crack opening rate Eqn. (6) indicates that the traction acting across

the crack faces decreases as δ̇o  increases.  Crudely, increasing δ̇o  is similar to decreasing σ̂  at a given
opening rate.
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Figure 3:  Toughness versus peak cohesive
strength for a rate dependent traction-
separation law with q m= = 10.

Figure 4: Toughness versus peak cohesive
strength for a rate dependent traction-
separation law with q m= =2 20 .



Notice that the solid curves in Figure 3 seem to approach the ˙ ˙a Ro oε( ) → 0 curve from the left as the crack

velocity decreases.  This appearance is due to the range of Γss  shown in the figure.  Notice that the

˙ ˙a Ro oε( ) = 100 , ˙ ˙δ ε δo o c( ) = 10  simulations cross over the ˙ ˙a Ro oε( ) → 0 curve.  This is also the case for

the ˙ ˙δ ε δo o c( ) = 1 cases, however the crossover occurs at much higher values of Γss .  A similar change in

the toughness versus crack velocity trend is evident for a value of q m= 2  to be presented next.

As we have stated throughout q  and δ̇o  could be obtained from a micromechanical analysis.  Kramer and
Berger [8] present a model for craze widening and under their assumptions the rate exponent for the craze
widening is predicted to be twice that for bulk deformations.  We note that their assumed form of the bulk
constitutive law was power law viscous which is similar to Eqn. (1) except that no yield surface exists, i.e.
the additive constant of 1 is removed from the left hand side of (1) and plastic straining occurs at all stress
levels.  For increasing levels of q Eqn. (6) indicates that for a given applied opening rate the traction acting
across the crack surfaces decreases.  As shown on Figure 2 the rate independent fracture process limit
corresponds to q → ∞ .  Hence, an increase in q will have similar effects on Γss  as an increase in δ̇o .
Figure 4 plots Γss  as a function of σ̂  for three crack velocities and q m= =2 20 .  Here again a crossover
in the trend of toughness versus velocity occurs.  For static peak cohesive stresses lower than
approximately 2 7. σ y , Γss  increases slightly as ȧ  increases.  However, for ˆ .σ σ> 2 7 y  the toughness

decreases dramatically as the crack velocity increases (within the range of velocities shown).

4. DISCUSSION

In this work a rate dependent bulk material was coupled with a rate dependent fracture process zone.  When
the fracture process is rate independent the rate hardening in the bulk solid allows the tractions ahead of the
crack tip to elevate and overcome the strength of the cohesive zone.  Hence, the toughness of the material
decreases as the crack velocity increases.  For a rate dependent fracture process zone where both the
toughness and strength increase with increasing crack opening rate predictions of the model are more
complicated.  However, a simple rule of thumb could be proposed: if the peak cohesive stress is less than
approximately 3σ y  then the steady state toughness will increase with increasing crack velocity while the

opposite trend holds for σ̂ σ> 3 y .  The coefficient of 3 is a remnant of the perfectly plastic description of

the static stress-strain behavior and the introduction of strain hardening will change the magnitude of the
peak stress where this transition occurs.  Lastly, the rate of increase/decrease of Γss  with respect to crack

velocity is quite sensitive to the q and δ̇o  parameters of the fracture process.
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ABSTRACT 

 
Relationship between creep crack growth rate and microscopic fracture mechanism i.e., 
wedge-type intergranular, transgranular and cavity-type intergranular crack growth, has been 
investigated on Alloy 800H and 316 stainless steel. The growth rate of wedge-type and 
transgranular creep crack could be characterized by creep ductility. Creep damages formed 
ahead of the cavity-type creep crack tip accelerated the crack growth rate. Based on the 
experimental results, FEM code that simulates creep crack growth taking the fracture 
mechanism into account has been developed. The effect of creep ductility and void formation 
ahead of the crack tip on creep crack growth rate could be evaluated. 
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Creep crack growth, Alloy 800H, 316 stainless steel, Creep fracture mechanism, C* parameter,  
FEM analysis, Vacancy diffusion 
 
 
INTRODUCTION 
 
Understanding of creep crack growth behavior is important for the reliability evaluation of high 
temperature structural components. Creep crack growth properties are affected by microscopic 
fracture mechanism dependent on temperature and loading condition. For the long-term 
services, evaluation of creep crack growth by grain boundary cavitation [1] is important. Type 
IV creep crack in heat affected zone of welded components grows accompanied by void 
formation ahead of the crack tip [2]. It would be necessary to evaluate the creep crack growth 
behavior, taking microscopic features such as damage formation into account, for the accurate 
life prediction.  
 
In the present work, creep crack growth tests were conducted using CT specimen of Alloy 800H 
and 316 stainless steel at various temperature and loading conditions. Creep crack growth 
behavior was characterized in terms of microscopic creep fracture mechanism. In order to 
evaluate the relations between creep crack growth rate and fracture mechanism, FEM analysis 
taking the creep ductility and void formation into account was conducted. 
 
 



 
EXPERIMENTAL PROCEDURES 
 
Materials tested are Alloy 800H and 316 stainless steel plates. Chemical composition of Alloy 
800H is given in Table 1. The solid solution heat treatment condition was 0.4h at 1443K. Creep 
crack growth tests were conducted using CT specimen of 50.8mm in width and 12.7mm in 
thickness. Fatigue pre-crack of 2.5mm was introduced at room temperature. After fatigue 
pre-cracking, side-grooves of 20% of thickness were machined. Creep crack length was 
measured using D.C. electrical potential technique. Load line displacement between upper and 
lower clevises, which connect the specimen with pull rods, was measured. The creep crack 
growth tests were conducted at temperature range from 873K to 1073K.  
 

 
TABLE 1  

CHEMICAL COMPOSITION OF ALLOY800H (MASS%)  

  C�  Si� Mn�   Fe�    S�   Ni�   Cr�   Cu�   Ti�  Al�
�

0.06� 0.4� 1.0� 45.4� 0.001    31.9     20.0�  0.03� 0.46� 0.35

 
 
 
RESULTS AND DISCUSSION 
 
Creep Fracture Mechanisms 
Figure 1 shows microscopic features of creep cracks observed in CT specimens of Alloy 800H. 
Three types of creep crack growth, wedge-type intergranular, cavity type intergranular and 
transgranular crack growth were observed depending on testing temperature and loading 
conditions. For higher stresses at lower temperatures, intergranular fracture due to the 
wedge-type cracking (W-type) was observed. It is considered that fine γ’ precipitates hardened 
the matrix and brittle wedge-type fracture was occurred at this testing condition. For lower 
stresses at higher temperatures, intergranular fracture due to the formation of cavities at the 
interface between matrix and M23C6 precipitates on grain boundaries (C-type) was observed. 
Large creep damaged zone ahead of the crack tip was observed for C-type crack growth.  
Transgranular fracture (T-type) was observed between the temperature and loading conditions 
of W-type and C-type. 
 

 



Figure 1: Microscopic features of creep cracks observed in CT specimens 
creep interrupted of Alloy 800H. 

Relationship between Creep Crack Growth Rate and Fracture Mode 
Creep crack growth rate was evaluated by C* parameter calculated as follows [3]; 
 

 
where, W is the specimen width, a is the crack length, P is the load,  BN is the net thickness, δ

．
 is 

the load line displacement rate, n is the creep exponent in Norton’s rule and γ and β are the 
function of a and W. The value of n was obtained from the relations between minimum creep 
rate vs. applied stress for round bar creep specimens.  
 
The relationship between creep crack growth rate, da/dt, and C* parameter obtained under 
relevant creep fracture mechanism condition for Alloy 800H is shown in Figure 2. The crack 
growth data of initial tail parts [4] were omitted in this figure. The da/dt vs. C* relations 
depend on the microscopic creep crack growth mechanism. The creep crack growth rate for 
W-type and C-type fracture mode was higher than that for T-type fracture mode. The creep 
crack growth rate for C-type mode exists between the upper bound for W-type and the lower 
bound for T-type mode.  
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Figure 2: Relationship between creep crack growth rate, da/dt, vs. C* parameter. 

 
 
Creep ductility was dependent on creep fracture mechanism, and that was lower for W-type, 
higher for T-type, and medium for C-type fracture mode. It is considered that difference of 
creep ductility between fracture modes is one of the reasons why da/dt depends on creep 
fracture mode. Figure 3 shows the relationship between creep crack growth rate at C*=1 kJ/m2h 
vs. reduction of area for round bar creep specimens of Alloy 800H and 316 stainless steel. 
These relations were dependent on creep fracture mechanisms. For W-type and T-type fracture 
mode, the da/dt was inversely proportional to creep ductility as shown with the solid curve in 
Figure 3. Creep crack growth rate for W-type and T-type mode could be written as follows [5]; 
                

                                                                
where, ε f* is the creep ductility. 
 



For C-type fracture mode, however, da/dt was faster than that predicted from the equation (2). 
The da/dt was accelerated as the testing temperature and time was increased for C-type fracture 
mode. When creep voids are not formed ahead of the crack tip such as W-type and T-type 
fracture mode, the creep crack growth rate could be characterized by the creep ductility. When 
many voids and micro cracks are formed ahead of the main crack tip, the creep crack growth 
rate was accelerated than that predicted from creep ductility. In order to predict the creep crack 
growth rate under C-type fracture mode, it is necessary to consider not only creep ductility but 
also the effect of creep damages ahead of the crack tip. Vacancy diffusion and void formation 
accelerated under multi-axial condition at higher temperature should be taken into account. 
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Figure 3: Relationship between da/dt at C*=1 kJ/m2h vs. creep ductility. 

 
 
Computational Simulation for Creep Crack Growth   
We attempted to simulate creep crack growth behavior taking the fracture mechanism into 
account on the basis of experimental results. The FEM analytical model of CT specimen is 
shown in Figure 4. For W-type and T-type fracture mode, the da/dt was inversely proportional 
to creep ductility, therefore the crack growth could be characterized by critical strain condition. 
The creep strain distribution of CT specimen model was calculated by FEM. When the 
equivalent creep strain ahead of the crack tip reached to the critical value, which is the creep 
ductility of round bar specimen, the coordinate of the crack tip node was moved according to he 
method proposed by Hsu et al. [6]. The C* line integral was calculated for every time step. 
 

crack growth

Figure 4: Analytical model for creep crack growth. 
 
 

An example of computational and experimental relation of creep crack growth rate vs. C* 



integral is shown in Figure 5. The symbols indicate experimental data and the bold line shows 
the calculated results. In this case of T-type fracture mode, the crack growth rate could be 
predicted from Norton's creep rule and creep fracture strain. If we use half value of fracture 
strain for fracture criteria, the twice value of da/dt was obtained as shown with dashed line in 
Figure 5. These computational results coincide with the experimental ones that da/dt is 
inversely proportional to creep ductility. 

 

 
Figure 5: Comparison of experimental and computational relation  

between da/dt vs. C* parameter. 
  
 
For C-type fracture mode, which was observed at higher temperatures, da/dt was faster than 
others due to the formation of voids ahead of the crack tip. In order to evaluate the effect of void 
formation for C-type mode, it would be necessary to analyze the crack growth taking vacancy 
diffusion into account under multi-axial condition. The vacancy diffusion equation under stress 
gradient is given as follows [7, 8];  

 
where, C is the vacancy concentration, D is the diffusion coefficient, σp is the hydrostatic stress 
and ∆v is the volume changes by vacancy diffusion. In the present computational simulation, the 
vacancy  
 



 
Figure 6: Example for simulation of creep crack growth 

taking the diffusion into account. 
concentration ahead of the crack tip is calculated by FEM according to the equations (3) and (4), 
and if that value reaches to the critical value, the stiffness matrix [K] is decreased step by step. 
The creep crack growth is simulated by combining the critical strain criteria and vacancy 
diffusion criteria. Figure 6 shows an example calculated by assuming that D=12.7e-11(m2/s), 
∆v=2.0e-6(m2/mol) and critical vacancy concentration C/C0 =1.25. The qualitative results that 
creep crack initiation time and crack growth rate were accelerated were obtained while taking 
the void formation ahead of the crack tip into account. The quantitative evaluation for the 
effect of vacancy diffusion on crack initiation and growth under multi-axial condition should 
be the future work.  
 
 
CONCLUSIONS 
 
Creep crack growth tests have been carried out using CT specimens on Alloy 800H and 316 
stainless steel at various testing conditions. The relationship between creep fracture mechanism 
and creep crack growth behavior has been investigated. The results are summarized as follows; 
(1) Three types of creep crack growth mechanisms, i.e., wedge-type intergranular, 
transgranular and cavity-type intergranular, were observed for Alloy 800H and 316 stainless 
steel depending on testing conditions.  
(2) Creep crack growth rate was dependent on microscopic creep fracture mechanism. The 
growth rate of wedge-type and cavity-type intergranular creep crack was higher than that of 
transgranular creep crack. 
(3) The growth rate of wedge-type and transgranular creep crack could be characterized by 
creep ductility. The creep damages formed ahead of the cavity-type creep crack were 
considered to accelerate the crack growth rate.  
(4) The FEM code, which simulates creep crack growth taking the fracture mechanism into 
account, has been developed. The effect of creep ductility and void formation ahead of the 
crack tip due to the vacancy diffusion on creep crack growth rate could be evaluated. 
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ABSTRACT 
 
Crack tip parameters used in nonlinear fracture mechanics are examined using finite element simulations for 
characterizing high temperature crack growth in directionally solidified (DS) Ni-base superalloys. The 
anisotropy in these materials is modeled as orthotropic materials in which the plastic and creep properties are 
different along the longitudinal and transverse directions. The elastic behavior of the material is modeled as 
isotropic. The loading direction is chosen along the longitudinal axis of the grains and the crack is located in 
the transverse plane. The analysis shows that C(t) characterizes the crack tip stress and strain as a function of 
time and also the evolution of the creep zone size and shape during the small-scale creep conditions. This 
leads to the conclusion that the parameters that characterize the crack growth rate in isotropic materials such 
as C* and Ct are also suitable for DS materials for Mode I cracks when the loading axis coincides with one of 
the main material axis.  
 
KEYWORDS: creep, fatigue, crack, DS Ni – alloys, Ct, C* 

 
INTRODUCTION 
 
The performance of natural gas-fired gas turbines has steadily improved with the continuous development of 
advanced materials and design concepts for hot gas path components.  The use of directionally solidified 
(DS) superalloy with adequate coatings has significantly improved the limitations inherent to equiaxed 
materials in the areas of oxidation and corrosion resistance, thermal and low cycle fatigue resistance, creep 
resistance and high cycle fatigue resistance [1]. A major aspect of any design or remaining (or residual) life 
assessment methodology for high temperature components is the ability to predict the creep and creep-
fatigue crack growth behavior in these materials. This requires the use of nonlinear fracture mechanics 
concepts.  
Directionally solidified materials by design are anisotropic because grain sizes in the longitudinal direction 
can be on the order of 100 mm and on the order of only a few mm in the transverse and the short transverse 
directions. The tensile and the creep data clearly show significant differences in the plastic and creep 
deformation behavior in the longitudinal and transverse directions. Thus, it is perhaps more accurate to 
represent them as orthotropic materials in which the creep deformation properties in the direction along the 
grain axis differ substantially from the properties in the transverse direction.  
The crack tip parameters currently used for predicting creep and creep-fatigue crack growth are based on the 
assumptions that the material is isotropic. The purpose of this paper is to use finite element simulations to 

 
 
 



explore the applicability and limitations of crack tip parameters such as C*, Ct and C(t) for predicting crack 
growth in DS materials. 
 
CRACK TIP PARAMETERS FOR CREEP CRACK GROWTH 
 
We assume power-law creep behavior and that a cracked body is subjected to a static load under creep 
conditions and the load has been applied for sufficiently long time so that steady-state creep develops over 
the entire remaining ligament. Under these circumstances, the C*- integral is shown to uniquely characterize 
the crack tip stress and strain rates through the Hutchinson-Rice-Rosengren (HRR) fields [2]. The C*- 
Integral is defined as [2]: 

 (∫ ∂∂−=
Γ

ii
* dsxuTdy*WC & )  (1)  

Where, Γ = a path that originates on the lower crack surface and ends on the upper crack surface enclosing 
the crack tip,  = displacement rate, Tiu& i = components of the traction vector, W* = stress-power density, ds = 
incremental distance along the path, Γ. 
The validity of the C*-integral is limited to extensive steady-state creep conditions.  In practice, this 
condition may not always be realized because components contain stress and temperature gradients and are 
designed to resist widespread creep deformation.  Therefore, it is necessary to derive the crack tip stress 
fields for the conditions of small-scale creep (SSC) and the transition creep (TC). Under SSC, the creep zone 
is restricted to a small region near the crack tip and is much smaller than the length dimensions such as crack 
size and the remaining ligament, and the surrounding material is under elastic conditions. Riedel and Rice 
[3] and Ohji, Ogura and Kubo [4] independently derived the nature of the crack tip stress fields under small-
scale creep conditions as a function of time. The above analysis lends itself to the estimation of the creep 
zone size and transition time, tT, which is the time needed for extensive creep conditions to develop from 
SSC conditions. Riedel and Rice [3] defined the creep zone boundary as the locus of points where time-
dependent effective creep strains equal the instantaneous effective elastic strains in the cracked body. The 
transition time is the time when the small-scale-creep stress fields equal to the extensive steady-state creep 
fields characterized by C*.   
Bassani and McClintock [5] recognized that the crack tip stress fields under SSC can also be characterized 
by a time-dependent C(t)-integral, whose value is determined along a contour taken very close to the crack 
tip. C(t) is same as C* except its value is determined close to the crack tip within a region where the creep 
strains dominate over the elastic strains.  In contrast, the value of C* can be determined along any contour 
which originates at the lower crack surface and ends on the upper crack surface enclosing the crack tip.  
Thus, determining the C(t)-integral requires accurate solutions of stress and strain near the crack tip.  Bassani 
and McClintock [5] further related the value of C(t) with the HRR type stress fields. The validity of the C(t)-
integral is not simply limited to the small-scale creep conditions because C(t) becomes equal to C* for 
extensive steady-state creep with the additional property that its value becomes path-independent.  Hence, 
C(t) can be said to be the amplitude of the HRR field for all conditions ranging from small-scale to extensive 
secondary-state creep and also including the transition creep conditions, in between.  Therefore, to 
investigate time-dependent crack tip stress fields in DS materials, we will focus on the C(t)- integral and its 
value determined along a path taken very close to the crack tip. 
Ct parameter [2] is different from C(t) in that it is uniquely related the stress power dissipation rate and the 
rate of expansion of the creep zone size in the small-scale-creep regime. In the extensive creep regime, Ct, 
C(t) and C* all become identical by definition. The advantage of Ct over C(t) in the small-scale-creep regime 
is that it can be measured at the loading pins while C(t) cannot. Therefore, Ct has been widely used for 
correlating creep crack growth data over a wide range of conditions ranging from small-scale-creep to 
extensive creep [2].  The relationship between Ct and the rate of expansion of the creep zone size, r is given 
by the following equation [2]: 
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Where, K= stress intensity factor, W = specimen width, E = elastic modulus, ν= Poisson’s ratio, F = K-
calibration function, F′ = first derivative of F with respect to (a/W), and β = constant with a value of 

 
 
 



approximately 0.33. The creep zone size in the above equation is referenced to its extent along 90 degrees 
from the crack plane. 
FINITE ELEMENT ANALYSIS OF ORTHOTROPIC MATERIALS 
 
In this study, the DS material is modeled as isotropic elastic and orthotropic creep with different creep 
properties in the longitudinal and transverse directions.  The finite element method is used to investigate the 
development of the creep zone and to calculate the magnitude of C(t) for a stationary crack. 
The orthotropic creep behavior was implemented in the numerical model using Hill’s anisotropic yield 
function.  The anisotropic yield function contains 6 constants for general loading.  If we restrict loading to 
the principal axes, the number of constants can be reduced to three. The loading of the model is applied such 
that the principal axes are coincident with the longitudinal and transverse directions of the directionally 
solidified alloy.  The equivalent deviatoric stress function based on Hill’s anisotropic yield function in 
principal stress space is 

 ( ) ( ) ( )[ ] 2
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where, F, G, and H are coefficients associated with the anisotropic creep properties. 
The equivalent steady-state creep relationship is 
 n

cr q~Aε =&  (4)  
Where, ε  is the equivalent steady-state creep rate, A is the equivalent creep coefficient, and n is the creep 
exponent. The constants F, G, and H are determined using the creep coefficients from three uniaxial creep 
tests, one in each of the principal directions.  Substituting the equivalent deviatoric stress for each of the 
uniaxial creep tests yield 

cr
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Where, i =1,2,3, ε  is the steady-state creep rate in the i-direction, Aicr
& i is the creep exponent in the i-

direction, iσ is the ith principal stress, and n is the creep exponent. It is important to note that the use of this 
approach allows for different creep coefficients to accommodate the material anisotropy, but the creep 
exponent must be the same for each direction.   Combining Eq. (3) and Eq. (5) for each of the uniaxial test 
yields the following relationships between the anisotropic creep coefficients and the equivalent creep 
coefficient. 
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By setting A=Ax, the following equations are obtained for F, G, and H 
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A finite element model of a standard compact type (CT) specimen was created. The finite element model is 
2-d, plane strain and consists of 15413 nodes and 4988 8-noded quadrilateral elements, Figure 1.  Crack tip 
elements are used to ensure accurate representation of the stress and strain field at the crack tip.  The use of 
crack tip elements is particularly important in the calculation of C(t) because its value is only valid as the 
dimension of the contour around the crack tip approaches zero.  A detailed figure of the crack tip mesh is 
shown in Figure 2.  A load of 2000 N is applied to the finite element model through the semi-rigid loading 
pins and the a/W ratio is 0.5.  The stress intensity factor for this configuration is 109.2 MPa(m)1/2.  The finite 

 
 
 



element model was analyzed using ABAQUS, which includes the anisotropic creep model based on Hill’s 
function among its standard routines. 
 
RESULTS 
 
Three different finite element models were evaluated for comparison: isotropic (Ax=Ay), orthotropic - 
longitudinal bias (Ay > Ax), and orthotropic - transverse bias (Ax > Ay). The creep coefficient is 1.06x10-14 
MPa-6/hr and the creep exponent is 6 for the isotropic case. Using a load of 2000 N, the corresponding 
transition time is 430 hours for the isotropic case. The coefficients for the orthotropic models are shown in 
Table 1. 

Table 1 – Orthotropic Creep Properties for Finite Element Model 
 

 Ax(MPa-6/hr) Ay(MPa-6/hr) Az (MPa-6/hr) 

Long.  Bias 1.061x10-14 4.897x10-14 1.061x10-14 

Trans. Bias 1.061x10-14 2.290x10-15 2.290x10-15 

 
Figure 3 shows the resulting creep zone at 500 hours for all three finite element models.  In this figure, the 
creep zone is defined as the boundary where the equivalent creep strain is equal to the largest principal 
elastic strain.  The crack tip parameter C(t) was calculated during the finite element simulation.   A plot of 
C(t) versus time for each of the three finite element models is presented in Figure 4.  The most important 
result from this plot is the fact that the value of C(t) approaches a unique value as time increases for the two 
orthotropic cases evaluated.  In the isotropic case, it is well known that C(t) → C* as t→ ∞.  This result 
shows that C(t)- Integral can be used for characterization of crack tip stress under extensive creep conditions 
for DS materials.  
Figure 5 shows the development of the creep zone for the orthotropic – transverse bias (Ax > Ay) case.  The 
results of the analytical study showed the creep zone does in fact grow in a self-similar fashion even with the 
orthotropic creep properties. Figure 6 shows a plot of the creep zone size as a function of time on a log-log 
scale for angles of 90 and 45 degrees from the crack plane. A line of slope of 2/(n-1) = 0.4 for n =6 is plotted 
through the data to compare the numerical results to the analytically predicted slope [2,3]. The good 
agreement between the numerical and analytical values attests to the validity of Ct for uniquely 
characterizing the creep zone expansion rate. This result has significant implications in regard to the use of 
Ct [6] parameter for characterizing the creep crack growth behavior in DS materials. 
 
CONCLUSIONS 
 
Finite element analyses of compact type specimens subjected to sustained load conditions made from 
orthotropic materials with different creep properties along the major axes show that crack tip stress and 
strain fields as a function of time and the evolution of the crack tip creep zone size and shape are 
characterized by the C(t)-Integral. Thus, the foundation has been laid for the use of parameters such as C* 
and Ct for characterizing high temperature crack growth. 
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 Figure 5: Comparison of C(t) vs. Time for each of the three finite element models 
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ABSTRACT 
 
The results of damage mechanics finite element (FE) creep analyses were used to investigate the initiation 
and growth of short cracks using a 2D narrow notch model, under plane strain and plane stress conditions, 
with a uniform tensile loading.  The material properties for a Ni-base superalloy (Waspaloy) at 700o C were 
used. Damage distributions and growth near the notch, with time, were used to characterise and identify 
crack initiation and growth and to determine the direction of growth of the high damage zone, which was 
used to identify the crack growth direction.  It was found that under plane stress conditions, the high damage 
zone was formed and grew inwards along the symmetric line of the notch, while under plane strain 
conditions, there was a bifurcation of the high damage zone, along a direction which was inclined at an angle 
to the notch.  This angle was found to be dependent upon the tri-axial damage parameter α, reducing from 
60o to 35o for α increasing from 0 to 0.3. 
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Short cracks, creep, damage, crack growth, crack direction 
 
 
INTRODUCTION 
 
The need to estimate the life of new components, or the residual life of components already in service, which 
operate at elevated temperature and may contain cracks, is important. For example, in the assessment of 
aeroengine components, an essential requirement is to study the high temperature failure and fracture 
behaviour of materials and components, under creep or creep/fatigue conditions. Results of laboratory 
testing using uniaxial, notched, compact tension specimens etc., are usually used to obtain information 
regarding material failure or crack propagation behaviour.  In recent years, the investigations of crack 
growth have resulted in various parameters (e.g. K, C*, accumulated damage, ω, and critical strain, εc, etc) 
being proposed as parameters which govern creep crack growth.  Numerical analyses, for example, the finite 
element (FE) method, are popularly used to assist with the detailed understanding of the behaviour at the 
advancing crack tips.  
 
In this paper, the results of the continuum damage mechanics FE modelling have been used to assess the 
creep fracture behaviour of short cracks with a simplified 2D narrow notch model, using material properties 



obtained for a Ni-base superalloy (Waspaloy) at 700o C. Damage distributions and accumulation near the 
notch, with time, were used to identify the crack initiation and its direction of growth.  
 
 
FE MODEL, DAMAGE ANALYSIS AND MATERIAL PROPERTIES 
 
FE Model 
The 2D FE model used is shown schematically in Figure 1.  The width of the specimen, L, is 7 mm, with a 
semi-circle narrow notch of length, ao, of 0.5 mm at the edge, which has a radius, r, of 0.2 mm. A uniform 
tensile stress, σo, is applied to the end of the specimen. The FE mesh generated for damage analyses is 
shown in Figure 2, with 2-D axisymmetric, 8-node isoparametric, quadratic rectangular elements with 
reduced Gauss integration points (2×2). Local mesh refinement is used in the area near the notch.  
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RESULTS 
 
Creep damage calculations were performed using the FE model shown in Figure 2, under both plane stress 
and plane strain conditions, using the material properties given in Table 1, with an applied stress, σo, of 400 
MPa. Calculations were also performed with a range of other α values, in order to investigate the effect of 
the tri-axial stress state damage parameter on the damage behaviour of the specimen. Since the main purpose 
of this work was to identify the main factors affecting creep crack growth, an arbitrary damage level of 50% 
was chosen to represent the crack growth behaviour.   
 
Stress, Strain and Damage Distributions and Direction of Damage Growth  
The stress, strain and damage contours obtained from the FE analyses are used to illustrate the general 
behaviour of the specimen.  The contours (near the notch) for the strain in loading direction, εy, rupture 
stress, σr, and damage at ω = 0.5 under the plane stress condition, at different creep times, are shown in 
Figures 3(a) to 3(c), respectively. The corresponding results obtained from the plane strain analyses are 
shown in Figures 4(a) to 4(c), respectively. In all cases, it was found that the stress, strain and damage levels 
near the notch are significantly higher than those remote from the notch. The behaviours (strain, stress and 
damage distributions) illustrated by Figures 3 and 4 are consistent, i.e. in general, the high damage area is 
associated with the high strain area. When the damage level is high, the stress values in these areas reduce 
and the high stress regions move inwards to the region near the ends of high damage zones (similar to the 
behaviour at the tip of a crack), resulting in further growth of the high damage zones.   
 
Results obtained under plane stress conditions, show that high damage initially occurs at the notch root, and 
then moves inwards, along the plane of symmetry of the notch, with increasing creep time, Figure 3(c).  
However, under the plane strain condition, the high damage zone, which initially occurs at the notch root, 
moves inwards along the plane of symmetry of the notch for a very short distance, before bifurcating and 
then continuing to grow in a direction  inclined at an angle, θ, of about 45o to the plane of symmetry of the 
notch, Figure 4(c). 
 
Effect of the Tri-axial Stress State Damage Parameter, α 
 
High damage growth direction 
Calculations were also performed with α values (keeping the other material parameters in equations (1) the 
same), in the range of 0 < α ≤ 0.5, in order to investigate the effect of the tri-axial stress state damage 
parameter on the distributions and growth of the high damage zones in the specimen.  Results obtained from 
the calculations using the Waspaloy properties have shown that changing the α value in general will not 
change the trend of high damage growth for the plane stress specimen. However, for the plane strain case, 
increasing the α value will significantly reduce the inclination of the high damage zones to the plane of 
symmetry, θ, as  illustrated in Figure 5. 
 
Growth of the high damage zone 
The variations of the crack growth, a, as indicated by the growth of the high damage zone, with the creep 
time, t, for a range of α values, under the plane stress condition, are shown in Figure 6. The results given in 
Figure 6 were obtained from the symmetric centre line of the specimen, at a damage level of ω = 0.8 (ω = 
0.5 was used for most of the analyses presented), in order to obtain high accuracy.  The crack length, a, was 
defined as the extent of 0.8 damage zone along the centre line, starting from the notch root. 
 
Failure life estimation 
Failure life was estimated, using the times at which the high damage (ω = 0.5) zones reached a significant 
length (≥ 1 mm), compared to the width of the specimen.  The lives, estimated in this way, with different α 
values, are presented in Table 2.  In general, the failure lives estimated reduce with increasing α, which is 
similar to the behaviour indicated by calculations for a Bridgman notch bar made from the same material [4]. 
 



Figure 3(a): Distributions of axial strain, εy, for different
times: plane stress case, α = 0.15 
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Figure 3(c): Distributions of damage, ω, for different
times: plane stress case, α = 0.15 
Figure 4(a): Distributions of axial strain, εy, for different
times: plane strain case, α = 0.15 
igure 4(b): Distributions of rupture stress, σr, for different
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Figure 3(b): Distributions of rupture stress, σr, for different
times: plane stress case, α = 0.15 
Figure 4(c): Distributions of damage, ω, for different
times: plane strain case, α = 0.15 
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similar to the behaviour indicated by results obtained for a Bridgman notch bar made from the same material 
[4].  However, in addition to this similarity, bifurcation behaviour was not observed in the damage modelling 
of the axisymmetric Bridgman notch model, where the failure damage initiated and grew along the minimum 
notch section, perpendicular to the direction of the applied axial load. 
 
Although the local plastic behaviour was not taken into account and the crack growth was described by creep 
continuum damage modelling, the forms of the crack growth directions, obtained from the simplified plane 
stress and plane strain models, were found to be similar to the patterns of the plasticity zones, ahead of crack 
in a plate of finite thickness, subjected to tensile loading [5]. In this case, the stress state near the two free 
surfaces is close to that of plane stress and the stress state near the centre is close to plane strain [5]. 
Therefore, the difference in the crack growth direction between the plane stress and plane strain conditions is 
caused by the difference in the stress state or the creep strain constraint near the crack.    
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ABSTRUCT 

 
The effects of stress-strength ratio and loading age on the tensile creep of concrete at 

early ages are elucidated on the basis of tensile creep experiments. Furthermore, effects of 
creep strain to failure are assessed by experiments. It is noted that the effects of 
stress-strength ratio are significant. It is concluded that capacity of tensile strain after 
loading is effected by loading age and stress and strength ratio. The results show that the 
strain capacity loaded at early ages is larger than others.  
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INTRODUCTION 
  
 This study has been carried out for rising accuracy of thermal stress analysis due to 
hydration heat of cement. The authors have already presented results of experimental 
creep studies of concrete at early ages, such as compressive creep [1] and creep during the 
unloading process [2]. They have also described a creep model [3] which is applicable to 
the prediction of thermal stress. Further, they have shown [4] the difference between 
compressive and tensile creep based on experiments at the same condition. In this paper, 
the effects of loading age and stress and strength ratio on tensile creep are investigated 
with the aim of presenting experimental data of tensile creep. An additional investigation 
is carried out on the effect of creep strain on tensile failure, in order to assess the effect of 
creep on cracking.  
 
 
PROCEDURE OF TENSILE CREEP EXPERIMENTS 
  
  Procedure of tensile creep test is not defined in any standard. The method described in 
this paper is developed in the series of experiments. A dog-bone specimen is improved in 
order to observe creep failure and a embedded strain-meter is improved for dog-bone 
specimen. 
  The mix proportion used for this experiment was selected from candidates commonly 

 1



used in actual reinforced concrete work in NAGOYA and it has a compressive strength of 
used 30N/mm2, a water cement ratio of 40%, and a sand ratio of 44.6%. The mix 
proportion is illustrated in TABLE 1. Concrete was mixed in a temperature controlled 
laboratory at 20℃ and cast in molds before storage under the same conditions for 24 
hours. Specimens were then demolded and immediately sealed with an aluminum 
membrane in order to avoid diffusion of moisture. Specimen were cured in a temperature 
- and moisture - controlled room at 30 ℃ and 98% RH until loading, which took place at 
1 to 7 days.  

TABLE 1  MIX-PROPORTION 
Unit weigh  (kg/m3) Slum

p 
(cm) 

Air 
(%) 

W/
C 

(%) 

s/a 
(%) W C S G AD 

8.0 4.0 55.
0 

44.
6 

17
2 

31
3 

787 101
5 

1.16 

 The creep test apparatus was of lever type with a temperature and humidity controlled 
enclosure in the loading area [1]. Humidity of every case was controlled at 98%. The 
strain of an unloaded specimen made under the same condition was measured in order to 
compensate for shrinkage not caused by creep, such as automogenous shrinkage so on. 
Creep strain is calculated by extracting the measured strain of the unloaded specimen 
from the strain of the loaded specimen. Tensile strength at the loading age, which was 
needed to calculate the stress-strength ratio, was measured by a splitting test on an 
unloaded specimen cured under the same conditions as the loaded ones.  

 

 Loading was by pulling on the attachments fixed to top and bottom of a specimen. 
Although this creep test apparatus is able to directly apply tensile stress by means of a 
lever, but a bending moment might be generated due to shifting of the loading axis from 
the center of the specimen due to creep deformation. An automatic adjusting system was 
added to compensate for this effect. Since the embedded bolts or epoxy resin for the 
pulling attachment might lead to failure at surface of the attachment at early ages, such as 
1 day, and at high stress-strength ratios such as 60%, a dog bone specimen was better for 
such experiments. Dog-bone specimen is shown in Fig.1. 
 Embedded strain meters modified to take measurements of concrete at early ages were 

TABLE 2 CASES OF THE 
EXPRIMENTS 

Cas
e 

No. 
 

Loadin
g 

age 
(day) 

S/S 
 

(%) 
Curin

g 
temp 
(℃). 

Loadin
g 

temp. 
(℃). 

1 1 10 30 30 
2 1 20 30 30 
3 1 40 30 30 
4 1 60 30 30 
5 1 70 30 30 
6 3 20 30 30 
7 3 40 30 30 
8 3 50 30 30 
9 3 60 30 30 

10 3 70 30 30 
11 5 20 30 30 
12 5 40 30 30 
13 5 50 30 30 
14 5 60 30 30 
15 5 70 30 30 
16 7 20 30 30 
17 7 40 30 30 

20
33

134
33

20

75 12.512.5

Unit(mm)

 

Fig.1 Dog-Bone Typed 
Specimen 
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used for creep strain. Since the center section of the dog bone specimens is only 75 mm in 
diameter, the meter was improved to a more slender type in this case.  
 The experimental cases are shown in TABLE 2. The effect of stress-strength ratio (S/S) 
was investigated in cases 1 to 17. The loading period was basically 5 days.  
 
 

EXPERIMENTAL RESULTS AND DISCUSSION 
 
Tensile Creep  
 The relationships between creep strain with loading at 1 day, 3 days, and 5 days for 
several S/S value are shown in Figs.2~4. Although creep strain increased significantly for 
the 3 days after loading, it reached a steady state at 5 days. The loading period was chosen 
to be 5 days in this study, since creep strain at early ages is affected significantly by 
several factors during this period. Creep strain at early period immediately increases after 
loading and its increment is significant as at an early age and at high stress-strength ratio. 
The relationship between stress-strength ratio and final creep strain at several loading 
ages is shown in Fig. 5. No linear relationship passing through the zero point is obtained 
in Fig.5 up to S/S=40%. Creep strain at 1 day loading is larger than other ages at lower 
S/S values and the effect of S/S is not significant. Creep strain increases at 40% of S/S 
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value in cases of loading at 3, 5, and 7 days. Final creep strain is strongly influenced by 
the stress-strength ratio in this study. Although tensile creep strain decreases with rising 
loading age, it is almost similar at other loading ages except 1 day in Fig.5. And the effect 
of loading age becomes smaller at higher S/S values in Fig.5. Loading stress increases 
with constant stress-strength ratio as loading age increases, since strength increases with 
age. Besides, creep decreases with rising loading age, since the matrix of cement paste 
hydrate becomes rigid as hydration progresses. The fall in creep strain with increasing 
loading age is nearly equal to the rise in loading stress due to hydration. This assertion is 
supported by Fig.6, in which the relationship between loading stress and final creep strain 
is shown for several loading ages. Relationship between loading age and final creep strain 
is shown in Fig. 7. The final creep strain decreases at greater loading ages in the case of 
loading at the same stress. 
 It can be concluded that factors which dominate the fall in tensile creep affect the rise in 
tensile strength as hydration progress and that both phenomena are caused by the rigidity 
of the cement paste matrix. Although the effect of loading age is insignificant at S/S 
values of more than 60%, the creep strain might reach to the deformation limit at these 
higher S/S ratios. It can be concluded that effect of deformation limit is more significant 
than effect of loading age. Creep failure might occur at such S/S ratios, if the stress were 
continuous. Although creep failure is described later, the possibility of creep failure is 
supported by the fact that tensile creep specimens failed within a day after loading at 
S/S=70% ~ 80%. The effect of stress-strength ratio at one day is smaller than at other 
loading ages and the final creep strain is smaller in this case. 
 Although creep strain is mainly generated by seepage of pore water of cement paste on 
compressive creep at a matured age, it is considered that creep strain is generated by 
defective zone and micro cracking at an early age due to weakness of cement paste. Since 
the results above mentioned show that large creep strain is generated with independence 
on stress-strength ratio in loading age of 1 day, defective zone might cause creep 
deformation upon tensile creep at an early age. The mechanism of tensile creep 
generation at one day is asserted slightly different from that at other ages. 

 
Effect of creep strain on tensile failure 
 Creep strain is assumed to have no influence on steady tensile failure in thermal stress 
analysis, since it relaxes completely into constrained stress, such as thermal stress. 
However tensile creep might influence capacity of tensile strain, and this assumption is 
supported by observation of cracking at lower strain than 100μ, which is ordinary tensile 
strain capacity, at continuous tensile loading.  
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 Tensile failure tests were carried out by adding further stress after finishing the tensile 
creep tests in order to investigate the effect of creep strain on tensile failure. 
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Strain capacity after tensile creep test is defined as follows; 
 
  (strain capacity) = (total strain at failure) – (creep strain) – 

(strain of unloaded specimen, consisting of automogenous shrinkage etc.)  (1) 
 
  The relationship between strain capacity and stress-strength ratio in the creep tests is 
shown in Fig. 8. Regarding the effect of creep strain on the strain capacity, it should be 
noted that strain capacity is effected at higher S/S= 40%, although little effect is 
observed at less than 40%. And it is noted that significant decrement of strain capacity is 
observed at 70%. It can be pointed out that design tensile strain capacity should 
decreased by taking the effect of creep into account beyond S/S=40% from the results of 
this study. However, this effect hasn’t been applied for prediction of cracking in thermal 
stress analysis. Specimens loaded at 1 day and 5 days with S/S = 80% failed in within 1 
hour of adding all loads. Although it is considered that bending moment might be added 
by adjusting error of test apparatus, possibility of creep failure is not negligible. The 
relationship between strain capacity and generated creep strain is shown at each loading 
age in Fig.9. Although higher creep strain induces lower strain capacity in each loading 
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age, no certain relationship is observed in investigation of all data. It is noted that strain 
capacity isn’t effected by creep strain but by stress and strength ratio. This means that 
decrement of strain capacity is induced by generating defective zone at higher stress and 
strength ratio. 
 The relationship between strain capacity and loading age at S/S=40% is shown in 
Fig.10. It is noted that strain capacity decreased with rising of loading age. It seems to 
reach a stable value beyond 5 days, and the strain capacity after tensile creep at 5 days is 
approximate 60μ. Although strain capacity of 1 day’s loading is larger than others, 
which shows the highest creep strain due to generating defective zone, it is considered 
that healing at defective zone might be occurred corresponding to hydration at such a 
early age loading. 
 
 
CONCLUSION 
 
 The results obtained in this study are described as follows. 
 

1) The effects of stress-strength ratio on creep strain when loading takes place at 3 to 7 
days of loading age are significant. No linear relationship was observed at low 
stress-strength ratios such as 20% ~40%. Creep strain significantly increased beyond 
S/S=60 %. 

2) The creep strain with loading at 1 day is larger than that when loading takes place at 3 
days ~ 7 days for low stress-strength ratios such as 20% ~40%. Furthers, the effects of 
stress-strength ratio with loading at 1 day are less significant than with loading at 3 ~7 
days. It is considered that the creep strain with loading at 1 day is larger than in other 
cases, since micro cracking easily occurs due to weakness of the cement hydrate.  

3) Tensile creep strain decreases at early age with loading age. However, this effect of 
loading age is smaller than that of stress-strength ratio. 

4) Tensile strain capacity after creep test is effected by stress and strength ratio. Amount 
of effect is as small as early age loading.    

5) Tensile creep strain induces little effect on tensile failure for S/S=20 ~ 40%. Certain 
effects can be observed in tensile failures at more than S/S=40 %, such as decreasing 
strain capacity to failure at high stress-strength ratio.  
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ABSTRACT 
 
The tensile creep and creep fracture properties in air at 1573K are compared for four composites produced 
with Al2O3 or SiC matrices, reinforced with interwoven bundles of either Nicalon™ or Hi-Nicalon™ fibres 
aligned at 0/90° to the stress axis.  This analysis identifies the creep damage processes governing the strains 
and times to failure, suggesting avenues for development of improved SiC-fibre-reinforced ceramic-matrix 
materials. 
 
 
KEYWORDS 
 
Creep; Creep Fracture; Ceramic-Matrix Composites; Fibre Reinforcement. 
 
 
INTRODUCTION 
 
To combat the toughness deficiencies of monolithic ceramics, major R&D programmes have been directed 
to the manufacture and evaluation of ceramic-matrix composites (CMCs) reinforced with dispersions of 
ceramic whiskers or with arrays of ceramic fibres.  However, for applications involving long periods of 
service without failure under load at high temperatures, fibre-reinforced CMCs display creep and creep 
fracture properties which are superior to those exhibited by whisker-reinforced products [1].  In seeking to 
interpret the creep behaviour patterns observed for fibre-reinforced composites, the damage processes 
leading to fracture have often been inferred [2-6] from the creep mismatch ratio (CMR) defined [2] as 
 
      MFCMR εε && /=        (1) 
 
where Fε&  and Mε&  are the creep rates of the fibres and matrices respectively.  With this concept [2], when 
the creep resistance of the fibres exceeds that of the matrix (CMR < 1), the dominant damage mechanism is 
considered to be periodic fibre failure.  Conversely, when the fibres have a lower creep strength than the 
matrix (CMR > 1), the principal damage process is seen as matrix cracking.  Yet, even for nominally-
identical fibre-reinforced materials, the fibres have been considered to be more creep resistant than the 
matrix [7] and vice versa [4].  For this reason, the comparative creep strengths of the fibres and the matrices 
are now assessed for a series of fibre-reinforced CMCs, anticipating that the mechanistic insights gained by 
understanding the processes governing creep damage accumulation and fracture will indicate practical 
avenues for development of improved product ranges. 
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MATERIALS 
 
The strength characteristics of fibre-reinforced CMCs depend on load transfer to large volume fractions of 
high-modulus fibres, with weak fibre-matrix interfaces allowing intact fibres to bridge across the faces of 
cracks developing in the ceramic matrices [8-10].  To clarify the rôles of the fibres, matrices and 
fibre/matrix interfaces in determining the creep and creep fracture properties, the present study considers 
four CMCs,  reinforced with various types of silicon carbide fibres, namely, 
• a SiC-fibre-reinforced Al2O3-matrix composite [7], designated as SiCf/Al2O3, and  
• three SiC-fibre-reinforced SiC-matrix materials, now referred to as standard SiCf/SiC [7], enhanced 

SiCf/SiC [5] and HNSiCf/SiC [6]. 
 
The distinguishing compositional and microstructural characteristics of these four composites are 
summarized in Table 1, with the following comments made to amplify the descriptions given. 
 
All materials were reinforced with ~0.4 volume fractions of ~12 to 15µm diameter SiC fibres, incorporated 
as bundles of ~500 fibres interwoven to form 2D layers of fabric, which were aligned and stacked to obtain 
multilayer samples having 0/90° fibre architectures.  However, the standard SiCf/SiC and enhanced 
SiCf/SiC specimens were produced with plain woven bundle configurations, while the HNSiCf/SiC and 
SiCf/Al2O3 were made with a satin weave.  Compared with the plain woven arrays, the extent to which the 
fibres bend under load and the attendant risk of fibre damage should be lower with the satin weave.   
 
In addition to differences in weave pattern, these 0/90° composites were reinforced with two types of SiC 
fibre.  Thus, the SiCf/Al2O3, standard SiCf/SiC and enhanced SiCf/SiC samples were produced using 
Nicalon™ NLM 202 fibres (Nippon Carbon Co., Tokyo, Japan).  With these fibres, the presence of an 
amorphous oxycarbide (SiC0.85O0.15) phase results in a loss of creep resistance during long term exposure at 
elevated temperatures [11].  This deleterious amorphous phase can be eliminated by electron radiation under 
vacuum [12,13], giving the Hi-Nicalon™ fibre used to reinforce the HNSiCf/SiC product (Table 1).  As well 
as possessing a higher modulus, these Hi-Nicalon™ fibres are expected to display better long-term creep 
strengths than Nicalon™ NLM 202 fibres. 
 
The fibres in the SiCf/Al2O3 material were coated with a thin BN layer before a ~5µm thick SiC coating was 
deposited by chemical vapour infiltration (CVI).  The Al2O3 matrix was then introduced by in-situ 
directional oxidation of a liquid aluminium [14,15].  In contrast, with the three SiC-fibre-reinforced SiC-
matrix composites (now collectively termed SiCf/SiC type materials), thin carbon interface layers were 
obtained by decomposition of a hydrocarbon gas before the fibre preforms were CVI densified to produce 
the SiC matrices.  Although the methods used to create the ceramic matrices were different, in all cases, the 
matrix porosities were ~15%. 
 
Compared with the double BN/SiC interfaces in the SiCf/Al2O3 samples, the carbon interfaces in the 
SiCf/SiC type materials are more prone to oxidation during creep exposure.  For this reason, the SiC 
matrices in the enhanced SiCf/SiC and HNSiCf/SiC products contained boron-based particulate additives.  
These additives react with oxygen to form a borosilicate glass, which seals cracks developing in the 
‘enhanced’ matrices [16,17].  In this way, the vulnerable carbon interfaces are protected by limiting oxygen 
penetration into the testpieces during creep. 

 
TABLE 1 

DISTINGUISHING CHARACTERISTICS OF THE SiC FIBRE-REINFORCED COMPOSITES 
 

MATERIAL 
DESIGNATION 

FIBRE TYPE INTERFACE TYPE  
and THICKNESS 

MATRIX 
TYPE 

REF 

SiCf/Al2O3 
Standard SiCf/SiC 
Enhanced SiCf/SiC 
HNSiCf/SiC 

Nicalon™ NLM 202 
Nicalon™ NLM 202 
Nicalon™ NLM 202 
Hi- Nicalon™  

BN/SiC   (~5µm) 
Carbon (<0.5µm) 
Carbon (<0.5µm) 
Carbon (<0.5µm) 

Al2O3 
SiC 
Enhanced SiC 
Enhanced SiC 

7 
7 
5 
6 
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RESULTS and DISCUSSION 
 
The creep and creep fracture properties of the 0/90° fibre-reinforced CMCs (Table 1) can be compared 
using data obtained in tensile creep tests carried out in air at 1573K [5-7].  Under the test conditions studied, 
continuously decaying creep curves were recorded, i.e. after the initial strain on loading at the creep 
temperature, the creep rate decreased gradually with time towards a minimum value, with no well-defined 
secondary or tertiary creep stages apparent before fracture occurred.  However, with the standard SiCf/SiC 
samples, the creep strains to failure were low (~0.002) at all stress levels [7].  In contrast, with the other 
three materials, the creep ductility appeared to increase with decreasing stress, approaching values of ~0.03 
in tests of around 3000 hours duration with the SiCf/Al2O3 specimens [7]. 
 
Fibre Control of Creep and Fracture 
 
At 1573K, the UTS for the SiCf/Al2O3 samples is the same as the value (~230 MPa) recorded for the three 
SiCf/SiC type products [5,6].  Moreover, broadly similar stress/minimum creep rate behaviour is found for 
all four CMCs (Figure 1a).  Clearly, stresses about five times larger must be applied to Nicalon™ NLM 202 
fibres [18] to achieve creep rates comparable with those observed for the Nicalon™-fibre-reinforced 
materials.  Since the longitudinal (0°) fibres occupy about one fifth of the crosssectional areas of the 
testpieces, for all four 0/90° composites, the creep strength is determined by the longitudinal fibres.   
 
Although the fibre reinforcements are similar for the four CMCs (Table 1), the creep and creep rupture 
strengths are comparable for the SiCf/Al2O3, the enhanced SiCf/SiC and the HNSiCf/SiC samples, but 
inferior properties are displayed by the standard SiCf/SiC material (Figure 1).  This seemingly-anomalous 
result is attributable to differences in creep ductility [7].  Thus, when continuously-decaying creep curves 
are observed in tension, the rupture life (tf) can be defined as the time taken for the accumulated creep strain 
to reach the limiting creep ductility (εf).  Simultaneously, the creep rate decays with time, reaching the 
minimum creep rate (ε& m) as the curves terminate.  The creep curves presented in Figure 2 then show that 
the initial variations in creep strain with time are similar for the standard SiCf/SiC and enhanced SiCf/SiC 
products, as would be expected for two materials having nominally-identical fibre reinforcement (Table 1).  
However, low ductility termination of the creep curves for the standard SiCf/SiC samples (Figure 2) leads to 
minimum creep rates which are faster and rupture lives which are shorter than the values found when failure 
occurs at higher ductilities with the other three composites. (Figures 1 and 2). 
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Figure 1.  Variations of (a)  minimum creep rate and (b) creep rupture life with stress for SiCf/Al2O3 [ ], 
standard SiCf/SiC [ ], enhanced SiCf/SiC [ ] and HNSiCf/SiC [ ] composites at 1573K, together with 

creep data for Nicalon™ NLM 202 fibres [ ] at 1573K and sintered silicon carbide [ ] at 1773K. 
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Oxidation Effects During Creep 
 
Since the creep ductility defines the point of creep curve termination (Figure 2), thereby affecting the 
minimum creep rates and rupture lives recorded (Figure 1), it is necessary to explain ductility variations in 
relation to the damage processes leading to fracture.  For all CMCs considered (Table 1), the rates of creep 
strain accumulation are determined by the creep resistance of the longitudinal fibres, with creep of the fibres 
accompanied by cracking of the weak brittle matrices (Figure 3a).  The developing matrix cracks can by-
pass transverse fibres, but become arrested within the longitudinal fibre bundles.  On progressing into the 
longitudinal bundles, the weak fibre/matrix interfaces allow the crack faces to be bridged by intact fibres.  In 
turn, creep of the bridging fibres govern the rates of crack growth.  Support for this view is then provided by 
the patterns of behaviour shown in Figures 1a and b, from which it can be shown that the times to fracture 
increase systematically with decreasing minimum creep rate.  This creep rate dependence of the rupture life 
confirms that, since the longitudinal fibres control creep strain accumulation, these fibres also determine 
crack growth rates.  However, the bridging fibres fail progressively as oxygen penetrates into the testpieces 
during creep exposure.  As a result, the fracture surfaces of broken specimens show planar crack growth 
zones, characterized by in-plane oxidation-assisted fibre failure, together with regions where sudden failure 
occurs by fibre full out (Figure 3b).  Yet, while this sequence of events is applicable to the four CMCs 
described in Table 1, differences in the susceptibility of the fibres to oxidation-assisted failure affect the 
observed creep ductility values. 
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Figure 2.  Creep strain/time curves at 90MPa for standard SiCf/SiC and enhanced SiCf/SiC at 1573K. 

 

 
 

Figure 3.  Micrographs showing (a) matrix cracking and (b) the planar crack growth zone and final fibre 
pull-out region on the fracture surface of a standard SiCf/SiC sample. 
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With the standard SiCf/SiC samples, cracks nucleate at macropores present in the matrix regions between 
the interwoven fibre bundles.  These surface-nucleated cracks link up and grow, with oxygen penetrating 
directly along the opening crack.  Rapid oxidation-assisted fibre failure then results in high crack growth 
rates, with low-ductility failure occurring when the cracks reach the size required to cause sudden failure by 
fibre pull out (Figure 3b).  In contrast, with the enhanced SiCf/SiC and HNSiCf/SiC materials, the glass-
forming boron-based particles in the ‘enhanced’ matrices reduce the rates of oxygen penetration, oxidation-
assisted fibre failure and crack growth.  Consequently, creep must continue for longer times to reach higher 
strains (Figure 2) before the cracks attain the size needed for failure by fibre pull out. 
 
With the SiCf/Al2O3 composite, low rates of oxidation-assisted fibre failure also occur, but for different 
reasons.  Firstly, residual-stress-induced microcracks present in the as-processed matrix [20] allow easy 
nucleation of many small cracks throughout the specimen gauge length, seemingly with oxygen ingress 
being relatively slow through the microcracked Al2O3 matrix.  Secondly, the double BN/SiC interface layers 
are more resistant to oxidation than the carbon interfaces in the SiCf/SiC type materials (Table 1).  Hence, 
crack growth rates are lower and the creep ductilities are higher, resulting in creep rates and rupture lives 
comparable with those observed for the enhanced SiCf/SiC and HNSiCf/SiC products (Figure 1). 
 
Factors Affecting Creep Performance 
 
The present analysis indicates several avenues for enhancement of the creep and creep fracture properties of 
fibre-reinforced CMCs.  In particular, the longitudinal fibres control the rates of creep strain accumulation 
and crack growth, demonstrating that the development of new high-strength high-stability fibres of 
weaveable diameter (~15µm) is essential for future high-performance composites.  Indeed, the data included 
in Figure 1a show that sintered silicon carbide displays creep strengths at 1773K [19] which match those of 
Nicalon™ NLM 202 fibres at 1573K, illustrating the potential for property improvement attainable with SiC 
fibres. 
 
In this context, it is surprising that the creep properties of the HNSiCf/SiC samples produced with satin-
woven bundles of Hi-Nicalon™ fibres are similar to those for the enhanced SiCf/SiC product manufactured 
with plain-woven bundles of standard Nicalon™ fibres (Figure 1).  However, the longest test reported for 
these materials lasted only ~100 hours [5,6], suggesting that long-term results are needed to quantify the 
benefits of incorporating satin-woven arrays of Hi-Nicalon™ fibres.  Even so, the use of Hi-Nicalon™ 
fibres should offer advantages when double BN/SiC fibre/matrix interfaces are employed (Table 1).  The 
BN coatings are less susceptible to oxidation than carbon interfaces [21,22], but the BN coating process [23] 
involves a high temperature treatment (> 1773K).  Hi-Nicalon™ fibres should then avoid the property 
degradation expected with standard Nicalon™ fibres.  Thus, recent studies have shown that no reduction in 
room-temperature strength of HNSiCf/SiC samples produced with 0.4µm thick BN interface layers occurred 
after exposure in air for 600h at 1673K, whereas significant strength reductions were found after 200h at 
1273K with HNSiCf/SiC specimens manufactured with carbon interfaces [24]. 
 
While the matrices of the present  SiC-fibre-reinforced CMCs contribute little to the overall creep strengths, 
the matrix compositions and microstructures affect the observed creep ductilities.  Thus, the fracture modes 
exhibited by the standard SiCf/SiC product indicate that the procedures adopted for densification of the fibre 
preforms must avoid the formation of macropores between the interwoven fibre bundles and large pores 
within the fibre bundles, which offer preferred sites for crack nucleation.  Moreover, the matrices determine 
the rates of oxygen penetration into the composites during creep exposure, influencing the rates of 
oxidation-assisted failure of the crack-bridging fibres and the rates of crack growth.  In this context, 
procedures such as the incorporation of boron-based particulate additives [16,17] are effective, resulting in 
the enhanced SiCf/SiC and HNSiCf/SiC displaying creep and creep fracture properties substantially better 
than those found for the standard SiCf/SiC samples (Figure 1).  A further option could then be to employ 
surface coatings, just as the use of protective ceramic coatings extends the operational life of aeroengine 
turbine blades produced from nickel-base superalloys. 
 
 

 5



CONCLUSIONS 
 
In contrast to the views expressed in earlier studies [4,5], the creep strengths of the reinforcing fibres exceed 
those of the matrices in SiCf/SiC type materials, as proposed for the SiCf/Al2O3 composite [7].  For the four 
SiC-fibre-reinforced CMCs considered (Table 1), the rates of creep strain accumulation are then controlled 
by the longitudinal fibres, with creep of the fibres accompanied by cracking of the weak porous matrices 
(Figure 3a).  However, the creep strengths of individual fibres vary, as evident from the scatter in the data 
for Nicalon™ NLM 202 fibres (Figure 1a).  Since the weakest fibre regions deform most easily, the creep 
rate decays with time as the stress is transferred to stronger fibres (Figure 2). 
 
The rates of crack growth are also governed by the creep resistance of the longitudinal fibres which bridge 
the cracks developing through the longitudinal fibre bundles.  Even so, oxygen penetration into the 
testpieces during creep exposure promotes oxidation-assisted failure of the crack-bridging fibres, affecting 
the creep strains at which fracture finally occurs by fibre pull out (Figure 3b).  Fracture then terminates the 
decaying creep curves (Figure 2), with the creep ductility values influencing the minimum creep rates and 
rupture lives recorded (Figure 1).  On this basis, the development of improved CMCs depends not only on 
the fibre reinforcement but also on the rates at which the matrices allow oxygen ingress and the 
susceptibility of the fibre/matrix interfaces to oxidation. 
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ABSTRACT 

Goal of this research is to determine the relation between the composition of a PS-PEB block copolymer and 
the adhesion of a PS-LDPE interface with the block copolymer as adhesive layer. The focus of this paper is 
the improvement of the test method. 
 
The Critical Energy Release Rate (GC) of an interface between Polystyrene (PS) and Low Density 
Polyethylene (LDPE) is measured with an Asymmetric Double Cantilever Beam (ADCB). It was preferred 
to use the block-copolymers in their practical form. Therefore techniques to characterise the thickness of the 
block-copolymer layer which require deuteration (e.g. SIMS or FRES) could not be used and an alternative 
route applying ellipsometry and AFM was established.  
 
GC is determinated by inserting a wedge at the interface with a constant velocity. The equilibrium crack 
length is continuously measured during the test over the total interface length. 
From the crack length and the compliance the GC is calculated. Different models for calculating the 
compliance are used. The new model “beam on elastic foundation with a correction for shear deformation” 
is found to give the smallest variation of GC as a function of both the beam thickness and the beam thickness 
ratio. Correction for non-linear elastic behaviour reduces the variation of GC as function of the beam 
thickness and beam thickness ratio. 
 
The test method is improved by: 
• Developing a method to place a smooth block copolymer layer of known thickness at the interface. 
• Correcting Gc calculations based on the “beam on elastic foundation” model. 
• Correcting the GC calculations for shear deformation. 
• Making a start in correcting the GC calculations for non-linear behaviour. 
 

KEYWORDS 

Critical Energy Release Rate; Asymmetric Double Cantilever Beam; Compliance model; Adhesion, Block 
Copolymers, Wedge Splitting Test. 



INTRODUCTION 

The adhesion between two different polymers is a subject of extreme relevance for many polymer 
applications, notably for heterogeneous polymer blending. Compatibilisation of the interface by block-
copolymers is known to improve the level of adhesion. The strength of a polymer interface, reinforced by a 
block-copolymer, has been the subject of many investigations. Block copolymers turn out to form effective 
‘stitches’ between the two adherents. 
 
For practical blends, compatibilisation with thermoplastic rubber type of tri-block copolymers is often 
applied. In this situation both the adhesion between matrix and block-copolymer as a pure phase and its 
effect on the strength of the interface between matrix and dispersed phase is of importance. As a model 
system exemplary for such a blend, in this investigation we chose a combination of polystyrene (PS) and 
low-density polyethylene (PE) with a SEBS (styrene- ethylene butylene- styrene) type of block-copolymer 
as a compatibiliser.  
 
Creton et al [1] developed the “wedge splitting test” which is very suitable for measuring adhesion between 
two rigid polymers (Fig.1). Johnson, Kendall en Roberts [2] developed the JKR test to measure the adhesion 
between two elastic materials. Brown [3] and Creton [4] used a JKR-type of test, which can measure the 
strength of an interface between a glassy polymer and a rubber reinforced with their di-block. The JKR test 
requires the softer component to be fully elastic up to the annealing temperature, which is not the case for PE 
or SEBS. Therefore the wedge splitting test was chosen. However, so far this has been applied to polymers 
where stiffness differed no more than 10-20 %. The Young's modulus, E, of PS and PE differ a factor of 
about 20. 
 
Creton et al [1] measured the adhesion between two rigid polymers with the ADCB-test. Their results show 
that adhesion per block copolymer chain increases with increasing block length. A considerable increase in 
the adhesion was found for block copolymers with sufficient long blocks to form entanglements with the 
adherent substrates. Up to this block length only a small increase in adhesion was measured due to the 
increase in chain pull out energy with increasing chain length. If the blocks are long enough to form 
entanglements the fracture mechanism is chain scission with of without plastic deformation of the substrate. 
 
Effects of and number of chains per surface area have been systematically investigated by Brown [5] for 
glassy, amorphous polymers reinforced by their block copolymers. His results show that interfacial adhesion 
increases with increasing chains per surface until the surface is saturated.  

EXPERIMENTAL 

Materials  
One beam is made of Polystyrene (PS) the other beam is made of Low Density Polyethylene (LDPE). 
The interface is reinforced with block copolymer consisting of block polystyrene, a block hydrogenated 
polybutadiene (PEB) and another block polystyrene. PEB has a vinylpercentage of 40-45%. 
 
The mean molair mass between entanglements, Me, is according to Wu [6] for PS 18.7 kg/mol and for PE 
1.39 kg/mol. 
The moleculair weight of the PS block is 7.3 kg/mol. This is 0,4 x MePS. The moleculair weight of the PEB 
block is 33,9 kg/mol. With a vinylpercentage of 40 this gives a moleculair weight of the back bone of PEB 
of 27,1 kg/mol. This is 19,5 x MePE. 

Sample preparation 
The sample preparation procedure was as follows. The PS and PE material were compression moulded to the 
required thickness in a vacuum mould. The temperature was 220°C. 
One side of the mould was covered with a smooth chromed metal plate as is used for photographic purposes. 
Plates were then machined to produce beams of the proper dimensions (width: 10 mm, length 45 mm), 
taking care that the smooth surface was not damaged or polluted.  



 
The block copolymer was dissolved in toluene and spin coated on a silica wafer at standard spinning 
conditions. The thickness of the layer was measured by ellipsometry. The layer was then picked up from the 
wafer by placing the PS beam (dried at 90°C) with its smooth surface on the wafer and annealing in an oven 
at 130°C (under nitrogen, 150 mbar) for 1 hour. AFM images of the wafer clearly show that this procedure 
practically removes all the block-copolymer from the wafer. The layer thickness measured with AFM is 
equal to the ellipsometry measurement.  
Thickness variations were obtained by changing the concentration.  
 
After applying the block-copolymer to the PS, the PE part of the specimen was stacked on the interface, and 
the whole specimen was annealed in an oven (48 hours at 130 °C, 125 mbar nitrogen) to obtain adhesion.  

Experiments 
The wedge splitting test is used (see figure 1), as mentioned in the introduction. 
  

 
Figure 1: Wedge splitting test with an Asymmetric Double Cantilever Beam specimen. 

 
The specimen is called “Asymmetric Double Cantilever Beam” because both beams have different thickness 
(h1 and h2 in figure 1) to minimise the tendency of the crack to propagate in a mode II direction. In order to 
test the most suitable ratio between the thickness (h) of both homopolymer beams several combinations of 
hPE and hPS were tested. 
To determine GC a wedge is inserted at the interface with a constant velocity of 0.1 mm/min. The 
equilibrium crack length is continuously measured during the test over 12 mm of the total interface length.  
A video recording of 2 seconds is made every 1.51 minute, resulting in about 60 recordings of the crack 
length. 
 
The inserting force on the wedge is measured during the experiment. It is found that this force is constant if 
the crack length is in equilibrium. An interval of 2.5 mm is choosen in which the inserting force fluctiations 
are minimal. During this interval 16 recordings of the equilibrium crack are made. These recordings are used 
for measuring the crack length.  
The crack length is measured in the middle and on both sides (at a distance of the side of 20% of the 
specimen width). The avarage crack length is calculated from these meassurements. This avarge value is the 
avarage of the measurements of both sides and the measurement in the middle.  
From the crack length, a, and the compliance, C, the critical energy release rate, GC is calculated for each 
beam: 
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In which ∆ is the wedge thickness and b is the sample width. 
Summation (i = 1..2) gives the GC of the specimen. 
 
The deflection of the beam and the load on the beam are not measured. Therefore a model is needed to 
calculate the compliance. 



One model is the “simple beam model” in which the beams are considered to be clamped at the crack tip.  
The equation for Gc based on the “simple beam” model is: 
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During the experiments other models are developed (see next section). 

RESULTS: INFLUENCE OF BEAM THICKNESS (RATIO) AND COMPLIANCE MODEL ON GC  

Rutten has tested several combinations of hPE and hPS with a block copolymer (see materials) layer of about 
21 nm [unpublished graduation thesis, Hogeschool Venlo HLO polymeerchemie, the Netherlands, in co-
operation with Shell]. 
The layer thickness is uncertain because the method to place a smooth block copolymer layer of known 
thickness at the interface (see sample preparations) was not yet established by that time. 
Rutten spincoated the block copolymer layer on the smooth PE surface. To estimate the layer thickness a 
block copolymer layer was spincoated under the same conditions on a silica wafer. The thickness of this 
layer is measured by ellipsometry. 
Rutten used specimens with beam thickness of 2, 4 and 8 mm. Creating specimen with hPE/hPS of 2/8, 4/8, 
2/2, 4/4, 8/2 and 8/4. Two specimen of each geometry. 
 
His data were used to determine the most suitable ratio between the thickness (h) of both beams. The GC-
value of these specimens were calculated applying the equations based on the Kanninen’s elastic foundation 
model [7] proposed by Creton [1]. In a similar range of thickness ratio data Creton showed that a minimum 
occurred, which was attributed to the lowest tendency of the crack to propagate in a mode II direction at this 
minimum. However our data showed a monotonously increasing Gc as a function of the thickness ratio. 
When investigating the possible cause for this difference the original elastic foundation solution by 
Kanninen was revisited. It was found that where Creton relates the stiffness of the beam foundation to the 
stiffness of the beam under consideration. The stiffness has to be related to the stiffness of the opposite, 
supporting beam as originally intended by Kanninen. The equation for GC based on the “beam on elastic 
foundation” model then change to: 
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Figure 2 shows the results of this calculation. Every point is the average of 2 measurements (2 specimens of 
each geometry).  
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Figure 2: Critical energy release rate for different beam thickness ratio’s and different compliance models. 

For thickness ration ratio’s of 0,2 (hPE/hPS = 2/8), 0,33 (hPE/hPS = 4/8), 0,5 (hPE/hPS = 2/2 and hPE/hPS = 4/4 
the lowest values of Gc at this thickness ratio are the values for 2/2), 0,66 (hPE/hPS = 8/4), 0,8 (hPE/hPS = 8/2),  

 
Instead of showing a minimum a maximum is found. Furthermore data are still varying strongly with 
thickness and thickness ratio. It was then decided, given the relatively small ratio between beam length and 
thickness to include shear deformation in the elastic energy term. Resulting in the equation for C for beam 1 
and 2 based on the “beam on elastic foundation with correction for shear stress” model: 
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Combination with equation 1 gives the energy release rate of each beam. 
Beside the shear deformation the non-linear behaviour is another complication. Tensile tests show that PS 
behaves linear under the ADCB test conditions. The behaviour of PE however is non-linear. The beginning 
of the stress strain curve (tensile test acc. to DIN 53455-5, 50 mm/min) can be described by a power law: 
 

σ ε=E n
0         (6) 

 
In which σ is the stress, ε is the strain, E0 and n are fitparameters. Fitting the stress strain curve from  
ε = 0.003 up to ε = 0.008 results in: E0 = 4.02 (±0.82) x 107 N/m2 en n = 0.663 ± 0.040. 
 
Combination of this power law and the equation that Williams [8] derived for a DCB gives the energy 
release rate of one beam: 
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In which P is the force on the beam at the wedge. Summation gives the total G.  
 



P has to be determinded by iteration: 
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The results of the Gc calculations are shown in figure 2 for every model. Every point is the average of 2 
measurements (2 specimens of each geometry, 16 x 3 measurements pro specimen). The data still vary with 
thickness and thickness ratio. Table 1 shows the variation for each model. 
 

Table 1: 
Variation of Gc with thickness ratio, varation of Gc for given thickness ratio (hPE/htotal = 0,5)  

but different beam thicknesses (hPE/hPS = 2/2 and hPE/hPS = 4/4) and 
 the maximum variation of Gc for two specimen with identical geometry 

calculated with the four models. 
Model Gc variation 

with thickness 
ratio 

Gc variation for  
same thickness  

ratio (= 0.5) 

Meassurement  
variation 

Simple Beam 
 

523 200 145 

Simple Beam with correction for 
non linear behavior 

450 101 102 

Beam on Elastic Foundation 
 

56 43 36 

Beam on Elastic Foundation with 
corr. for shear defformation 

31 22 21 

 
The new model “beam on elastic foundation with a correction for shear deformation” is found to give the 
smallest variation of GC as a function of both the beam thickness and beam thickness ratio. Both variations 
are less than 150% of the maximum measured variation in Gc for two specimens with identical geometry. 
 
Correction for non-linear elastic behaviour reduces the variation of GC as function of the beam thickness. 
 
The optimal optimal beam thickness ratio (pure mode I) is not derived from these experiments. Decided is to 
use a beam thickness ratio for which the compliamce of both beams is equal according the “simple beam 
model” (beam thickness: PE 5.5 mm, PS 2 mm). 

CONCLUSIONS 

• A method is established to place a smooth block copolymer layer of known thickness at the interface 
without deuteration. 

• The new model “beam on elastic foundation with a correction for shear deformation” is found to give the 
smallest variation of GC as a function of both the beam thickness and beam thickness ratio. 

• Correction for non-linear elastic behaviour reduces the variation of GC as function of the beam thickness. 
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ABSTRACT 
 
A model is presented that predicts the fatigue limit of a metal by determining the critical crack length. The threshold 
stress range for short fatigue crack growth is related to the strain intensity factor range by taking  into consideration 
surface strain distribution and crack closure.  In particular the surface strain concentration factor has been carefully 
evaluated. This factor decreases, together with an increase in crack closure, as crack length increases within the 
short crack range.  The resulting threshold stress for crack growth increases to a maximum that corresponds to the 
fatigue limit stress.  This occurs at the critical crack length. In addition to successfully predicting the fatigue limit 
stress, the model is capable of determining the crack initiation stress range and depth of non-propagating cracks as 
a function of material, grain size and stress ratio. 
 
 
KEYWORDS 
 
Critical crack length, threshold stress, short fatigue cracks. 
 
 
INTRODUCTION 
 
On cycling a polycrystalline metal each surface grain will experience a different amount of strain according to its 
orientation relative to the loading axis.  Large, favourably oriented grains represent preferred sites for crack initiation 
because of localized slip. With increasing depth, the constraints and strain compatibility requirements become more 
severe, leading to a lower local strain range. The initial high local strain range, Äå, decreases, approaching the 
nominal strain range, Äe.  The strain concentration factor, Qå , decreases with the projected crack length, a, 
according to [1]:/ 
 

Qå  =Äå/Äe = 1+q exp [a(-á/D)] (1) 
 
where q is a constant, á is a material constant depending upon deformation character and represents the ease of 
cross-slip. The function for the decay of Qå  gives an average continuous description of short crack behaviour 



allowing a relatively simple model to be applied although it is recognized that short crack behaviour may be 
discontinuous and strongly affected by microstructural features such as grain boundaries [2]. The depth at which Qå 
is effectively equal to unity determines the extent of the surface-affected zone, Li. When a = 0, Qå  =1+q represents 
the strain concentration factor at the free surface, Qå S.  Originally, Abdel-Raouf et al [1] concluded that q=5.3, 
based on the probability of slip at the surface. This gave a value of Qå s = 6.3. Reconsidering this original work,  Qå S 
yielded a value of approximately 8.7. Using a slightly different probabilistic approach, the strain concentration factor 
at the surface was found to vary between 6.1 and 7.2 [3]. 
 
Another approach has been to consider the strain in Persistent Slip Bands (PSBs). In this case, the values for the 
strain concentration factor at the free surface ranged between 4.7 and 10.0 [4,5] and the weighted average value 
for eleven different set of data was 8.4.  
 
By means of the Neuber approach Qå s varied between 5.9 and 8.1 if the cyclic yield limit were considered as the 
applied stress. The average values for twelve steels and seven aluminum alloys were 6.9 and 7.0 respectively, 
indicating material independence[6]. Hence, for simplification, QeS will be applied using a single value of 7.0. 
 
 
INTRINSIC THRESHOLD STRESS RANGE 
 

In the absence of crack closure, the intrinsic strain intensity factor range,    can be expressed as follows: 

 (2) 
 
where E is the modulus of elasticity and F is the geometrical crack factor. 
 

When the nominal applied strains are elastic, ÄeE = ÄSi where  is the intrinsic component of the applied stress 
range, the intrinsic stress intensity factor range simplifies to: 
 

 (3) 
 
At high stress ratios (R= minimum/maximum stress ≥ 0.6) ÄKi  can be assumed to be the intrinsic threshold stress 
intensity factor ÄKith. According to DuQuesnay [7] no closure effects were present at a stress ratio of R = 0.6 for 
aluminum alloy Al 2024-T351 with ÄKi  = 2.2 MPa m1/2 .  
 
The intrinsic threshold stress range, ÄSith  can be calculated at any crack depth using Eq. 3. As expected, a linear 
relationship with a slope of -0.5 exists between log ÄSith and log a for long cracks (a ≥ Li) when Qå  = 1, since 
linear elastic fracture mechanics (LEFM) applies.  However, for short cracks (a < Li), the curve deviates from 
linearity and their behaviour is under microstructural control.   
 
The maximum value for ÄSith represents the nominal stress range required to maintain continuous crack 
propagation, i.e. the fatigue limit of the material for the intrinsic condition when closure is absent. For the Al2024-
T351 alloy, the crack initiation stress range, ÄSc, had a value of 96 MPa at the minimum crack depth of 3 ìm and 
the maximum value for ÄSith was determined to be 110 MPa which is in good agreement with the experimental 
value of 125 MPa. This occurred when ac = 190 ìm (3.8D).  Since the calculated  fatigue limit ÄSFL is slightly 
smaller than the actual fatigue limit stress at the stress ratio of R=0.6 the crack may not have been fully open. 

 
 
 



 

 
 

 
Figure 1: Nominal threshold stress range, as a function of 

crack depth and stress ratio for Al 2024-T351. 

ae = a-0.4D, q = 6.0, á = 1.0, D = 50 ìm,  = 2.2MPa m1/2, 
k=20 mm-1, F (a=3ìm), = 1.12 and F (a=200ìm) = 0.72 

CLOSURE 
 
The stress intensity factor range (ÄK = Kopen - Kmin) required to open a closed crack increases with crack depth to 
a steady-state level, representative of long crack development. Hence at lower stress ratios when closure is present, 
the threshold stress intensity factor range must include a crack opening component in addition to the intrinsic 
component. This is achieved by introducing the closure development factor, Hcl    representing the ratio of the total 
stress range to the open portion of the stress range, which increases the threshold stress intensity factor range, 
ÄKth, and is expressed by [2, 8, 9]: 
 

            (4) 
 
or with the corresponding expression for stress: 
 

   (5) 
 
Hcl is given by: 

    (6) 
 
The factor è′ is expressed by: 

 (7) 
 
where k is a material constant describing the rate of crack closure development and ac is an effective crack depth 



ac=a-0.4D since closure starts to build up about half-way into the surface grain [2]. 
 
For small cracks, Hcl  is approximately unity and Eq. (4) yields ÄKth = ÄKith , indicating that the crack is fully 
open.  For long cracks, however, the steady state value of Hcl is invariant with crack length. Its magnitude increases 
as the stress ratio decreases. 
 
The values of Kth at steady-state are listed in Table 1 for the corresponding stress ratios.  
 
 
FATIGUE CRACK MODEL 
 
Combining Eqs. (3) and (5) leads to the final equation describing the variation of the threshold stress range with 
crack length in the short and long fatigue crack regime: 
 

ÄSith = Hcl ÄKith /(Qå  F ) (8) 
 
The three mechanisms involved in the present model are incorporated in Eq. (8) and are as follows: i) the closure 
parameter Hcl  ii) the inherent strain concentration factor Qå  and iii) the LEFM-contribution. The crack length 
appears three times in Equation (8) through Hcl, Qå  and a. It is the only unknown variable. Stress ratio is taken into 
account by Hcl. 
 
 
FATIGUE LIMIT PREDICTION 
 
The experimental data for 2024-T351 aluminum alloy is available from previous work [7, 8, 9] and applied to the 
present model. The important mechanical and microstructural material properties are given in Table 1. 
 
The plot of Eq. (8) versus crack depth is seen in Figure 1.  This illustrates the relationship between the nominal 
threshold stress range and the crack depth for three different stress ratios.   The threshold stress range has a local 
maximum value, representing the stress range required for continuous crack growth, which defines the fatigue limit. 
For stress ratios less than 0.6, the magnitude of the threshold stress range at the fatigue limit increases with 
decreasing stress ratio due to an increase in the contribution of crack closure. 
 

TABLE 1 
Material Properties of 2024-T351 Aluminum Alloy [7, 8, 9] 

 
 

 
Material Property 

 
Stress Ratio 

 
Value 

 
ÄKth    for long-crack propagation                                R = -1                        4.4       MPa m1/2 
ÄKth    for long-crack propagation                                R = 0                         3.4       MPa m1/2 
ÄKth    for long-crack propagation                                R = 0.6                      2.2       MPa m1/2 
          ÄSFL at 2 × 107 cycles                                         R = -1                       246       MPa m1/2 
          ÄSFL at 2 × 107 cycles                                          R = 0                        170       MPa m1/2 
          ÄSFL at 2 × 107 cycles                                          R = 0.6                     125       MPa m1/2 
          Grain size in crack growth direction                        -                             50        ìm       
  

 
Table 2 summarizes the predicted fatigue limit stress range, the critical crack length at the local maximum, ac, the 



experimental fatigue limit stress range and the relative deviation. The critical crack is about four grain diameters in 
length. The predicted and experimental values of the fatigue limit stress are in good agreement. However, the results 
are very sensitive to the closure parameter. A small deviation in the experimentally determined threshold stress 
intensity factor ranges can lead to a large scatter in the prediction. 
 
 

TABLE 2 
Predicted Fatigue Limits for Different Stress Ratios 

 
 
R            ac [ìm]        ÄSFL[MPa]         Experimental  ÄSFL [MPa]               Relative deviation [%] 
 
0.6          188  (3.8D)     110                             125                                               -12.0 
0             194  (3.9D)     167                             170                                               -1.76 
-1            198  (4.0D)     214                             246                                               -13.01 

 
The fatigue limit stress range may be predicted using an alternative approach based on the experimentally  
determined ÄKth (Table 1) without having to consider the closure parameter. Since, at a given stress ratio,  ÄKth 
accounts for closure development at the steady-state level and the critical crack length at the fatigue limit stress is 
known from the previous analysis, the following expression leads to the fatigue limit stress range for that stress ratio: 
 

 (9) 
 
The critical crack depth ac is taken as 4D.   For the stress ratios of R=0.6, R=0 and R=-1 the fatigue limit stress 
ranges are then determined to be ÄSFL = 111 MPa,  ÄSFL = 171 MPa and ÄSFL = 221 MPa, respectively.  These 
values agree with those obtained in the previous section. It is important to note if the extreme values of 5 and 8 for q 
are considered, then the variation in ÄSFL is only in the range of 5% for a given stress ratio. 
 
If a specimen were cycled with a stress range larger than ÄSc yet lower than ÄSFL, the crack will grow to a depth 
corresponding to the threshold stress range given in Fig. 1 and become non-propagating. Due to the difference in 
closure levels the crack would stop growing at a shorter depth if the stress ratio were lower. The model is capable 
of predicting the depth of non-propagating cracks. This has been observed in smooth specimens cycled at low 
stress ratios [2] where there is a larger difference between  ÄSc and ÄSFL . 
 
 
SUMMARY 
 
The fatigue limit stress can be predicted accurately with the current model. The information required is the average 
grain size,  the intrinsic threshold stress intensity factor range and the closed portion of the stress range for a long 
crack at a given stress ratio. The threshold stress curve may then be plotted against crack depth and its maximum 
corresponds to the fatigue limit stress range. The model is capable of predicting the development of non-
propagating cracks when cycled at constant amplitude stress ranges lower than the fatigue limit. 
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ABSTRACT 
 
Thin film interfacial adhesion is a critical material property in assessing the thermo-mechanical 
reliability of microelectronic components.  Cross-sectional Nanoindentation (CSN) is a novel 
technique developed to characterize the adhesion of thin film interfaces.  The technique consists 
of indenting a cross-sectional sample with a Berkovich diamond indenter using a Nanoindenter 
System. The indentation is made normal to the cross-section at a specific distance from the 
interface of interest.  This produces a controlled bending of the thin film structure.  The onset of 
interfacial delamination is related to sudden steps in the load-displacement curve.  From optical 
and SEM micrographs, the delamination crack paths are directly observable.  Based on the crack 
lengths, a relative determination of interface fracture toughness can be made. CSN results 
correlate to fracture toughness values obtained with the four-point bending technique(3). 
 
 
KEYWORDS 
 
Cross-sectional Nanoindentation (CSN), Interfacial adhesion, Microelectronics, Thin film, 
Berkovich indentation 
 
 
INTRODUCTION 
 
The microelectronics industry is running on an increasingly complex treadmill that requires 
novel materials to be integrated to meet electrical performance targets.  The path to success 
requires the integration of new metal and dielectric interconnect materials that may increase the 
risk of thin film delamination.  Lack of chemical affinity and large differences in thermal 
expansion coefficients of the various thin films, together with the presence of defects or residues 
at the interface, are some of the causes of interfacial delamination. 



 
It is of critical importance that accurate, quantitative techniques are available to assess the 
mechanical integrity of thin film interfaces.  More sophisticated methods are needed to replace 
older techniques such as the tape test and stud pull test (1-2) which are not generally applicable.  
The technique of four-point bending has recently been used to obtain quantitative values of thin 
film interface fracture toughness (3-5).  However, lengthy sample preparation is required and the 
technique is limited to blanket thin film samples. 
 
Nanoindentation has been widely used to measure materials properties such as hardness and 
modulus(6-8).  It has also been used to study delamination by top-down indentation of thin 
films(9).  However, the interface at which delamination occurs is not clearly distinguishable.  
CSN represents the first application of the indentation technique to the study of thin film 
interface adhesion using cross-sectional samples. It allows direct observation of the delaminated 
interface.  Due to the simplicity of sample preparation and the quick turn-around time 
(approximately four hours), CSN has the potential to be used as a quick-turn monitor for the 
fabrication engineers. A significant advantage of the technique is its application to patterned as 
well as blanket thin film samples. 
 
 
EXPERIMENTAL PROCEDURE 

Sample preparation 
Blanket thin film samples consisting of 1 µm silicon nitride on 1 µm silicon oxide were studied.  
The silicon oxide was deposited using a chemical vapor deposition (CVD) process.  The silicon 
nitride thin films were deposited using various processes: plasma-enhanced chemical vapor 
deposition (PECVD), high density plasma (HDP) and low deposition rate CVD.  A test chip was 
analysed as part of CSN tests on patterned material. This consisted of a two metal layer 
integrated short loop with silicon nitride passivation, polyimide (PI) and Controlled Collapsible 
Chip Connectors (C4) bumps. 
 
Sample preparation was a simple cross-sectioning using diamond scribing to initiate a precrack 
then cleaving with glasscutters’ pliers.  This produced a clean and flat cross section ready for 
indentation.  In the case of the patterned material, the cleave was made through metal lines near 
the die’s edge to determine if they would arrest cracks due to corner blunting. 
 

CSN test procedure 
The CSN test configuration used for the silicon nitride 
/silicon oxide blanket samples is illustrated in Fig. 1.  
The orientation of the three-sided Berkovich diamond 
tip and its positioning with respect to the interface are 
critical parameters for controlled delamination. The 
optimum orientation of the diamond tip is that depicted 
in the figure, where one of the sides of the triangular 
indentation mark is parallel to the interface.  The 
optimum distance to the interface (d) is 1 to 5 

Si substrate

SiN
SiO2

d

Figure 1: Thin film structure and orientation of 
Berkovich indenter with respect to thin film interface. 



micrometers. The optimum load range for delamination was found to be 30 mN to 200 mN. 
 
Indentations were made using a well-calibrated Berkovich diamond indenter (Nanoindenter II 
and Nano XP, MTS Nano Instruments, Inc.) with a load resolution of about 50 nN and a z-axis 
displacement resolution of 0.01 nm. The resolution of the diamond tip positioning system in the 
x-y directions is 0.5 µm. CSN tests were carried out using strain-rate control with a tip 
displacement rate of 10 nm/s. Load vs. tip displacement curves were recorded during the tests 
(data acquisition rate: 45 Hz). After the indentation experiments, SEM micrographs were 
collected to measure crack lengths and delamination areas. 
 

CSN Fracture Interpretation 
A 3D view of the CSN experiment is shown in Figure 2. Figure 3 shows a SEM image of the 
indentation zone. Cracking begins at the two corners of the indentation that are closer to the 
interface. These radial cracks, characteristic of brittle materials loaded with pyramidal 
indenters(10-11), propagate on loading through the silicon substrate and the strong silicon/silicon 
oxide interface, producing a wedge (shown in Fig 2).  
 

Si substrate 

 

SiO2 

d 

SiN 

Applied load 

wedge 

 
 

 
Figure 2: Sample cross-section 
showing location of applied load and 
bending of thin film structure producing 
delamination 

Figure 3:  SEM micrograph of silicon nitride/silicon oxide 
thin film sample after cross-sectional indentation. 

 
 
 
 

However, when the cracks reach the weak 
silicon oxide/silicon nitride interface, they tilt 
out of their original planes following the 
SixNy/SiO2 interface. 
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Figure 4:  Load-displacement curve showing sudden 
jump corresponding to thin film delamination. 

 
Delamination produces a sudden movement of 
the diamond tip that is registered as a step in the 
load vs. tip displacement (Fig. 4). Such a step is 
not detected when the maximum indentation 
load is lower than that required for 
delamination.  In this case, the load vs. tip 
displacement curve is similar to that obtained in 
a hardness test of silicon. 
RESULTS 



Blanket Thin Film Analysis  
Adhesion of silicon nitride to silicon oxide blanket thin films was characterized for three nitride 
deposition processes, plasma-enhanced chemical 
vapor deposition (PECVD), high density plasma 
(HDP) and low deposition rate CVD.  For each 
process, results with and without a plasma 
pretreatment are compared. The crack lengths at the 
interface were measured after indenting to a load of 
100 mN. Results are given in Table 1, showing that 
the PECVD nitride deposition process produces the 
strongest interface.  In this case, the interface could 
not be debonded.  In general, CSN results are well-
correlated to adhesion results obtained with the 
four-point bending technique(3).  

Figure 5b: HDP Slicon Nitride; crack Length = 4.7 µm 

Figure 5a: CVD Silicon Nitride; crack Length = 27 µm 

 
 
 
 
 
 

TABLE 1:  COMPARISON OF CSN AND FOUR-POINT 
BENDING ADHESION RESULTS FOR SILICON 
NITRIDE/SILICON OXIDE SAMPLES WITH DIFFERENT 
PROCESSING CONDITIONS. 
 Nitride Dep 
Process 

CSN Crack 
Length 
(um) 

Four-point 
bend 
interface 
energy 
(J/m2) 

CVD (Fig 5a) 28 2.84 ± 0.93 
HDP (Fig 5b) 4.7 7.23 ± 0.97 
PECVD (Fig 5c) No debond No debond 

 
 
 
 
 

Figure 5c: PECVD Sillicon Nitride; no debonding  
 

 

Patterned Thin Film Analysis  
 
CSN measurments were carried out on a patterned test chip.  The purpose of the study was to 
characterize polyimide thin film to silicon nitride thin film adhesion and the effect of metal lines 
on delamination at this interface.  Indentations were made in the silicon substrate in two 
locations: in an open area and directly below the edge of the metal lines.  The thin film stack in 
the open area consists of polymer / silicon nitride / silicon oxide / silicon substrate and in the 
locking structure location consists of polymer / silicon nitride / patterned aluminum /silicon 
oxide / silicon substrate. 
 
SEM results for an indentation made in an open area of the scribeline are shown in Figure 6.  
Note the symmetry of debonding.  This shows that the crack initially propagates to the silicon 
nitride / silicon oxide interface before jogging into the weaker polymer / silicon nitride interface.  
Figure 7 shows SEM results for the indentation made below the patterned metal lines.  Note that 
the cracking is asymmetric.  On the left side, the crack is shorter, being arrested due to corner 
blunting of the patterned metal line.  The crack initially propagates to the metal / silicon oxide 
interface and then to the polymer / silicon nitride interface before stopping at the edge of a metal  
line. 



 
 

a

 
 
 
 
 
 

s  
 

The repeatabilty of the indentation results was measured
samples from the same wafer.  Tests were carried out u
mN) and at the same distance from the Si/ silicon oxide
repeatability was also tested by conducting tests on dif
results are consistent, showing that the crack length at th
significantly lower in the case of indentation made be
summarizes results. 
 

 
Sample ID Crack Length (µm) 

for indent below 
patterned lines 

Lot 1, sample 1 1.25 
Lot 1, sample 2 2.5 
Lot 1, sample 3 2 
Lot 2, sample 1 2 
Lot 3, sample 1 2 

TABLE 2: CSN REPEATABILITY RESULTS FOR PATT

 

 
Discussion/Conclusions 
 
Cross-sectional nanoindentation results for blanket thin
technique is capable of resolving differences in adhesion
interface as a relative measure of adhesion strength, it has
well with four-point bend results.  In order to obtain qu
toughness using the CSN technique, modeling is required
theory has been developed and applied to ceramic-ceram
CSN technique fully quantitative, further model refinemen
 
The application of the CSN technique to patterned thin film
technique in distinguishing differences in delamination b
The direct observation of crack blunting at patterned metal
the effectiveness to stop crack growth at the polymer to ce
  
Figure 7: CSN below patterned line
Figure 6a: Low mag image: CSN in open are
 by conducting multiple CSN tests on 
nder identical loading conditions (100 
 interface (3±1 µm).  Wafer-to wafer 

ferent wafers from different lots. The 
e polymer / silicon nitride interface is 
low patterned metal lines.  Table 2 

Crack Length 
(µm) for indent in 
open area 

18 
16 
8 

12.5 
5 

ERNED MATERIAL 

 film samples clearly show that the 
 strength.  Using crack length at the 

 been shown that CSN results correlate 
antitative values of interface fracture 
.  A model based on the elastic plate 
ic systems(12).  In order to make the 

ts are needed. 

 samples shows the great value of the 
ehavior due to local geometry effects.  
 lines provides compelling evidence of 
ramic interface. 



The electronic industry’s silicon and packaging processes will need to fully comprehend thermal 
mechanical issues.  As devices become faster and hotter and as novel materials are incorporated 
into an increasing number of interconnect layers, a comprehensive understanding of interfacial 
adhesion is critical.  The cross-sectional nanoindentation technique has been demonstrated to be 
a reliable test method.  Its advantages are ease of sample preparation, quick turn-around time, 
direct observation of delamination, and application to patterned and blanket thin films. 
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ABSTRACT 
 
Recently considerable advances have been made in devising robust experimental methodologies for 
crystallographic analysis of fracture surfaces, and applying them to materials such as steels. There are two 
main practical thrusts: precision sectioning through the polished side of a specimen, perpendicular to the 
average fracture surface, and quantitative photogrammetry directly from the fracture surface. The second of 
these approaches is particularly novel since it allows electron back-scatter diffraction (EBSD) data to be 
obtained concurrently with the spatial coordinates, both in a scanning electron microscope. In this paper 
examples of some preliminary investigations in which these procedures  have been used to produce valuable 
results will be described. 
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INTRODUCTION  
 
Brittle fracture in ferritic steels can occur intergranularly, especially in the presence of embrittling species 
such as phosphorus, or transgranularly on cleavage planes of low surface energy in the lattice. 
Unambiguous identification of which of these two processes is operating, and detailed analysis of the 
characteristics of the fracture phenomenon, relies crucially on knowledge of the local crystallography. 
There are two primary and separate requirements for the experimental measurement of facet crystallography 
on the fracture surface of polycrystalline materials [1]:  
 
• the positional coordinates of a fracture facet in space  
• the crystallographic orientation of the facet  
  
both measured relative to the same reference axes. Electron back-scatter diffraction (EBSD) in a scanning 
electron microscope (SEM) is the forefront technique to provide crystallographic information [2], although 
there are several challenges regarding its accurate application to fracture surfaces. Equally, obtaining 
precise spatial coordinates for the positional orientation of a facet is taxing. 
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Recently considerable advances have been made in devising robust experimental methodologies in this area 
and applying them to real materials, namely steels. There are two main practical thrusts: precision 
sectioning through the polished side of a specimen, perpendicular to the average fracture surface, and 
quantitative photogrammetry directly from the fracture surface. The second of these approaches is 
particularly novel since it allows EBSD data to be obtained concurrently with the spatial coordinates. In this 
paper examples of some preliminary investigations in which these procedures have been used to produce 
valuable results will be described. 
 
 
EXPERIMENTAL METHODOLOGIES 
 
Essentially the experimental strategies divide into two approaches: some or all of the measurements are 
taken directly from the fracture surface, or some or all of the measurements are taken from a surface 
adjacent to the fracture surface, i.e. indirectly. 
 
The crystallographic orientations of facets  - or any other planar surface such as some internal interfaces - 
may be determined by a totally indirect approach.  Orientations are obtained by EBSD from a polished 
section perpendicular to the overall fracture surface, coupled with fracture surface profile analysis from 
optical or SEM images of at least two serial sections through a plane perpendicular to the fracture. This 
information defines the crystallographic facet orientation. The procedures and applications are discussed in 
detail elsewhere [3].   Indirect crystallographic analysis of facets in this manner from serial sections has the 
distinct advantage that the orientation data are straightforward to obtain by EBSD, because they are taken 
from a flat polished section. Drawbacks are that it is an inherently destructive technique, it is restricted to 
materials with average grain size greater than approximately 100µm, and the procedures are very labour-
intensive. 
  
A variant of the indirect approach is to obtain data from a single polished section only. Useful information 
can be gleaned by performing EBSD on a ‘matched fracture’ specimen. Here the specimen is fractured into 
two halves, then the two halves are realigned, mounted together as they were prior to fracture, and polished 
as if they were a single specimen. The alignment and mounting procedure requires considerable care to 
maintain the specimen geometry. The merit of this procedure is that intergranular and transgranular fracture 
surfaces can be immediately identified from evidence of colour matching across the fractured interface  in 
the crystal orientation map. Subsequently, proportions of intergranular and transgranular (cleavage) fracture 
can be quantified. Another piece of information which can be obtained from a single section is the 
crystallographic trace vector which defines the fracture edge. This direction must lie in the fracture plane, 
and so can be used to test the probability that, for bcc steel, the plane is a {001} cleavage plane. 
  
In contrast to the indirect techniques, direct techniques have the advantage of being non-destructive 
although they still generally require accurate correlation between the crystallographic and macroscopic 
orientation of the facet. Probably the first experiment which combined photogrammetry and EBSD was 
employed by Slavik and coworkers [4] to determine the fracture facet crystallography using quantitative tilt 
fractography of an Al-Li-Cu (AA2090) alloy.  The grain orientation was measured by EBSD from a 
polished surface, perpendicular to the average fracture plane, and combined with the facet orientation, 
which was aligned such that the co-ordinate system was identical for the tilt fractography and the EBSD 
analysis.  A series of SEM fractographs (i.e. images of the fracture surface) were acquired at different tilts 
and a series of measurements made of projected lengths between features on the fracture surface.  The data 
were then combined to determine the fracture facet crystallography. 
 
An extension of photogrammetry is stereo-photogrammetry, where images of a rough surface, taken at least 
two different tilt angles, are combined to produce a three-dimensional (3D) reconstruction of the surface. In 
the last few years computer assisted stereo-photogrammetry, in real time in an SEM, has greatly expanded 
the potential of this technique to facet analysis, and there have been some pilot experiments to couple 
stereo-photogrammetry with EBSD [5,6] and, recently, those reported in this paper. 
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EXAMPLES OF CRYSTALLOGRAPHIC ANALYSIS OF SURFACES 
 
Here we will present an example of both the indirect and direct techniques for facet analysis which have 
recently been performed on two steels as part of ongoing investigations..  
  
Samples of an alloy having composition Fe-0.06wt%P-0.002wt%C were cut to 5mm × 5mm × 30mm and a 
notch of ¼-thickness depth was cut into one of the faces. The sample was held under liquid nitrogen and 
fractured by an impact on the face opposite the notched face. After fracture the two halves were realigned 
and mounted. An EBSD map was then obtained from the fractured region as if it were still a single 
specimen. Figure 1 shows an example of a ‘matched fracture’ specimen. In this case the crystallographic 
orientation map has been superimposed on the secondary electron image. It can be seen that for much of the 
map the colours match across the fracture surface, indicating cleavage fracture. There are also some cases 
where the colours do not match across the fracture surface, indicating an intergranular, accommodation 
fracture facet. As the ageing temperature increased so the proportion of facets on the brittle fracture surface 
showing colour match across the fracture (i.e. cleavage facets) increased.    
  
Measurements directly from the fracture surface will be illustrated here by reference to recent investigations 
on a C-Mn alloy which had fractured predominantly in the transgranular mode. A previous investigation, 
using single crystals, into the accuracy of EBSD measurements obtained directly from fracture surfaces had 
revealed a large associated error, >25°. This is because although EBSD is calibrated for parallelism between 
the camera screen and the specimen surface (an individual fracture facet in this case), a large deviation 
away from the parallel condition can be tolerated before the diffraction pattern becomes unindexable by the 
software. This difficulty can be overcome somewhat by searching for ‘local minima’, but this technique is 
tedious and only suitable for small sample populations [6]. 
  
A more promising approach to direct crystallographic analysis of fracture surfaces than EBSD alone is 
computer-assisted stereo-photogrammetry, which was carried out in the present ongoing research using 
‘Stereo Facet’ software, commercially available from Oxford Instruments. Validation of the stereo-
photogrammetry procedure was achieved by a series of tests on a surface feature of known geometry, 
namely a Vickers hardness indent where the angle between the faces of the pyramidal indent is 136°.  Stereo 
images were acquired separately, tilted at +5° and -5° with respect to the primary beam direction. The 
parallax shift data for each pixel is calculated using a digital-image correlation analysis routine provided by 
the software, which was subsequently used to construct a ‘3D-elevation model’ of the indent.  
  
Having validated the stereo-photogrammetry procedure, it was then used to determine the positional 
orientation of fracture planes in space and correlate the measurement with the crystallographic orientation 
obtained by EBSD. A 3D-elevation model of the fractured facet was produced using the stereo images and 
measurements of the cleavage plane orientation were then correlated with the crystallographic information 
determined using the automated EBSD application of Crystal Orientation Mapping (COM).  The region of 
fracture surface, which is shown in figure 2a, was used to produce an ‘anaglyph’, i.e. a 3D visual 
representation of the surface that combines two stereo-images. A selected region of fracture surface was 
then successfully modelled using the stereo-photogrammetry software to produced a 3D-elevation model of 
the selected area enclosed by the rectangle on figure 2a (figure 2b) and a line profile of surface heights was 
acquired along the line bisecting the rectangle (figure 2c). Transferring the EBSD-measured crystal axes to 
the 3D-elevation model, where the reference plane is positioned perpendicular the normal direction, the 
deviation from the exact [001] direction correlates with the positional co-ordinates of the plane, indicating 
that the actual crystallographic orientation of the cleavage facet is exactly [001].  
  

 3

The principal advantage of direct techniques for crystallographic analysis of fracture surfaces is that the 
fracture surface remains intact, and so is available for further investigation. [7].  Computer assisted stereo-
photogrammetry can yield accurate crystallographic data which, combined with its powerful imaging and 
visualisation capabilities, proves it to be a powerful technique for fracture surface analysis. However, only 
certain facets, where the image contrast is excellent,  are candidates for analysis and the analysis procedure 
is quite lengthy. 



 
 
CONCLUSIONS 
 
There are several approaches to crystallographic analysis of fracture surfaces. These are: 
 
• Indirect techniques: ‘matched fracture’ specimens where a fractured specimen was reassembled and 

EBSD performed across the fracture surface; serial sectioning; a single-surface section to obtain the 
trace vector of the fracture edge. 

• Direct techniques: EBSD from the untreated fracture surface itself; computer-assisted stereo-
photogrammetry combined with EBSD of the fracture surface. 

 
There are merits and drawbacks for both the direct and indirect methods. A common feature is that both 
methods for crystallographic fracture analysis are experimentally difficult and challenging, although they 
are worthwhile to pursue because they yield valuable information about the fracture process. 
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Figure 1  A ‘matched fracture’ specimen from an Fe-P-C alloy. The colours correspond to crystallographic 

orientation and are superimposed on a secondary electron image. 
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Figure 2  (a) Micrograph of a region on a fracture surface of a C-Mn steel. The region enclosed by the 
rectangle was selected to produce a 3-D elevation model and a horizontal line, bisecting the rectangle, was 
selected to produce a height profile. (b) 3-D elevation model of the region shown in (a). (c) Height profile 

along the line shown in (a). 
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ABSTRACT 
 
In this paper it is shown that the curved crack path simulation can be improved considerably in accuracy by 
using a new predictor-corrector procedure that results in a piece by piece parabolic approximation of the 
simulated crack path in combination with the Modified Virtual Crack Closure Integral (MVCCI) method. In 
order to show the superiority of the proposed crack path simulation method in relation to the well established 
basic strategies, experiments of non-coplanar fatigue crack growth are carried out with a special specimen 
under lateral bending. In all cases considered the computationally predicted crack trajectories show an excel-
lent agreement with the different types of curved cracks obtained experimentally. 
 
 
KEYWORDS 
 
Crack path simulation, curved increment, predictor-corrector procedure, virtual crack closure integral 
method 
 
 
INTRODUCTION 
 
Failure of structures and components is often caused by cracks that frequently originate and extend in re-
gions characterised by complicated geometrical shapes and asymmetrical loading conditions. In such cases 
the developing crack paths are found to be curved. Several simulation methods have been proposed for crack 
path predictions based on step-by-step analyses by using finite elements or boundary elements (Bergquist 
and Gnex[1]; Sumi[2,3]; Portela and Aliabadi[4]). In the present paper, attention is focused on a new predic-
tor-corrector procedure that results in an incremental parabolic approximation of the crack path on the basis 
of quantities which the straightforward Modified Virtual Crack Closure Integral Method can provide 
(Theilig, Döring and Buchholz[5]). In order to show the significance of the proposed technique computa-
tional results are compared with findings from experimental investigations obtained by the aid of a specially 
designed specimen under lateral force bending. 



TWO-DIMENSIONAL CRACK PATH PREDICTION 
 
Consider a crack in a two-dimensional linear elastic body under proportional mixed-mode loading condi-
tions. The stresses ahead of the crack tip are given by 
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where kI and kII are the stress intensity factors (SIFs). T, bI and bII are the included higher order stress field 
parameters. It is known that in such a situation the crack will propagate in a smoothly curved manner after 
an abrupt deflection out of its original plane (Figure 1). For several mixed-mode fracture criteria the initial 
direction ϕ0 depends only on the ratio kII/kI of the SIFs of the original crack, whereas for others a further 
dependence on Poisson’s ratio ν is found. But for small ratios kII/kI practically the same values ϕ0 = −2 kII/kI 
are predicted by all criteria. This direction results in the state of local symmetry at the actual crack tip (KII = 
0). The generalisation of the local symmetry criterion can be regarded as the basis for the evolution of the 
crack path. Therefore the state of stress ahead of the deflected new crack tip exhibits no KII and is given by 
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It can be stated that continuous crack deflections can only be caused by the existing non-singular stresses. 
According to Sumi[2,3] the crack path prediction can be performed by using the first order perturbation so-
lution of a slightly kinked and curved crack. 
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Figure 1: A kinked and curved crack Figure 2: A slightly kinked and curved virtual 
crack 

 
A virtually extended slightly kinked and smoothly curved crack path profile (Figure 2) is assumed in the 
form 
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where α, β and γ are the shape parameters. As the consequence of the crack propagation criterion of local 
symmetry the SIF KII vanishes along the smooth crack path and the shape parameters of the natural crack 
geometry are obtained as 
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where the quantities 222111 k,k,k  represent the effects of the far field boundary conditions to the crack growth. 
If we consider a straight crack under local symmetry at the initial crack tip, i.e. kII = 0, we find α = β = 0. 
Therefore the parabolic crack profile 
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is holding. In this case the crack will propagate without kinking with a continuous deflection. But in the case 
of a self-similar virtual crack extension of the postulated straight crack the SIF’s 
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are obtained. Further K h K hI I( ) ( )=  is found in consequence of the considered slightly curved crack exten-
sion. Finally one gets for a selected increment ∆h the following information of the real crack path 
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It is seen that under the local symmetry criterion KII = 0 the change of the slope and the locus of the crack 
tip can be interpreted as the consequence of ∆KII ≠ 0 for a virtual tangential crack extension ∆h (Figure 3).  
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Figure 3: Curved crack propagation 

 
Therefore, in the case of proportional loading conditions the analysis of a smooth crack path can be carried 
out by a small virtual tangential crack extension as the predictor-step in combination with a finite change of 
the crack path as the corrector-step. Due to the predictor-step the calculation of K KI = I  and ∆KII  is neces-
sary in conjunction with the related tangential crack extension ∆h. This can be done by using the finite ele-
ment method. From Eqs.(7) the need for an efficient numerical mode separation technique in conjunction 
with the step-by-step analysis can be seen. 
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Figure 4: Modified virtual crack closure integral method 
 
With respect to this requirement the MVCCI-method has proved to be highly advantageous, because it de-
livers the separated strain energy release rates of two modes simultaneously without any additional effort. 
For 8-noded quadrilaterals at the crack tip (Figure 4), which are necessary to model the parabolic curved 
increments of the crack path, the following finite element representation of Irwin’s crack closure integral 
relations can be given (Buchholz[6]) 
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CURVED FATIGUE CRACK GROWTH TESTS 
 
In order to evaluate the validity and the efficiency of the proposed higher order crack path simulation 
method with respect to the well established basic strategies, experiments of non-coplanar fatigue crack 
growth are carried out with a specially designed specimen under lateral force bending (LFB)[7]. The LFBH-
specimen has been designed with a hole in the centre in order to produce a non-homogeneous stress field 
(Figure 5). 

 
Figure 5: Dimensions and notch position of the LFBH-specimen 



Crack initiations from notches at different positions lK along the tensile loaded edge of these specimens are 
investigated to produce different crack interactions with the hole. In particular lK = 65, 75 and 85 mm were 
selected. The notches have been manufactured with a width of 0.3 mm and a maximum depth of 3 mm. In 
Figure 6 two broken LFBH-specimens are shown with an experimentally obtained curved fatigue crack 
path, respectively for two of the three tested notch positions. In the experimental findings given in Figure 7 
it can be recognised that the small differences of the notch positions with respect to the bore and the local 
positions of the pre-cracks in the roots of the notches essentially determine the experimental scattering. 
 

 
(a) 

 
(b) 

Figure 6: Experimental fatigue crack paths of the LFBH-specimen with the notch position 
( a: lK = 65 mm; b: lK = 85 mm) 
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Figure 7: Simulated and experimentally obtained crack paths of the LFBH-specimen 
(a: straight incremental steps; b: curved incremental steps with marked mid-side nodes) 



NUMERICAL CRACK PATH PREDICTION 
 
For the finite element calculations the model are chosen in accordance with the design of the LFBH-
specimen and the available test assembly. After each predictor step of virtual tangential crack extension by 
∆h a re-meshing is necessary in such a way, that the corrector step is realised in order to model the curved 
crack surfaces and that together with the following predictor-step new crack tip elements are generated pro-
viding additional nodes. All calculations were carried out with the FE-code ANSYS. In Figure 7 the nu-
merical results of the notch position lK = 65, 75 and 85 mm and the experimental findings are given. For all 
chosen increments ∆h (2 mm, 1 mm) an excellent agreement is found. Additional calculations were carried 
out without the proposed corrector step (straight increments) in order to verify the improved convergence of 
the new method. In particular for the critical notch position lK = 65 mm the new method results in an accu-
rate evaluation of the final fracture mode of the cracked specimen whereas, in this case, the other method 
fails to simulate the correct crack path. 
 
 
SUMMARY 
 
This investigation has shown that the new predictor-corrector procedure in combination with the MVCCI-
method provides excellent crack path simulation results with 8-noded quadrilaterals and only moderately 
refined finite-element-meshes around the crack tip. The step-by-step higher order simulation process with a 
piece by piece parabolic curved approximation of the crack path offers an excellent way for the numerical 
analysis of fatigue crack growth in complex two dimensional structures under proportional loading condi-
tions. From the excellent agreement of the numerical and experimental results one can also conclude that the 
applied criterion of local symmetry provides a correct and reliable basis. The proposed predictor-corrector-
method in conjunction with the evaluation by the MVCCI-method provides a powerful numerical tool for a 
general computational approach to the fracture analysis of complex crack configurations and loading condi-
tions. 
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ABSTRACT 

 
Retrofitting reinforced concrete (RC) columns jacketed by carbon fibre reinforced 
plastics (CFRP) is one of the most frequent strategies to increase the life of damaged 
structures in civil engineering.  This study focuses on the experimental research on the 
deformation during cyclic uniaxial compression of jacketed columns. Damage 
mechanics is used to interpret experimental data and initiate the second phase of this 
research.  
The experimental studies of jacket effects on the strength and macro-ductility of the 
column concrete were conducted on 27 circular columns of 750-mm height and 150-
mm diameter. Both CFRP and RC were utilised as well as different spacing of stirrups. 
All tested specimens were macroscopically identical. 
Analysis of available data obtained for low values of the aspect ratio, 
λ=height/diameter, typically λ=2, raises considerable doubts on the generalisation of 
those results. Besides known shortcomings of such scaling for compressive tests based 
on which failure modes are to be analysed, the relative stiffness of the outer composite 
shell vs. concrete appears overestimated. This is a serious objection that the present 
study avoided by selecting an aspect ratio λ=5 for the tests reported herein. 
The preliminary conclusion based on the experiment data on CFRP reinforced concrete 
columns subjected by cyclic compression suggest that the spacing of stirrups affects the 
strain localisation threshold. The primary objective of the developed continuum damage 
mechanics model, based on the thermodynamics of dissipated deformation processes 
and fracture mechanics, is to provide physical underpinning of the process of damage 
evolution.  
 

1. Introduction 
Reinforced concrete columns strengthened by CFRP display obvious advantages, but 
require further studies both experimental and analytical to establish reliable models for 
better engineering. Compression tests have shown that large strength and ductility 
enhancements become possible, but many earlier data are based on cylinders of small 
diameter vs. thickness of composite wrap and/or for low aspect ratio, typically 2, raising 
substantial doubts on the conclusions on failure modes. Adequate jacket stiffness is 
crucial, since lower values made jacket useless whereas very high values make the 
rupture very brittle. A reasonable compromise that avoids these pitfalls, e.g. [1-3], was 
attempted using H=750mm and D=150mm throughout the tests. 
Results on loading of RC columns confined with FRP are scarce due to the complexity 
of interaction of between the confinement provided by stirrups to the concrete outer 
layer and the influence of the stiffness of the FRP shell. Extrapolation from confinement 
provided by steel reinforcement to that due to FRP is very dubious. Pressure provided 
by FRP jackets increases continuously till rupture, in association with their linear-brittle 



constitutive law, while yielding of steel transverse reinforcement induces a different 
pattern of response. 
Models that assume a constant radial pressure simulate the case of steel transverse 
reinforcement, given that such steel yields and produces a constant confining pressure 
proportional to the yield stress, area and spacing of the hoops. A better model used in 
study considers the increasing confining stress due to the actual dilation of the concrete 
core and fits better the concrete confined by a linear elastic shell. Correlation between 
confinement and current dilation can be deduced from an incremental model by record 
increment load, evaluate dilation and calculate confinement pressure and state of stress. 
Hoppel et al. [4] proposed a linear elastic relation between the hoop strain in the shell, 
the confining pressure and the axial stress in the concrete.  Mirmiran and Shahaway [5] 
submitted an incremental method, based on a cubic relation relating the change in radial 
strain with the axial strain. The coefficients of the expression were generated from the 
unstressed and the ultimate jacket failure and considered a variable Poisson’s ratio for 
the enclosed concrete according to Elwi and Murray [6]. The variable Poisson’s ratio 
was obtained from unconfined concrete coupons and the confining pressure calculated 
from the jacket hoop modulus, geometry and radial expansion of the core. A constant 
pressure confinement model is used to predict the concrete axial stress and results have 
been considered reasonable for jackets only with hoop fibres, low axial stiffness and 
low Poisson’s ratio in axial direction. 
Available results on cyclic loading of concrete exist for over 30 years, e.g. at Rice 
University [7], as well as on confinement provided by steel reinforcement, leading to 
results and models [8-12] documented and used with success in existing Codes.  
However, data are scarce for the case of specimen confined by FRP with the inner core 
reinforced by stirrups (RC) and subjected to axial cyclic loading. Added to the 
mentioned factors that make studies harder for loading of RC columns confined with 
FRP, i.e. contribution of stirrups, concrete outer layer and the FRP shell itself one has to 
account for the load-unload effects, interpret and explain results. 
In order to attain these objectives, tests were made on 27 circular columns, of 750 mm-
height and 150 mm diameter, jacketed with CFRP, under axial cyclic compression. 
Columns without jackets were also used for comparison, illustrating plain concrete 
behaviour. Results for these cylinders with longitudinal and transverse steel 
reinforcement are also reported elsewhere in detail. Representative results are described 
in the text and micromechanics considered only for the interpretation of results. 
 

2. Material Parameters 
Concrete, tested in standard cubes, had an average cylindrical strength fcm=37.7Mpa; 
though, for design equations, values based on cylinders of 750mm were used in tests.  
Concrete columns were either of plain concrete, or were reinforced longitudinally with 
6φ6mm or both longitudinally and transversely. In the latter case, stirrups φ3mm were 
placed at s=5, 10 or 15cm. The sample of columns consisted of 11 columns confined 
with 2 plies of CFRP. The elastic modulus of tested epotherm resin was E=1768 MPa, 
ultimate tensile strength σtu=23.7 MPa, strain at maximum force 4.99% and ultimate 
strain 13.53%. Parameters of Replark 30 carbon fibres were E=230GPa, σt= 3400MPa, 
tply=0.167mm. Laboratory tests data were E=210GPa, σtu=3371MPa, strain for 
maximum force 2.8% and ultimate strain 3.0% for coupons with 2 plies of CFRP. 
 
3. Test Data  
Three specimen are selected for the initial part of this communication, due to their clear 
rupture away from plates and completeness of data, hereafter identified as C3, C4, C26. 



This choice allows the comparison of plain concrete with columns jacketed with two 
layers of CFRP, the latter either under monotonic loading or cyclic loading; all the 
reported specimen without steel reinforcement. The values of f’co, εco, which correspond 
to maximum unconfined stress and corresponding strain in concrete, were respectively 
32.2 MPa and 0.2%; f’cc maximum confined stress in concrete; εz is vertical strain and εr 
maximum circumferential strain. For identification, C3 is unconfined, plain concrete, 
whereas C4 and C26 are externally wrapped with two layers of CFRP. Only the loading 
on specimen C26 was cyclic. The increase of maximum stress f’cc was from 32.2 to 
73.6MPa for C4 and to 81.0 MPa when loading was cyclic. Axial strain increased from 
0.20% to 1.20 and 1.03%, respectively. Recorded hoop strain appeared reliably recorded 
for specimen C4 where it was found 0.74%. 
A comparison of the results for the three cases in terms of σ−ε curve is depicted in 
Fig.1. Similar data were obtained for glass fibre wraps. Elastic parameter of the material 
acquired from FYFE Corporation was Ec=27.6 Gpa. The maximum stress was 552 MPa 
and the ultimate strain 2.0 %, based on the composite thickness per ply of 1.2954 mm. 
According to laboratory measure the ultimate strain was εu=3.75% . 
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Fig. 1 – Unconfined column and confined under monotonic load and cyclic load 

(CFRP) 
 
Results for specimens C22 and C27, wrapped with 3 layers of GFRP according to 
techniques recommended by FYFE, are plotted in Fig. 2, and compared with plain 
concrete. The behaviour of columns wrapped with CFRP (2 plies) and GFRP (3 plies) 
for cyclic loading can be compared in Fig. 3. 
The influence of transversal steel reinforcement on results, as well as the importance 
that wider spacing of stirrups confers to the jackets was also examined. Preliminary 
results suggest that the importance of jacketing is greater when stirrups spacing 
increases. As mentioned above these results will be reported in a later text.  
For CFRP strengthening, the monotonic loading curves were found to be below the 
envelope for static cyclic loading, for all three different cases of stirrups (5,10 and 15 
cm apart). The part of axial strain curves when εz is approximately 0.2%, after concrete 
failure, are consistent to increases of the ratio  | εr/ εz | that is often referred as the 
Poisson’s ratio. The volumetric strain, εv = 2εr+εz, for cyclic loading, that increases for 



large deformations, is associated to the deformation between the post-rupture of the 
concrete core and the failure of the RC columns.  

Fig. 2 – Unconfined column and confined under monotonic and cyclic load 
(GFRP). 
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Fig. 3 – Stress-strain curves for confined columns subject to cyclic loading 

 
 

4. Analytical Model 
The macroscopic normal stresses in laterally confined concrete column subjected to 
quasi-static increased axial direction are all positive.  Hence, the cracks are, at least in 
beginning, only nucleated and propagated in the plane of maximum shear stress.  Useful 
models are discussed in [14]. However, these models can be used only when the 
material is statistically homogeneous, i.e. in the hardening phase of the deformation, 
which is also the failure when the applied stresses are controlled. 
A continuum model for the FRC columns was developed by authors, that can be 
generalised to take in consideration column size on failure and seems to be rather 



useful. A 3-dimensional micromechanics model would be very complex but still 
possible. Using the assumptions from [4] the micromechanics models the models will 
be quasi-two dimensional which will minimise the computational aspects of the model. 
Similar to [15] the ring shaped regions starting from radius zero to the external surface 
are elastic, process zone of increasing damage in concrete, zone in which the concrete is 
comminuted into smallest particles and the jacket zone which can be divided into elastic 
and plastics parts.  Some stresses at the interfaces between two zones of different 
stiffness may be discontinuous.  The stress discontinuity can be derived from the mass 
and momentum conservation equations [5].  
  
Further tests and analytical modelling will interrogate the impact of composite jackets 
on the safety and on increased damage capability of the columns. The present small 
contribution to this goal indicates answers to some questions and rises new questions.  
The need for more precise micro-scale test data is one of the most important 
requirements that must pursued, in order to create needed conditions to explore further 
the potential of micromechanical modelling with a better precision.  
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ABSTRACT: 
 
Fatigue in metals is controlled by the cyclic plastic deformation at the crack tip. A simple direct observation 
of the crack tip deformation in the midsection of a specimen is not possible and the surface observation is 
usually not representative for the process along the crack front. We applied a stereophotogrammetric method 
to measure the real shape of the crack tip in the midsection of specimens. In this study the influence of 
ultrahigh-vacuum and a 3.5-% NaCl-solution on the crack growth behavior is reported. We determined both, 
the influence of environment on fatigue crack growth rate as well as the variation of the real shape of the 
crack tip in vacuum and saltwater in the midsection of a specimen. The examined materials were a cold-
rolled austenitic stainless steel and an aluminum alloy 7020. It will be shown that the environment does not 
influence the cyclic crack tip opening displacement. The differences in crack growth rate are induced by 
changing of the shape of the crack tip during blunting. 
 
 
KEYWORDS: cyclic crack tip deformation, environment, stereophotogrammetric method, crack growth 
rate 
 
 
INTRODUCTION 
 
A lot of different models, which try to explain the fatigue crack propagation behavior, can be found in the 
literature. These models are usually based on measured mean crack growth rate and (or) fractographic 
observations. However these experimental facts do not permit to decide which model describe the fatigue 
crack propagation behavior in a certain case. The only way to overcome this problem is to determine the 
deformation of the crack tip and the fracture processes directly. Such observations are not difficult at the 
surface, except in case of very small crack tip deformations. However the surface behavior is not 
representative for the deformation along the crack front, because the stress state in the vicinity of the crack 
tip at the surface differs from the midsection. In order to overcome this problem we have developed a special 
technique to determine the shape of the tip in the midsection of a specimen [1,2,3]. The aim of this paper is 
to investigate the effect of environment on the crack tip deformation and fatigue fracture process by direct 
observation in the midsection of the specimens. 
 
 
MATERIAL AND ENVIRONMENT 
 
Tests were performed in an austenitic stainless steel and an aluminum alloy 7020. The composition of this 
materials are shown in Tables 1 and 2. The fatigue crack growth tests were performed in ultrahigh-vacuum 
(p < 10-7 Torr) and in 3.5-% NaCl-solution. The results were then compared with behavior in air.  



The chosen ∆K was 70 and 20 MPa√m in austenitic stainless steel and the aluminum alloy, respectively. The 
stress ratio R in both cases was 0.05.  
 
 

TABLE 1: 
Composition of the used austenitic stainless steel (weight-%). 

 

El. C Cr Ni Mo Si Mn P S W Cu Al N 
% 0.018 17.24 14.53 2.56 0.61 1.71 0.018 0.001 0.07 0.11 0.03 0.068

 
 

TABLE 2: 
Composition of the aluminum alloy 7020 (weight-%) 

 
El. Al Zn Mg Cr Mn Si Zr Fe 
% 93.59 4.48 1.08 0.17 0.16 0.11 0.09 0.03 

 
 
DEFORMATION BEHAVIOR IN AIR 
 
Figure 1 a) shows the real shape of the crack tip in the midsection of specimen at maximum load in a 
constant amplitude test. The investigated material was a austenitic stainless steel, cycled at ∆K=70 MPa√m 
and R=0.05. The determination of this 3D-image of the crack tip is shortly described later and for more 
details see [1,3,4,5].  
Clearly visible are the striations on the fracture surface. The blue marked region, for example, corresponds to 
the striation which was formed in the last cycle. The red marked area is the blunting region which was 
formed during loading to the maximum load. In order to visualize what happens during a fatigue cycle the 
shape of the crack tip was determined at different loads [1,2]. From these images the crack tip opening 
displacement was easy to determine at different distances behind the crack tip during a load cycle, which is 
depicted in Figure 1 c). Figure 1 b) shows schematically the variation of the shape of the crack tip during one 
load cycle. At minimum load the crack tip is sharp. At a stress intensity of about 25 % of Kmax the crack tip 
opens. The additional loading causes then a blunting of the crack. This blunting process continues till one 
reaches the maximum load. The shape of the crack looks like a V-notch. During unloading the crack 
resharpens, at first at the tip of the V-notch. At about 25 % the crack closes, which is also clearly visible in 
Figure 1 c), in the load vs. COD curve. From this observation we can see that the crack growth in air during 
loading by blunting (formation of a new fracture surface) and the unloading causes only a resharpening of 
the crack tip. 
 

 
Figure 1: 3D-image of the shape of the crack tip in the midsection of the specimen at maximum load in a 

constant amplitude fatigue crack growth test (∆K=70 MPa√m, R=0.05 – a)), the schematic crack tip 
deformation during a load cycle (b) and the variation of COD during a load cycle (c). 



RESULTS AND DISCUSSION 
 
Influence of environment on the crack growth rate 
 
After failure of the specimen we observed the fracture surfaces in a scanning electron microscope. The crack 
extensions in different environments were clearly distinguishable. Hence, the crack growth rate could be 
determined. 
 

 
Figure 2: SEM-images from the fracture surface of an austenitic stainless steel (left) and an aluminum alloy 
7020 (right). It shows a certain sequence of the constant amplitude test – approximately in the midsection of 

the specimen. 
 
Figure 2 shows two SEM fractographs from a fatigue test. The fracture surface produced during 20 load 
cycles in air and 20 load cycles in vacuum at about 10-8 Torr is shown. In air clearly visible striations were 
formed at a constant load amplitude of ∆K=70 MPa√m and a R-value of 0.05 in austenitic stainless steel, 
and ∆K=20 MPa√m (R=0.05) in aluminum alloy 7020. By measuring the extensions of the crack produced 
in the different environments on the fracture surface and dividing through the number of load cycles we were 
able to calculate a mean value of the crack growth rate per cycle. In air we can control this result by 
determining the striation spacing at high magnifications in the SEM, because the width of one striation 
corresponds to the local crack growth rate da/dN. In the austenitic steel the crack growth in air is 
approximately two times larger than in vacuum. In the aluminum alloy 7020 the crack growth rate in air is 
roughly 2.30 times lager than in vacuum. In vacuum no striations were found. This result is well known from 
the literature. Pelloux have carried out experiments in aluminum alloys in vacuum and he also found no 
striations. He argued that the deformation in vacuum is more reversible as in air [6]. In air the new built 
fracture surface oxidize immediately and the formed oxide layer prevents a reversible deformation at the slip 
planes. As a result adjacent slip systems will be activated during unloading and one striations will be built 
[6]. Pelloux found that in aluminum alloys the crack growth rate in air is three times larger than in vacuum 
[6], which agrees relative good with our observations. 
 
 
Influence of environment on the cyclic crack tip deformation  
 

 
Figure 3: Experimental procedure to determine the crack tip deformation in the midsection of specimen at 

maximum load in a constant amplitude test. 



For the determination of the cyclic crack tip deformation in the midsection of a specimen our fatigue test 
was interrupted at a chosen load, in this particular case at maximum load. Then a constant amplitude 
sequence with very small load amplitude was applied till the specimen failed. This small cyclic loading was 
used to fracture the specimen without changing the shape of the crack tip. Then the corresponding crack tip 
regions of both broken specimen halves were reconstructed. This was done by analyzing stereoscopic 
electron images of the two halves with an automatic image processing system [1,2,3]. Therefore we made an 
image from the fracture surface region and then an image from the same region of the tilted specimen. The 
tilting angle was 5 degree. We did that for both specimen halves. With an image processing system we got a 
three-dimensional model of both fracture surfaces. Now we were able to lay together the two 3D-models as 
in Figure 1 a) or to determine the height profiles along two corresponding lines. Fitting together the two 
corresponding height profiles give us the real shape of the crack tip. Figure 4 and 5 show two examples: 
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Figure 4: SEM-image from two corresponding fracture surfaces (aluminum alloy 7020) on both specimen 
halves. The determined height profiles gives the shape of the crack tip at the maximum load in vacuum. 
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Figure 5: SEM-image from two corresponding fracture surfaces (austenitic stainless steel) on both specimen 

halves. The determined height profiles along the indicated line shows the shape of the crack tip at the 
maximum load in 3.5-% NaCl-solution. 



Table 3 and 4 summarizes the results from the performed crack growth rate measurements and characteristic 
values from the determined shape of the crack tip in different environments, for both examined materials. 
 
 
 

TABLE 3: 
Crack tip opening displacement (CTOD) 3 and 7 µm behind the crack tip, crack tip opening angle (CTOA) 

or blunting angle, crack growth rate and relative crack growth rate for the austenitic stainless steel  
(∆K=70 MPa√m, R=0.05) in different environments. 

 
medium CTOD  

3 µm 
behind 

crack tip 

CTOD  
7 µm 

behind 
crack tip

CTOA crack growth 
rate 

da/dN 
[µm/loadcycle]

Relative crack 
growth rate 
(vacuum as 
reference 
medium) 

vacuum 4.30 4.60 ≈ 105° 0.50 1.00 
air 3.30 4.30 ≈ 90° 1.00 2.00 

saltwater 3.50 4.70 ≈ 60° 1.10 2.20 
 
 

TABLE 4: 
Crack tip opening displacement (CTOD) 3 and 7 µm behind the crack tip, crack tip opening angle (CTOA) 

or blunting angle, crack growth rate and relative crack growth rate for aluminum alloy 7020  
(∆K=20 MPa√m, R=0.05) in different environments. 

 
medium CTOD  

3 µm 
behind 

crack tip 

CTOD  
7 µm 

behind 
crack tip

CTOA crack growth 
rate  

da/dN 
[µm/loadcycle]

Relative crack 
growth rate 
(vacuum as 
reference 
medium) 

vacuum 4.00 5.00 ≈ 130° 0.30 1.00 
air 3.30 4.30 ≈ 90° 0.70 2.30 

saltwater 3.90 4.70 ≈ 20° 1.70 5.70 
 
 
It is evident from the depicted shapes of the crack tip and their determined characteristic values that the 
environment changes only the shape of the crack tip. The crack tip opening displacement at larger distances 
behind the crack tip remains constant. The determined differences are typical values for the scatter, which 
may be caused by small differences in the applied stress intensity range, real acting local stress intensity 
range in the investigated location or a small variation of the yield stress. A variation of crack closure stress 
intensity would also change crack tip opening displacement, however at this large ∆K, where only plasticity 
induced closure is important, this effect does not play a role. The effect of vacuum in both alloys is 
approximately the same. In vacuum the crack tip opening angle increases (or in other words, the shape of the 
crack tip changes from a V-shape notch to a more blunted notch). The effect of the NaCl-solution is also the 
same, however in the aluminum alloy the decrease in crack tip opening angle is much larger and hence also 
the increase in the crack growth rate is much larger.  
 
 
 
 
 
 
 
 



CONCLUSIONS 
 
Figure 6 shows a schematic summary of the crack tip deformation and the change of the relations between 
the crack growth rate (da/dN), the crack tip opening angle (CTOA) and crack opening displacement (COD) 
in the different environments. 
 
 

 
Figure 6: Schematic presentation of the shape of the crack tip at maximum load in different environments. 

 
In all cases the crack propagation mechanism seems to be the same. It is a blunting and resharpening 
mechanism. However the environment significantly changes the shape of the crack tip during the blunting. 
 
• In vacuum it seems that blunting, with a relative large crack tip opening angle and a relative small crack 

extension can be occurred. 
• In air the blunting or crack tip opening angle decreases, which may be induced by a fracture of the oxide 

layer or nano fracture of volume elements immediately in front of the tip of crack (tip of the V-notch). 
This induces the increase in the crack growth rate. The effect is similar in both alloys. 

• In 3.5-% NaCl-solution this additional “fracture” at the crack tip of the notch increases, which induces an 
decrease of the crack tip opening angle and an increase of the crack extension during blunting. In 
austenitic stainless steel this effect was relative small and very large in aluminum alloy. 
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ABSTRACT

In the oil and gas industry, one way of laying pipes on the seafloor is by the reeling process. In this process
the pipe is subjected to a cyclic plastic deformation. Due to this plastic deformation the mechanical
properties of the material are changed. In this study cyclic plastic deformations are applied to laboratory
specimens and alongside these experiments finite element calculations are performed to see if the material
behaviour can be predicted. The specimens were subjected to 1% and 2.5% strain amplitude during several
cycles. The experiments show that the material exhibits a lowering of the yield strength and an apparent
slow transition from elastic to fully plastic behaviour after the first half cycle. To describe this in the finite
element calculations three hardening models were tested: isotropic hardening, kinematic hardening and the
fraction model. In the fraction model several material fractions are loaded in parallel, which allows for more
complex material responses. From the calculations it followed that the isotropic and kinematic hardening
models can not describe the cyclic plastic deformation of pipeline steel. Both failed to predict the lowering
of the yield strength and the slow transition from elastic to fully plastic behaviour. The fraction model on the
other hand can describe both phenomena.

KEYWORDS

Cyclic deformation, fraction model, pipeline steel, finite element method, reverse plasticity, low cycle
fatigue

INTRODUCTION

For the investigation into the cyclic plastic deformation of steel, the reeling of steel pipelines was chosen as
a test case. In the oil and gas industry the reeling and unreeling of pipelines is one of the ways to install
pipelines on the seafloor. The reeling process involves four distinct stages: the reeling, the unreeling, the
alignment and the straightening. In the reeling stage an initially straight pipeline is reeled onto a large drum.
Once the ship is in position at sea, the pipe is pulled from the drum and it will straighten more or less. In the
next stage the pipe is aligned to the correct angle for laying the pipe and it is also bend again but now to a
constant radius of curvature. This is done to aid the final stage: the straightening of the pipe. These four
stages and the corresponding deformations that occur are shown schematically in figure 1.
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Figure 1: The reeling process and the corresponding deformations that occur

To investigate the influence of cyclic plastic deformation on the material, tests were performed on laboratory
specimens. The bending of the pipe now being substituted for axial loading of the small specimens.
In order to predict the behaviour of the material, the cyclic plastic deformation was modelled using the finite
element method. In order to achieve a good description several workhardening models were tested.
The material for the experiments was taken from a steel pipe with a diameter of 200 mm and a wall
thickness of 21 mm. As the circumferential direction of the pipe is the most critical for failure during
operation, the specimens were taken in the circumferential direction from the pipe.

EXPERIMENTS

For the experimental work two types of specimen were used: the tensile specimen geometry and the low
cycle fatigue specimens.
The tensile tests were performed according to the ASTM E-8M standard. The specimen geometry can be
seen in figure 2.

6.00 mm
10.00 mm

36.00 mm

R = 6.00 mm

Figure 2: The tensile specimen geometry

In order to obtain the true stress – true strain curve for the material, the deformation of the specimen was
monitored using a video camera attached to a computer. From the pictures the diameter of the specimen
could be measured right up to fracture.
The low cycle fatigue tests were performed according to the ASTM E-606 standard for strain-controlled
fatigue testing. The test section of the specimen was kept as short as possible to avoid buckling. The
specimen geometry and its dimensions can be seen in figure 3. To measure the strain accurately strain
gauges were glued to the test section of the specimens. The specimens were loaded with a ramp-wave of
0.005 Hz and a strain amplitude of 1% and 2.5%.

Ø 6.35 mm

12.70 mm

R=19.05 mm

Ø 9.52 mm

Figure 3: The low cycle fatigue specimen geometry

FINITE ELEMENT CALCULATIONS

For the finite element calculations the general finite element package MARC was used. The specimens
geometry’s as used for the experiments were modelled using axisymmetric elements.



Hardening models
In the finite element method two hardening models are regularly used: isotropic and kinematic hardening
[1]. In this paper also a third model is used: the fraction model [2]. In the fraction model the material is
thought to consist of different components or fractions with their own weight and mechanical properties. As
a consequence the yielding behaviour of the material is the result of the yielding behaviour of all the
fractions combined and their interaction with each other. For simplicity the fractions are to be loaded in
parallel.
As Besseling et al. [2] have shown, kinematic hardening can also be modelled as a two fraction model. By
enlarging the number of fractions more complex hardening behaviour can be obtained.
The fractions in this model may not be identified with certain microstructural components. This is because
the parameters for the model cannot be identified uniquely and because in the model all fractions are loaded
in parallel while in the real material the microstructural components are subjected to a combination of
parallel and serial loading.
The mechanical behaviour of the fractions itself is kept simple. The fractions have a von Mises yield surface
with isotropic hardening. For added simplicity and ease of parameter identification the fractions are assumed
to exhibit linear workhardening.
In this study 4 fractions shall be used. The fraction model was implemented in the von Mises yield criterion
allowing the calculation of the stresses in all fractions and combining them. A schematic graphical
representation can be seen in figure 4.

1
2

3
4

Figure 4: A schematic representation of how the fractions are implemented

Yield Elongation
One of the characteristics of steel is the yield elongation. As the workhardening rate during yield elongation
is approximately zero, this means that the workhardening of the fraction responsible for the yield elongation
has to account for the elastic responses of the other fractions. This in turn means that the rate has to be
negative. At the end of the yield elongation the workhardening rate increases and this means that the rate of
the fraction responsible for yield elongation has to increase. The implementation to achieve this is shown in
figure 5, where σy1 is the initial yield point, σy2 is the lower yield point and Et2 is the secondary
workhardening rate. For this study the yield elongation was modelled using two fractions exhibiting this
behaviour.

strain

st
re

ss

σy1

σy2 Et2

E

Et

εp2

Figure 5: Yield behaviour of the fraction responsible for yield elongation



Parameter Identification
For a 1-dimensional model the parameters of the fraction model can be obtained directly from the tensile test
results. The tensile results are approximated by a piece-wise linear representation. The start of the linear
pieces coincides with the start of yielding of a fraction.
For 2-D and 3-D models the identification of the parameters involves an iterative approach. This is needed
because of the interaction between the different fractions during yielding. The approach taken started with
the 1-D parameters and modifying them until the response coincided with the piece-wise linear
representation of the experimental tensile results.

RESULTS

The results of the tensile tests on the pipeline steel can be seen in figure 6 clearly showing the yield
elongation.
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Figure 6: The tensile test results up to 20% strain

The results for the low cycle fatigue tests are shown in figure 7. Figure 7a shows the first 4 cycles at 1%
strain amplitude while figure 7b shows the first 4 cycles at 2.5% strain amplitude. These figures clearly show
a reduction in yield strength in both compression and tension direction after the first half cycle and that
virtually no cyclic strain hardening occurs. Also the slow transition from elastic to fully plastic behaviour
after the first half cycle is apparent.
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Figure 7: The low cycle fatigue results for 1% and 2.5% strain amplitude

FINITE ELEMENT CALCULATIONS

As a first step the results from the isotropic and kinematic hardening are shown in figure 8. It is clear that the
isotropic hardening model (fig. 8a.) is not appropriate for these cyclic plastic deformation tests at 1% or



2.5% strain amplitude. The strain hardening that occurs in the model is too high compared with the
experiments. Isotropic hardening also neither shows the drop in yield strength nor the slow transition from
elastic to fully plastic. The kinematic hardening model (fig. 8b.) also fails on these characteristics but the
strain hardening is more realistic.
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Figure 8: The results from the isotropic (a.) and kinematic (b.) hardening model for

 1% and 2.5% strain amplitude

The Fraction Model
As there are many parameters to be identified for the fraction model, the influence of each parameter was
investigated. The different parameter sets that are used, are shown in table 1.

TABLE 1: THE FRACTION MODEL PARAMETER SETS

Fraction Weight E
[GPa]

σy1

[MPa]
Et

[GPa]
εp2

(%)
Et2

[GPa]
σy2/σy1

Set 1 1 0.5 398 965 -56 0.407 0 0.76
2 0.3 82 536 -8.5 0.832 2.2 0.87
3 0.1 20 305 20
4 0.1 13.4 533 3

Set 2 1 0.5 356 863 -88 0.455 0 0.54
2 0.3 146 955 -15 0.831 2.2 0.87
3 0.1 38 580 14
4 0.1 13.4 533 3

Set 3 1 0.5 356 863 -88 0.455 0 0.54
2 0.3 146 955 -15 0.831 0 0.87
3 0.1 38 580 28
4 0.1 13.4 533 3

Set 4 1 0.8 222.5 539 -55 0.455 0 0.54
2 0.1 438 2861 -45 0.831 0 0.87
3 0.05 76 1160 60
4 0.05 26.7 1066 4

Parameter sets 2 and 3 are shown in figure 9a. indicating that the secondary workhardening rate (Et2) of the
fractions responsible for the yield elongation determines the amount of hardening that occurs during the
cyclic loading. Whereas the ratio between the lower yield point (σy2) and the initial yield point (σy1)
determines the yield strength after the first half cycle, this is shown in figure 9b using parameter sets 1 and 2.
The ratio of σy2/σy1 of the second fraction responsible for yield elongation determines the strain at which a
kink occurs in the yield curve. The results from parameter sets 3 and 4 are identical, indicating that as long
as the parameters fit the tensile test, the σy2/σy1 ratios are identical and the secondary workhardening slopes
are 0, then the weight of the individual fractions does not play any role. The influence of the weight of the
fractions is only visible through its influence on the secondary workhardening rates.
The results of parameter set 1 is compared with the experimental low cycle fatigue behaviour in figure 10.
From this figure it is clear that the fraction model can describe the drop in yield strength and the slow



transition from elastic to fully plastic behaviour much better than either isotropic or kinematic hardening
can.
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Figure 9: The influence of Et2 and σy2/σy1 on the yield behaviour
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Figure 10: The results from the fraction model for 1% (a.) and 2.5% (b.) strain amplitude.

CONCLUSIONS

From the experimental results it is clear that upon cyclic plastic deformation of pipeline steel the yield
strength is reduced and that it shows an apparently slow transition from elastic to fully plastic behaviour
while virtually no cyclic strain hardening is observed.
From the finite element calculations it is concluded that the isotropic and kinematic hardening models are
not appropriate for cyclic plastic deformation of pipeline steel. Both models fail to describe the drop in yield
strength and slow transition from elastic to fully plastic behaviour. The fraction model on the other hand
does describe the yielding behaviour of the material better. As it shows both characteristics seen in the
experiments. By extending the number of fractions that are used, the material can be modelled more
accurately.
The parameters used in the fraction can not be uniquely identified. When the parameters are fitted to the
tensile test results, the σy2/σy1 ratio of the first fraction responsible for yield elongation describes the yield
strength after the first half cycle while the weight of the fractions plays only a minor role.
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ABSTRACT 
 
In this paper simple strategies are presented for the design of ceramic matrix composite (CMC) components 
which are subjected to cyclic thermo-mechanical loading histories.  Simple constitutive models are 
described for the steady cyclic response which capture the major characteristics of the material behaviour.  
Analytical procedures are described which evaluate the component response in the cyclic state. The 
approach is illustrated by analysing the classical Bree problem assuming material properties which are 
representative of a SiC/SiC composite.  Interaction diagrams are presented which identify safe operating 
conditions and the extent of damage in the component. 
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INTRODUCTION 
 
Decisions during the early stages of traditional design procedures are based on a small number of material 
properties and the results of simple calculations.  Refinement of the design is accompanied by increasingly  
complex analyses which are based on a more detailed description of material behaviour.  This approach has 
been very successful, but it is characterised by  a slow and expensive development which is inconsistent 
with the need for designers to respond to the rapid increase in the availability of new materials.  When 
dealing with any material it is important to identify those features of the material response which are likely 
to dominate in a given situation and to develop constitutive laws which allow the relationship between 
material behaviour and component performance to be clearly identified. 
 
In this paper we attempt to establish a design method for SiC/SiC Ceramic Matrix Composites (CMCs), 
which are candidate materials for  use in components subjected to severe cyclic thermal loading. We develop 
a simple phenomenological model of material behaviour, guided by the extensive studies of material 
scientists on the deformation and failure mechanisms.  We limit our consideration here to situations in which 
the loading is largely uniaxial and the fibres within the body are aligned with the principal loading direction.  
Approximations to the material behaviour are introduced by concentrating on the cyclic state and excluding 
mechanisms which are known to have little effect on the overall material behaviour.  It is then not necessary 
to develop evolution laws for the state variables which define the material response. Here we present the 



results of a set of calculations for the classical Bree problem and construct simple  interactive diagrams 
which give a clear description of the behaviour of the component and which can be employed readily in 
design. 
 
 
IDEALISED MATERIAL BEHAVIOUR 
 
There has been significant progress in the development of constitutive models for the mechanical behaviour 
of CMCs in recent years.  The micromechanical processes which determine the macroscopic response are 
described by Zok et al [1,2] for monotonic loading and cyclic loading conditions respectively. The 
understanding gained from these studies has guided the development of macroscopic constitutive laws for 
the material behaviour.  Burr et al  [3,4] have examined the behaviour within a thermodynamic framework to 
develop a damage mechanics model which considers the different contributions to the degradation process in 
a consistent manner.  Models of this type require extensive experimental data in order to properly calibrate 
them.  They are useful in the final stages of design where both the material properties and component 
geometry need to be optimised.  During the early stages of design, however, it is important to develop an 
understanding of the interaction between the material and structural phenomena, which combine to 
determine the overall structural response and to identify those features of the material behaviour which most 
critically influence the component performance.  Here we describe a simple material model which captures 
the dominant features of the material response under cyclic loading histories.  We are primarily interested in 
the material response after thousands of cycles.  We assume that a cyclic state is reached for the class of 
loading histories of interest here and develop simple models which describe the steady cyclic response of the 
material. 
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Figure 1  Idealised stress/strain response of a SiC/SiC composite 

 
 

The idealised response of a SiC/SiC unidirectional composite is shown in Figure 1.  During monotonic 
loading the response follows that indicated by the solid line in the Figure.  If the stress exceeds the matrix 
cracking stress, mσ , then during subsequent cyclic loading the inferface between the fibre and matrix 
gradually wears away.  As a result, the compliance of the material gradually decreases and the maximum 
stress experienced during a cycle at a point in the component follows a trajectory similar to that illustrated 



by the path AB, until the stress reaches a threshold value, below which no further deterioration of the 
mechanical response occurs.  In situations where a component experiences a large number of cycles during 
its life (typically greater than 1000) a cyclic state is achieved, with the peak stress lying along the cyclic 
loading curve of Figure 1, where the stress is coincident with the threshold stress for strains above the matrix 
cracking strain.  For simplicity, the threshold stress in Figure 1 is taken equal to the matrix cracking stress.  
This is a valid approximation for many SiC/SiC composites.  Provided the strain accummulated during this 
process is less than a critical strain εf,  damage within the body remains as discrete microcracks.  If, from 
equilibrium considerations, the maximum stress at a point in the body is required to exceed the threshold 
stress the component will eventually fail. In the cyclic state, if the stress is reduced from the peak value the 
unloading line BC is followed until a compressive stress σpm=ησm is achieved.  At this point all the 
microcracks are closed and further unloading follows the elastic line for the virgin material.  All unloading 
lines pass through the same point C on this line. The magnitude of σpm depends on the residual stresses 
induced in the material during processing.  
 
The material response represented by Figure 1 can be characterised by specifying the modulus of the virgin 
composite, E, the matrix cracking stress, σm, the crack closure stress, ησm and the strain to failure, which we 
normalise to define the quantity mfE σεβ /= . 

 
 

             
 

(a) (b) 
Figure 2  (a) The failure surface of a SiC/SiC composite subjected to a constant axial load and 
cyclic thermal loading history involving through thickness temperature gradients.  (b) A 
micrograph of the surface of the specimen within the thermally cycled region away from the 
failure plane, showing microcracks hich developed during the thermal loading history  

 
 
THE BREE PROBLEM 
 
In this paper we restrict our consideration to situations in which there is a through-thickness temperature 
gradient in the component.  There are two possible mechanisms of failure for thermal loading histories of 
this type.  Failure can either be determined by the growth of delamination cracks [5,6], or by the growth of 
microcracks through the thickness of the sample [7], followed by fibre failure and pull-out.  Booker [8] has 
recently conducted a series of tests on a number of different SiC/SiC composites in which plane specimens 
were subjected to a constant axial load.  A small region on the surface of the sample was heated using three 
focused infrared lamps, while the opposite face was cooled using a chiller unit.  This set-up allowed the 
specimen to be subjected to a cyclic thermal loading history during which the maximum temperature 
difference across the plate was of the order of 800°C, with a staedy state temperature variation of 450°C.  A 
typical failed component is shown in Fig 2.  In all the tests there was no evidence of delamination and failure 
occurred by general micracking and fibre failure.  It is therefore appropriate to analyse this class of loading 
history using the material model described in the previous section, which is based on matrix cracking, 
interface degradation and fibre failure and pull-out. 



 
In order to gain insight into the relationship between material behaviour and structural performance we use 
the idealised model of Figure 1 to analyse the classical Bree problem represented in Figure 3, where the 
plate is subjected to a constant axial stress pσ  and a cyclic thermal loading history, whereby one side of the 
plate  experiences a constant temperature oθ , while the temperature of the opposite side is subjected to a 
temperature which is cycled between  oθ  and  θθ ∆+o .  The temperature is assumed to be cycled 
sufficiently slowly so that it varies linearly across the plate througout the cycle.  We can characterise the 
thermal loading in terms of the maximum thermo-elastic stress experienced during a cycle, θασ ∆= Et 2

1 , 

where α is the linear coefficient of thermal expansion. 
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Figure 2  Classical Bree cyclic thermal loading problem 
 
We assume that failure occurs when the strain in any part of the plate reaches the critical value fε . The 
analysis is quite lengthy, but the results can be presented in a simple graphical form.  The critical strain is 
first achieved on the cold side of the plate when there is a temperature gradient.  The combination of 

t and σσ p  which result in failure is shown as a solid curve in  Fig 3 for β=6.93 and η=0.2, which are typical 
values for a SiC/SiC composite.  The dashed line in this figure represents the combination of thermal and 
mechanical loading at which matrix cracking first occurs.  This is often interpreted as the design limit.  It is 
evident from this plot, however, that by taking into account the full effects of matrix cracking a much higher 
design limit is predicted for the component.  There are three major contibutions to this large increase in load 
carrying capacity: the actual strain to failure is almost seven times the strain at the start of matrix cracking; 
the residual stress and its influence on crack closure; and most importantly, the influence of material damage 
on Young’s modulus, which results in a decrease in the stress range experienced during cyclic thermal 
loading.   
 
The analysis also provides information about the extent of microcracking in the plate.  Three different 
regimes of behaviour can be identified as illustrated in Figure 4.  In regime I, which occurs at high 
mechanical loads, the entire body is microcracked and the stresses are tensile throughout the cycle, such that 
these cracks are always open.  In regime II, the entire body is microcracked, but the hot side of the plate 
goes into compression when there is a temperature gradient.  In the remainder of the benign cracking regime 
only part of the plate is cracked.  The chained lines of Figure 4 represent the fraction of the plate which has 



experienced microcracking.  The microcracked zone spreads in from the cold side of the plate.  Thus there 
are no cracks growing in from the hot side of the plate.  If the maximum temperature experienced in the 
microcracked zone is less than the so called “pest temperature” [9] then environmental degradation of the 
interface and fibres is not likely to occur, even though part of the plate is above this temperature  
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Figure 3  Interaction diagram for the problem of Fig 2 
 
By varying the values of β and η and the magnitude of the threshold stress for fatigue damage we can 
examine the influence of each of these on the position of the limit boundary and the extent of microcracking 
in the cyclic state.  For high thermal loads β and η are the most important parameters, with large values of β  
(ie large ductilities) and small values of η (small closure stresses) producing the best performance.  
Although the model of Figure 2 is a simplification of the actual response it reflects the major features of the 
material response and is consistent with predictions based on micromechanical models of the internal 
degradation processes which lead to failure. Use of these micromechanical models allows the parameters 
which have been identified as being important in this situation to be related back to microscopic features of 
the material, which can be controlled during processing to produce an optimum material for a given 
application.  For example, a small value of η requires a large matrix cracking stress or small residual 
stresses. Calculations of this type, therefore, do not only provide valuable information to the designer, but 
they also provide important information to the material producer by identifying the most important 
macroscopic properties and the microstructural features that most strongly influence these properties. 
 
 
CONCLUDING COMMENTS 
 
In this paper we have developed a simple material model for the macroscopic response of a composite 
material based on an understanding of the micromechanical processes which result in damage development. 
It is possible to relate certain features of the macroscopic stress/strain curve to the internal degradation 
processes and to identify which of these processes dominate and largely determine the material response. We 
have analysed a simple representative structural problem in which the component is subjected to a 
combination of thermal and mechanical loading.  Significant relaxation of the thermally induced stresses 
occur due to the influence of material damage on the instantaneous modulus.  Design calculations which 
take this relaxation of stress into account provide design limits which are substantially in excess of elastic 
procedures which do not permit the development of any matrix cracking.



 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4  Interaction diagram fro the Bree problem of Figure 2.  The chained lines represent 
the fraction of the plate which has experienced general microcracking 
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ABSTRACT 
 
A comparison between the creep characteristics of AZ 91 and QE 22 alloys reinforced with 20 vol.%Al2O3 
short fibres and unreinforced matrix alloys shows that creep strengthening in the composites arises mainly 
from the existence of an effective load transfer. High values of load transfer estimated for the composites 
indicating good fibre/matrix interface bonding together with no substantial breakage of fibres during creep 
exposure lead to the conclusion that the use of alumina short fibres is very effective in improving the creep 
properties of Mg-based composites. However, the abrupt fracture occuring shortly after the end of the 
lengthy primary stage of creep at very high stresses implies the existence of a critical weakening and/or 
damage of the matrix/fibre interface corresponding to the ultimate state of load transfer. 
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Mg-based composite, short-fibre composite, creep, creep damage, creep fracture, fibre breakage, load 
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INTRODUCTION 
 
There has been a dramatically increased usage of magnesium alloys in the past ten years by the automotive 
industry. This usage is projected to continue a large growth as automakers continue to strive for better fuel 
economy with reduced emission [1]. To achieve further substantial increase in usage in automotive industry, 
magnesium alloys must be utilized in engine and transmission components. These applications require better 
high temperature strength and creep resistance than it is possible with currently available commercial 
magnesium alloys. 
 
A considerable improvement in the creep properties of magnesium alloys can be potentially achieved by 
short-fibre ceramic reinforcements (discontinuous metal matrix composites - MMCs) [2-4]. The creep 
properties of Mg-based composites [3-5] have received only limited attention. However, these studies are 
sufficient to allow some preliminary predictions on the deformation mechanisms which are significant in the 
creep process in Mg-based composites. By contrast, very little information is available on the creep damage 
mechanisms and creep fracture processes in discontinuous magnesium matrix composites. 
 
This work reports the experimental results obtained in an investigation of the high temperature creep fracture 
behaviour of AZ 91 and QE 22 magnesium alloys reinforced with 20 vol.%Al2O3 (Saffil) short fibres. The 
objective of the present research is a further attempt to clarify the creep damage and fracture mechanisms in 
short-fibre reinforced magnesium-based composites. 



EXPERIMENTAL DETAILS 
 
All experimental materials used in the study were fabricated at the Department of Materials Engineering and 
Technology, Technical University of Clausthal, Germany. Short fibre reinforced and unreinforced blocks of 
the most common alloy AZ 91 (Mg-9wt%Al-1wt%Zn-0.3wt%Mn) and the high strength silver-containing 
alloy QE 22 (Mg-2.5wt%Ag-2.0wt%Nd rich rare earths-0.6wt%Zr) were produced by squeeze casting. The 
fibre preform consisted of planar randomly distributed δ-alumina short fibres (Saffil fibres from ICL, 97% 
Al2O3, 3%SiO2, ∼ 3 µm in diameter with varying lengths up to an estimated maximum of ∼ 150 µm). The 
final fibre fraction after squeeze casting in both composites was about 20 vol.%. For convenience, the 
composites  are henceforth  designated AZ 91 - 20 vol.%Al2O3(f) and QE 22 - 20 vol.%Al2O3(f)  where f 
denotes fibre. An unreinforced AZ 91 matrix alloy and its composite were subjected to a T6 heat treatment 
(anneal for 24 h at 688 K, air cool and then age for 24 h at 443 K). The QE 22 monolithic alloy and its 
composite were given the following T6 heat treatment: anneal for 6 h at 803 K, air cooling and ageing for 
8 h at 477 K. Flat tensile creep specimens were machined from the blocks so that the longitudinal specimen 
axes were parallel to the plane in which the long axes of the fibres were preferentially situated for the 
squeeze-cast composites. Constant stress tensile creep tests were carried out at temperatures from 423 to 
523 K and at the applied stresses ranged from 10 to 200 MPa [3,5]. Creep tests were performed in purified 
argon. The creep elongations were measured using a linear variable differential transducer and they were 
continuously recorded digitally and computer processed. Following creep testing, samples were prepared for 
examination by transmission electron microscopy (TEM). Observations were performed using a Philips CM 
12 TEM/STEM transmission electron microscope with an operating voltage of 120 kV, equipped with 
EDAX Phoenix X-ray microanalyser. Fractographic details were investigated using light microscopy and 
scanning electron microscopy (Philips SEM 505 microscope). 
 
 
EXPERIMENTAL  RESULTS 
 
Creep results 
 
Figure 1 shows selected creep curves in the form of strain, ε, versus time, t, for the AZ 91 alloy and its 
composite for the creep tests conducted at an absolute temperature T of 423 K under comparable levels of 
the applied stress σ. As demonstrated by the figure, significant differences were found in the creep behaviour 
of the composite when compared to its matrix alloy. First, the presence of the reinforcement leads to a 
substantial decrease in the creep plasticity, which is proved by the values of the total strains to fracture for 
the composite. Second, the composite exhibits markedly longer creep life than the alloy at the entire stress 
range used. Third, the shapes of creep curves for the composite and the alloy differ considerably. It should 
be mentioned that the creep curves shown in Fig. 1 do not clearly indicate the individual stages of creep. 
However, these standard ε vs. t curves can be easily replotted in the form of the strain rate, ε , versus time, t, 
as shown in Fig. 2, Fig. 2a presents the log 

&

ε&  - t curves for a temperature of 423 K and a stress of 100 MPa 
for both materials. It is apparent that neither curve exhibits a well-defined steady stage. In fact, this stage is 
reduced to an inflection point of  the  versus t curve. Despite this similarity, the occurrence of a primary 
stage followed by a tertiary stage of creep in the matrix alloy is in a striking contrast with the nature of the 
creep curve in the composite. The latter curve shows the primary stage is fairly extensive and represents 
practically the whole creep test. A minimum in the creep rate is reached just before final fracture and the 
presence of a tertiary stage is not well-defined. This difference in the shapes of the ε - t creep curves in the 
matrix alloy and in the composite is confirmed and perhaps more clearly illustrated in Fig. 2b for the tests 
conducted at the same temperature of 473 K and stress of 80 MPa. Inspection suggests that creep in the 
composite is again dominated by fairly extensive primary stage. On the other hand, an extremely short 
primary creep in the matrix alloy is followed by a lengthy tertiary stage. The creep data of the AZ 91 alloy 
and the AZ 91 - 20 vol.% Al

ε&

&

2O3(f) composite and the QE 22 alloy and the QE 22 - 20 vol.%Al2O3 composite 
at 423, 473 and 523 K are shown in Fig. 3 where the minimum creep rate, mε& , is plotted against the applied 
stress, σ, on a logarithmic scale. Inspection of the creep data in Fig. 3 leads to two observations. First, the 
composites exhibit better creep resistance than the monolithic alloys over the entire stress range used; the 
minimum creep rate for the composite is about two to three orders of magnitude less than that of the
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Figure 1a,b: Creep curves at 423 K for (a) the AZ 91 alloy, and (b) the AZ 91-20 vol.%Al2O3(f) composite. 
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Figure 2a,b: Strain rate versus time for the AZ 91 alloy and the AZ 91-20vol.%Al2O3(f) composite (a) at 
423 K and 100 MPa, and (b) at 473 K and 80 MPa. 
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Figure 3a,b: Stress dependences of minimum creep rate for (a) AZ 91 alloy and its composite at 423 and 
473 K, and (b) QE 22 alloy and both composites at 523 K. 
 



unreinforced alloy. Second, as depicted in Fig. 3a, the stress dependences of the minimum creep rates for 
both materials are different in trend, which is clearly demonstrated by the characteristic curvatures on the 
inherent curves at low stress. While the slopes and therefore the apparent stress exponents, 
na = ( , for the alloy slightly decrease with decreasing applied stress, the curvatures for the 
composite increase with decreasing applied stress. Such an increase of the apparent stress exponent at low 
stresses is usually considered to be indicative of the presence of a threshold stress representing a lower 
limiting stress below which creep cannot occur [3,4]. Third, the creep resistance of the QE 22 - 20 vol.% 
Al

T)ln/ln σ∂ε∂ &

2O3(f) composite seems to be essentially equal to the creep resistance of the AZ 91 - 20 vol.%Al2O3(f) 
composite (Fig. 3b). The double logarithmic plots of the time to fracture tf as a function of the applied stress 
σ at a temperature of 423 and 473 K are shown in Fig. 4a for the AZ 91 alloy and its composite. It is clear 
from these plots that the creep life of the AZ 91 - 20 vol.%Al2O3(f) composite is an order of magnitude 
longer than that of the unreinforced AZ 91 alloy. However, this difference consistently decreases with 
increasing applied stress and there is a tendency for the reinforcement to have no significant effect on the 
lifetime at the higher stresses. In fact, inspection of Fig. 4a reveals that at stresses higher than 200 MPa the 
creep life of the composite is essentially equal to that of the monolithic AZ 91 alloy. The same conclusion 
can be drawn from Fig. 4b. Independent of the testing temperature, both composites (AZ 91 - 20 vol.% 
Al2O3(f) and QE 22 - 20 vol.%Al2O3(f)) exhibit superior creep resistance compared to their unreinforced 
alloys. It should be noted that no substantial difference in lifetime was found between both composites under 
the same creep loading conditions. The presence of the reinforcement leads to a substantial decrease in the 
creep plasticity. The values of the strain to fracture in both composites are only 1 - 2%, independent of stress 
and temperature. By contrast, the values of the strain to fracture in the monolithic alloys are markedly 
higher, typically 10 - 15% in the AZ 91 alloy and up to 30% in the QE 22 alloy. 
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Figure 4a,b: Stress dependences of times to fracture for (a) AZ 91 alloy and its composite at 423 K and 473 
K and (b) QE 22 alloy and both composites at 523 K. 
 
 
Fractography 
 
Creep behaviour and the creep plasticity of material can be substantially influenced by the development of 
creep damage and fracture processes. The longitudinal metallographic sections cut from the gauge length of 
creep fractured specimens were examined using optical microscopy and SEM to evaluate creep damage. No 
intergranular creep cavitation has been revealed in the monolithic alloys; all the specimens failed in 
intergranular and/or interdendritic manner without necking. Fractographic investigations of the composites 
did not reveal either substantial creep fibre cracking and breakage or any debonding at the interface between 
the fibres and the matrix due to creep (Figure 5). It should be emphasized that these effects were restricted to 
a region very near the fracture path (Figure 6) suggesting that fibre breakage occurs by the propagation of 
the main creep crack during the final stage of the creep fracture process. Even careful investigation of the 
fibre-matrix interface by TEM revealed no extensive debonding (Figure 5c). Rather, the enhanced 
precipitation of the β phase on the alumina fibres and some interconnection of fibres by the massive β-phase 



bridges were found in the AZ 91 - 20 vol.%Al2O3(f) composite [3]. A thicker zone in contact with the fibres 
was identified as fine magnesium (MgO) particles (Figure 5c), [3,5]. 
 

 
Figure 5a,b,c: Micrographs of the AZ 91-20 vol.%Al2O3 (f) composite after creep: (a) fracture path (OM), 
(b) matrix-fibre interfaces (SEM, etched metallographic section), (c) matrix-fibre interfaces (TEM, foil). 
 
 

 
Figure 6 a,b,c: SEM micrographs of the QE 22-20vol.%Al2O3 (f) composite showing creep fracture surface. 
 
 
DISCUSSION 
 
It is relevant to discuss first the reason for different shapes of creep curves for the composite and the 
monolithic matrix alloy (Figs.1 and 2). The dominant primary stage apparent in the creep curves of the 
composite (Fig. 2) can be a result by non-linear visco-elastic deformation of the highly-stressed central 
regions of the fibres; this leads to a steady state due to matrix flow about the fibres when they are fully 
stretched elastically. Further, the occurrence of a lengthy primary stage of creep in the composite is probably 
associated with the additional secondary phase precipitation and with gradual change in the precipitate 
morphology during the creep exposure. Lastly, the observed long primary stages are not indicative of the 
initiation of any debonding at the interfaces between the matrix and the reinforcement and/or creep fibre 
breakage in accordance with the metallographic and fractographic observations. On the other hand, the 
tertiary creep behaviour should result from fibre fracture leading to a reduction in the fibre aspect ratio or the 
development of ductile tearing with off-loading of stress to the sound composite material, both factors 
leading to an acceleration in the creep rate. Thus, the observed extremly lengthy primary stage apparent in 
the creep curves of the composite in the present work does not support the prediction of the simplified 



mechanistic model of creep in short fibre reinforced metal matrix composite [6] derived from the creep 
experiments and microstructural observations on short fibre reinforced alluminium alloys and based on three 
elementary microstructural processes including a multiple fibre breakage starting early in creep life. 
A possible explanation for this different creep behaviour in aluminium and magnesium short fibre reinforced 
metal matrix composites may lie in the different strength of the fibre-matrix interface (bonding) and load 
transfer during the creep of both composite materials.  
 
As depicted in Fig. 3 the composites exhibit better creep resistance than the unreinforced matrix alloy; the 
presence of short-fibre reinforcement leads to reduced creep rate in the composite by two to three orders of 
magnitude. Such difference can arise when significant load transfer partitions the external load between the 
matrix and the reinforcement [3,4,7]. In the presence of load transfer the creep data may be successfully 
reconciled by putting the ratios of the creep rates of the composite and the matrix alloy equal to a factor 
given by (1-α)n, where α is a load transfer coefficient having values lying within the range from 0 (no load 
transfer) to 1 (full-load transfer) [3,4]. The values of α inferred from the data in Fig. 3 using n = 3 [3] are 
within the range of 0.79 to 0.90. It is interesting to correlate these experimentally determined values α with 
an analytical treatment. Kelly and Street [7] proposed a shear-lag approach that predicts the tensile creep 
behaviour of discontinuous fibre-reinforced composites. Subsequently, Nardone and Prewo [8] suggested a 
modified shear-lag model by considering the load transfer effect at the end of short fibres and various 
reinforcement geometries and arrangements (volume fraction, aspect ratio). The values of α  predicted from 
the modified shear-lag model with 20 vol. pct of short-fibre reinforcement are α ≅ 0.75 and α ≅ 0.84 for an 
experimentally observed fibre aspect ratios S (diameter/length) ∼ 30 and 50, respectively. Thus, the 
predicted values are in resonable agreement with the experimental values of α. 
 
 
CONCLUSIONS 
 
The creep resistance of squeeze cast AZ 91 and QE 22 magnesium alloys reinforced with 20 vol.% Al2O3 
short fibres is shown to be considerably improved compared to unreinforced matrix alloys. The direct 
strengthening effect of short fibre reinforcement arises mainly from effective load transfer. Direct 
strengthening dominates the creep behaviour of the composites due to good fibre/matrix interfacial  bonding 
together with no substantial breakage of fibres during creep loading. 
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ABSTRACT 
 
In the present study, damage processes of concrete specimens under load repeated are investigated by 
applying a scalar damage based on damage mechanics. In order to estimate the damage, acoustic 
emission (AE) and ultrasonic testing (UT) are applied for five stages of damage degree. The 
propagation-attenuation of elastic waves is discussed in regard with adequate components of 
frequency for evaluating microcracks. As shown in Figure 1 (left), the result of AE activity is in good 
agreement with the scalar damage up to the Stage IV. As approaching yield point, higher AE activity is 
observed, although obvious growth of scalar damage is not obtained. Applicability of AE technique 
for not only damage process but also fracture progress is thus confirmed. In UT technique as shown in 
Figure 1 (right), the increase of propagation-attenuation in the filtered waves is evident with the scalar 
damage during Stage II-IV. It is resulted that the damage degree could be evaluated by the attenuation 
of adequately filtered elastic waves. Since the scalar damage based on damage mechanics is 
physically correlated with the volume of microcracks, it is confirmed that the AE/UT technique would 
be a promising method to evaluate the initiation and growth of microcracks.  
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Figure 1: Results (left: relationship between scalar damage and cumulative AE parameters 

and right: relationship between scalar damage and attenuation of filtered waves) 
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ABSTRACT 
 
Using thin-walled cylindrical specimens subjected cyclic tension and torsion, fatigue crack growth tests 
under mixed-mode loading conditions were conducted. The characteristics of the fatigue crack growth rate 
(FCGR) were identified. By comparing the experimental results with the results of FE analyses, it was found 
that the characteristics of the FCGR were related to fatigue damage accumulation before initial crack growth. 
Based on these results, fatigue life prediction under mixed-mode loading was proposed. Damage analyses is 
indispensable for characterization of the fatigue crack growth and fatigue life prediction. 
 
 
KEYWORDS 
 
mixed-mode loading, fatigue crack growth rate, plastic deformation, finite element analyses, fatigue damage, 
life prediction 
 
 
INTRODUCTION 
 
Many studies have been conducted on fatigue crack behavior under mixed-mode loading conditions [1-9]. 
Among several experimental methods, a method in which combined tension and torsion are applied to a 
thin-walled cylindrical specimen has the advantage to achieve mixed-mode loading ranging pure mode-I to 
mode-II [5-9]. Using this method, fatigue crack growth tests were conducted and the characteristics of crack 
growth behavior were identified. Moreover, in order to discuss the effect of fatigue damage on mixed-mode 
crack growth, elastic-plastic FE analyses were carried out. Fatigue life prediction was also discussed. 

 
 

CRACK GROWTH TESTS UNDER MIXED-MODE LOADING 
 
The experiments on fatigue crack growth behavior under mixed-mode loading conditions were conducted 

[5-9]. Tensile and torsional stresses in the same phase were applied to thin–walled hollow cylindrical 
specimens of 5083P-O aluminum alloy. Using this method, mixed-mode fatigue load ranging from mode-I to 
mode-II can be applied to an initial crack, which was introduced in the circumferential direction of the 
specimen. Details of the experimental procedure are described elsewhere [5-7]. 
 
After fatigue crack initiation, the crack propagates in the direction perpendicular to the maximum principal 
stress, σ1 (called φ1-direction), as shown in Figure 1 [5-9]. The characteristics of fatigue crack growth rate 
(FCGR), db/dN, in region II were found to be divided into two regions, that is, region IIa followed by region 



IIb, as shown in Figure 2. In each region, the FCGR can be expressed in the form of Paris law : 
 

db
dN

A KIb
m= ∆       (1) 

 

where, ∆KIb (= ∆σ π1 b , ∆σ1 : maximum principal stress range) is the stress intensity range corresponding to 
the crack length, b, projected on the line of the φ1-direction. In each region, m and A of Eqn. 1 are constants 
depending on loading condition. The value of m  shown in Figure 3 can be expressed as: 
 

Region IIa  
( )
( )

m =
+ ≤ ≤
− ≤





305 689 0 0 015
166 210 015 10

2 1 2 1

2 1 2 1

. . ( . .

. . ( . .≤
)
)

σ σ σ σ
σ σ σ σ

    (2a) 

Region IIb    

( )
( )

m =
− ≤ ≤
+ ≤





311 7 31 0 0 0 47
9 34 558 0 47 10

2 1 2 1

2 1 2 1

. . ( . .
. . ( . .≤

)
)

σ σ σ σ
σ σ σ σ

    (2b) 

 
where, σ2/σ1 is the ratio of the minimum and maximum principal stresses, which is a function of 
mixed-mode condition, ∆ΚΙΙ0 /∆ΚΙ0 . It should be noted that the values of m are independent of stress ratio, R 
(=σmin/σmax). 
 
The effect of the stress ratio, R on the FCGR is significant under mixed-mode loading condition, as shown in 
Figure 2. It was found that the FCGR in region IIa is accelerated by the static tensile stress component 
σst.(=σmin.) of mixed-mode fatigue loading, while the FCGR in region IIb is not affected by the R-ratio [9] . 
By considering these effects, the fatigue crack growth law can be expressed as the following equation [9]: 
 
 

 
 
 
 

 
 

 
 
 

Figure 1:  Crack length, b, projected to  
the line perpendicular to the σ1 . 
Figure 3: The effect  of  mixed-mode loading
condition on the power coefficient, m,
in Paris law in regions of IIa and IIb. 
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(a)        (b)     (c) 

4: Model for mode I, mixed-mode and mode II 
conditions for the elastic-plastic FE analyses :
(a) ∆τ ∆σ/ = 0   (b) , 1.28  ∆τ ∆σ/ = 0 45.
(c) ∆τ ∆σ/ = ∞ .
Figure 2: Characteristics of the db/dN
under mixed-mode conditions.
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where, AR=0 is the value of A for R=0. In Eqn.3, r* is a parameter which represents the effect of the R-ratio. 
The relationship between constants AR=0 and m is given by: 
 

Region IIa      (5a) AR= −= × ×0 52 16 10 0 230. m.
m.Region IIb      (5b) AR= −= × ×0 63 64 10 0147.

 
By substituting Eqns. 2, 4 and 5 into Eqn. 3, the fatigue crack growth rate under mixed-mode loading 
conditions can be formulated as a function of ∆KIb , σ σ2 / 1  and σst. /∆τ. In the crack growth law, constant m 
represents the effect of mixed-mode condition, ∆KII0/∆KI0 , while r* represents the effect of the R-ratio. 
 
 
EFFECT OF DAMAGE DUE TO PLASTIC DEFORMATION 
 
The dominant mechanical factor of the FCGR under mixed-mode loading is now investigated. Mixed-mode 
crack growth has different characteristics from mode-I crack growth in which the direction of the maximum 
tangential stress, in the vicinity of the crack is the same as the direction of σmax

θσ 1. Therefore, mode-I fatigue 
crack propagates in the same direction as it initiates, and the FCGR accelerates monotonically even though 
the effect of the global damage contributes it. On the contrary, under mixed-mode loading, as the direction of 

is not the same as the direction of σmax
θσ 1, the crack growth direction shifts as the crack propagates [5-9]. 

Therefore, the crack growth behavior changes during its propagation. This transition of the crack growth is 
affected by the accumulated damage due to cyclic loading. It has been shown that plastic deformation 
increases with increase of the contribution of the shearing stress component [10]. Hence, analyses of fatigue 
damage are indispensable to understand crack growth behavior under mixed-mode loading. 
 
To clarify the effect of the damage due to plastic deformation on the FCGR, elastic-plastic FE analyses were 
conducted under cyclic loading conditions. Plastic stress-strain relation is assumed to be linear hardening. 
Total strain is given by sum of the elastic strain and the plastic strain. As the yielding condition, the von 
Mises criterion was employed. The original elastic-plastic FE program developed by Yamada et.al. [11] was 
modified so that cyclic loading can be applied to a model. Analyses were carried out for ∆τ/∆σ = 0, 0.45, 
1.28, . The applied equivalent stress range, ∆σ∞ eq was kept constant throughout the analyses. Cyclic tensile 
and shear stresses were applied to center cracked models (shown in Figure 4), which simulate the situation 
where mixed-mode loading is applied to a crack before the initiation. Material constants of 5083 aluminum 
alloy were used for the analyses. The analyses were conducted up to 10 cycles, under plane stress condition. 

 
From the FE analyses, the shapes of plastic zone for each condition were obtained, as shown in Figure 5. 
Using these results, the length, rφ  of the plastic zone in the φ1-direction was determined (see Figure 6). The 
value of rφ  takes the maximum value for 45.0/ =∆∆ στ  and its value is small under mode-I and mode-II 
conditions. For large value of rφ , the crack closure might become eminent because the plastic zone around a 
crack could contribute plastic-induced crack closure. Experimentally, the crack closure under mixed-mode 
loading was more substantial than that under mode-I condition [7]. From this point of view, the 
characteristics of a/rφ  are in good agreement with the value of m in region IIa shown in Figure 3. Therefore, 
the deceleration of the FCGR in region IIa can be attribute to the effect of plastic-induced crack closure. 
 
For quantifying the fatigue damage, the value of plastic strain energy, Wp was calculated. Figure 7 shows the 
change of the Wp against number of the loading cycles. It was shown that the value of Wp takes the 
maximum value for ∆τ/∆σ =1.28. The values of the Wp for the first cycle are presented in Figure 8. This 
result is in good agreement with the characteristics of the m in region IIb, as shown in Figure 3. Therefore, 



acceleration 

       
(a) ∆τ/∆σ =0       (b) ∆τ/∆σ =0.45          (c) ∆τ/∆σ =1.28         (d) ∆τ/∆σ =∞  

 
Figure 5: Plastic zone ahead of a crack tip at maximum load for N=1, where a is half of the crack length. 
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he FCGR in region IIb might be dominated by the accumulation of the plastic strain energy, which is 
sure of the fatigue damage due to cyclic loading. This result indicates that fatigue damage around the 
al crack has significant effect on the fatigue crack growth behavior under mixed-mode loading condition. 

 

 effect of plastic deformation around an inclined main crack is also examined. Under mixed-mode 
ditions, after the fatigue crack initiates, it changes the growth direction to that nearly perpendicular to the 
imum principal stress, σ1 (see Figure 2). After this transition, the biaxial stress conditions are developed, 
re σ1 perpendicular to the crack plane and the compressive principal stress, σ2 parallel to the crack plane 
applied to the inclined main crack. The FE analyses were also conducted for this case. Biaxial stresses 
 and ∆σ2 are applied to the same FE model. The values of ∆σ1 and ∆σ2 are determined so that the 
ivalent stress, ∆σeq takes the same value as that for the previous analyses. From the analyses, the 
acteristics of the Wp under biaxial loading are found to be very small compared with that obtained by the 

lication of ∆σ and ∆τ to the initial crack model. From these results, the fatigue damage accumulated 
nd the main crack is found to be very small compared with that accumulated around the initial crack. 

 FE results presented in this work reveal the effect of mixed-mode loading on fatigue damage 
mulation. The characteristics of the FCGR, which is represented by the constants m and A in Eqn. 3, are 
ely related to formation of the fatigue damage around the initial crack due to mixed-mode loading. 

IGUE LIFE PREDICTION UNDER MIXED-MODE LOADING CONDITIONS 

e, life prediction based on fatigue crack growth law is discussed. The experimental results of the fatigue 
re life, Nf tends to increase as increase of ∆ΚΙΙ0/∆ΚΙ0 [12]. However, other effects including the effects of 

stress ratio, R and the initial stress intensity range, ∆KIb0 might exist. Ratio of crack initiation life, Ni to 
failure life, Nf is shown in Figure 9. Except shearing stress condition, crack initiation life, Ni is 



approximately 10 percent of the failure life, Nf . Therefore, the life for crack propagation is significant within 
the total life and Nf could be estimated by the crack propagation life using the fatigue crack growth law.  
It seems that life prediction based on fatigue crack growth law is complicated under mixed-mode conditions. 
The region II of the stable crack growth can be divided into two regions, that is region IIa followed by region 
IIb. In each region, the FCGR expressed by Eqn. 3 shows different characteristics, as shown in Figure 3. 
Although the fatigue failure life, Nf could be predicted by integrating the crack growth law of Eqn.3 from the 
beginning to the end of the test, this procedure includes consideration of the crack growth law during both 
regions IIa and region IIb. Moreover, this method requires the experimental results of the stress intensity 
range, ∆KIbt at the transition from region IIa to region IIb, and the stress intensity range, ∆KIbf  just before 
the final failure. The relationship between ∆KIbt and ∆KIbf for various mixed-mode conditions is presented in 
Figure 10. This relationship indicates that ∆KIbt has the similar effect of mixed-mode loading as ∆KIbf . This 
result could be related to the similarity between Nf and the crack initiation life, Ni presented in Figure 9. 
 
It should be noted that the FCGR during region II is closely related to formation of the fatigue damage 
around an initial crack due to mixed-mode loading. Experimentally, fatigue failure life, Nf is proportional to 
the crack initiation life Ni as shown in Figure 9. Therefore, the crack propagation at the first stage is 
important for life prediction. From this point of view, crack propagation life until the transition from region 
IIa to region IIb is to be examined. By integrating the crack growth law of Eqn. 3 between the beginning of 
the test and the transition, the following expression can be obtained: 
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where, Nt is the crack propagation life and bt is the half-length of the crack until the transition from region 
IIa to region IIb, respectively. By integrating, the following expression was obtained: 
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The value of Nt is now compared with the experimental results. By substituting Eqns. 2(a), 4(a) and 5(a), and 
the experimental results of ∆KIbt into Eqn. 7, the value of Nt can be determined for each condition. The 
comparison between the experimental results of the fatigue failure life, Nf and the value of Nt is presented in 
Figure 11. It was found that the Nf is approximately proportional to the Nt . Hence, the total life, Nf seems to 
be controlled by the FCGR of region IIa, which is closely related to formation of the fatigue damage around 
the initial crack. The failure life, Nf under mixed-mode loading can be predicted by following expression: 
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Figure 8: Effect of mixed-mode loading on the
plastic strain energy, Wp , at the end
of first unloading process. 
Figure 9:  The characteristics of the life
ratio, Ni/Nf under mixed-mode
conditions. 
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Figure 11: The prediction of the fatigue failure
life, Nf under mixed-mode conditions.
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on, the effect of the fatigue damage on Nf is represented by the constants, AR=0 and m, which 
d as Eqns. 2a and 5a. The effect of the R-ratio on Nf is represented by the value of r*. 

N 

 stress is applied to an initial crack, plastic damage accumulated before initial fatigue crack 
 significantly the characteristics of fatigue crack growth rate. Under mixed-mode loading 
e life for the initial crack growth dominates fatigue failure life. Damage analyses is 
o characterize the fatigue crack growth and to predict failure life. 
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DAMAGE EVOLUTION AND DAMAGE TOLERANCE IN CERAMIC

MATRIX COMPOSITES: EMPIRICAL MEASUREMENTS AND

ANALYTICAL/NUMERICAL MODELING

Michael G. Jenkins
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ABSTRACT

Ceramic matrix composites (CMCs) and continuous fibre ceramic composites (CFCCs) were developed to
possess the desirable attributes of monolithic ceramics while exhibiting inherent damage tolerance through
nonlinear energy absorption mechanisms.  Empirical measurements and mathematical (analytical and
numerical) models of this damage absorption have contributed to understanding the thermo-mechanical
behaviour of CMCs.  From this understanding have developed better test methods, greater predictive
modeling capability of material behaviour, more appropriate processing methods, and finally design methods
for utilizing CMCs.  This paper presents background on CMC damage, discusses damage measurement and
damage models and finally alludes to the role of damage mechanics in future developments/uses of CMCs.
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INTRODUCTION

Ceramic Matrix Composites
Ceramic matrix composites (CMCs) comprise a maturing subset of the broader genre of engineering
materials known as composites.  CMCs have potential applications in advanced engineering applications
because they possess ceramic materials’ high-temperature strengths, corrosion/erosion resistances, high
stiffnesses, and low densities, while avoiding the brittle, catastrophic failure preventing monolithic ceramics’
acceptance in modern designs [1].  In particular, for those CMCs ‘reinforced’ with continuous fibres, the
synergistic micromechanical interaction of fibers, fiber coatings (a.k.a., interphase), matrix, and overcoats
give these CMCs much greater resistance to catastrophic failure than for monolithic ceramics.

Because fibre-reinforced CMCs possess greater 'toughness' (i.e., energy absorption without catastrophic
failure macroscopically measured as the area under the tensile stress-strain curve) they exhibit increased
reliability and damage tolerance.  While these CMCs offer greater 'toughness' than monoliths, their strengths
can be much less (see Figure 1), thus necessitating still-evolving and different approaches to mechanical
design with CMCs.  Despite this limitation, numerous industrial, power generation and aerospace uses have
been identified for CMCs including filters, heat exchangers, combustor liners, vanes, and nozzles [1].

It is important to note that design of and design with advanced materials are distinct but not always separate
areas of modern engineering efforts.  Early CMCs were discouragingly ‘not tough’ because micro
mechanisms that lead to successfully ‘tough’ and damage tolerant materials were not well understood or
appreciated.  Eventually, mechanicians identified micro mechanisms and developed mathematical models
[e.g., 2-11] such that design of modern CMCs now includes predictive micromechanical models to develop
‘tough’ high performance materials.  Furthermore, significant strides have been made in CMC standard test
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Figure 1:  Engineering stress-strain curves for monolithic and composite (CMC) ceramics

methods [12] with rudimentary design/codes [13] for CMCs now being implemented.  These strides have
allowed engineers to begin introducing well-designed CMCs in trial, short-term applications.  The next
major step yet to be achieved in utilizing CMCs is to understand and accommodate long-term behaviour.

As a starting point for long-term predictive design tools, it is useful to examine a CMC quasi-static tensile
engineering stress strain curve (Figure 1b).  Although Figure 1b is representative of many CMCs and
appears quasi-ductile (linear region followed by a nonlinear region before peaking at the ultimate tensile
strength, UTS), there is a critical difference between the behaviors of CMCs and those of ductile metals.
Specifically, in CMCs the onset of nonlinearity (a.k.a., proportional limit, PL) does not represent the yield
point and onset of work hardening as it does in ductile metals.  In CMCs the PL is associated with the
macro-manifestation of first matrix cracking (or crack opening) and onset of the cumulative damage process.

The still-evolving design codes for CMCs [13] have yet to describe how engineers are to account for the PL.
One approach adopts conventional static failure theories based on ‘yield’ that dictates, for example
comparing the stress state, σh, to the PL through a factor of safety, FS, such that FS=PL/ σh. (note that FS>1
for a ‘safe design’).   Although this conservative approach exploits only the linear regime of material
behaviour, it addresses neither long-term behaviour/durability or the lauded damage tolerance of CMCs.

Continuum Damage Mechanics
The cumulative damage of CMCs, whether in the short-term nonlinear stress-strain curve (Figure 1) or over
long periods times (e.g., creep deformation or cyclic fatigue failure) is a progressive physical process during
which the matrix cracks, the interphase shears, and fibres fracture.  Continuum damage mechanics (CDM) is
the study, through thermo-mechanical variables, of the deterioration of the continuum of material [14, 15].
CDM does not require individual failure mechanisms, but rather it includes the response of the bulk material.

At the microscale, deterioration of the continuum is the accumulation of micro stresses and strains at defects
or interfaces and the initiation and growth of microcracks..  At the mesoscale of a representative volume
element, the growth and coalescence of these microcracks can form a single crack.  At the macroscale, the
single crack can propagate to cause final fracture.  Damage variables and CDM can be used to describe
material behaviour at the microscale
and mesoscale while fracture
mechanics can be used at the
macroscale.

In applying CDM, it is important to
distinguish between corresponding
consecutive states of the material:
deformation, damage and crack
propagation.  The irreversible
deformation of plasticity is not
complete (Figure 2a), because the
material can be ‘re-deformed’ to
restore its original shape/state.
However, damage corresponds to
material degradation.  Complete
deformation is comprised of a
negligible plastic component plus
combined damage and elastic
components (Figure 2b).  The damage
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Figure 2: Stress-strain response due to a) plastic and elastic

deformation and b) plastic, elastic and damage deformation [16]



component contributes to decreased elastic modulus and inability to return the material to the original state
by ‘re-deformation’ [16].

The evolution of design and analysis philosophies indicates that use of damage tolerance (e.g., CDM) is a
recent occurrence [15].  For example, in aircraft design, methods involving static strength spanned ~1900 to
1950, safe life (a.k.a., fatigue crack initiation) methods spanned ~1950 to1960, fail-safe life (fatigue crack
detection and accommodation) methods spanned ~1960 to 1975, and damage tolerant (residual strength, rate
of damage growth, damage detection, and CDM) spanned the time from ~1975 to present.

It is interesting to note that the maturation of CMCs and CDM have occurred concurrently (~1970’s to
present).  However, the applications of the concepts of CDM to CMCs have been limited even though the
quasi-brittle behaviour of CMCs makes them an apparently ideal candidate for CDM-based analyses.  In the
following sections, some examples of the applications of CDM concepts to CMCs are described first for
damage measurements then for damage models (both analytical and numerical).

DAMAGE MEASUREMENTS

Having described the concept of damage mechanics, it is useful to describe methods for actually measuring
damage in materials.  Four types of measurements have been identified [16]: a) Measurement of remaining
life (e.g., cycles to failure in fatigue, time to failure in creep, etc.); b) Microstructual measurements (e.g.
volume fraction of defects, cavities, microcracks, etc.); c) Measurement of physical parameters (e.g.,
density, resistivity, acoustic emission, etc.); and d) Measurement of mechanical behaviour (e.g., change in
elastic modulus, etc.)

For mechanical modeling of damage, measurements of mechanical behaviour are best.  Two approaches to
assess mechanical behaviour of damage have been used for determining stress: net stress based on the net
section and effective stress that accounts for stress concentration near defects.  For the uniaxial case, the net
stress is σ σ ω* /( )= −1  [16] where σ  = true normal stress and ω = average reduction in section area due to
microcracks and voids.  The effective stress is ˜ /( )σ σ= −1 D  [16] where D is macroscopic damage.

The variation in mechanical behaviour can be measured through the variation of application-specific

parameters.  For example, variation in elastic modulus, E, is used such that D E E= −1 ( ˜ / )where Ẽ is the

actual damaged elastic modulus.  Similarly variation of microhardness, H, can be used such

that D H H= −1 ( ˜ / )  where H̃  is the actual damaged microhardness.  A summary (Figure 3) of the ‘quality’ of

physical and mechanical damage measurement methods/parameters has been given by Lemaitre [14].

An example of the use of a nondestructive characterization (NDC) method applied to assess damage is
shown in Figure 4 for a CMC.  An infrared measurement system coupled to laser flash excitation method
was used to measure thermal diffusivity as a function of power generation use time [17].  Variation in
grayscale (Figures 4a-4d) can be linked to through-thickness variation in thermal diffusivity (i.e., loss of
structural integrity or damage).  Change of thermal diffusivity with thermal cycles is shown in Figure 4e.

Acoustic emission (AE) can be linked to damage evolution in CMCs.  During monotonic and/or cyclic
loading of CMC test specimens, the ‘number of counts’ from the AE system is related to 1) onset of
nonlinearity (e.g., matrix cracking) and 2) increasing nonlinearity (continued matrix cracking and fibre
fracture) of the stress-strain curve.  The unload/reload stress-strain curves (Figure 5a) and the AE cumulative
counts vs stress (Figure 5b) show this relationship between nonlinearity and damage for a CMC.

An example of a newly proposed mechanically-based damage parameter for CMCs based on slope and
energy information from the monotonic tensile stress-strain curve is given by [19]:

Mechanical/Physical

Parameter

Damage

Parameter

Brittle Ductile Creep Low cycle

fatigue

High cycle

fatigue

Micrography D S SD= − ∂ ∂( )1 / Try to see Good Good Try to see Try to see

Density D = − ( )1
2 3ρ ρ/

/ Do not try Good Try to see Try to see Do not try

Elastic Modulus D E E= − ( )1 / Good Very good Very good Very good Do not try

Ultrasonic Wave D V VL L= − ( )1 2 2/ Very good Good Good Try to see Try to see

Cyclic Stress Amplitude D = − ( )1 ∆ ∆σ σ/ * Do not try Try to see Try to see Good Try to see

Tertiary Creep D p p

N
= − ( )1

1
˙ / ˙* /
ε ε Do not try Try to see Very good Try to see Do not try

Micro-Hardness D H H= − ( )1 / * Good Very good Good Very good Try to see

Electrical Resistance D V V= − ( )1 / Try to see Good Good Try to see Try to see

Figure 3: ‘Quality’ chart of methods of damage measurement [14]



              
     a-d) Raw thermal image, processed thermal image,     e) Effect of number of quench cycles (∆T=800°C)

       diffusvity image, and enhanced diffusivity image,

       respectively.

Figure 4: Infrared imaging to assess damage in a SiC fibre-reinforced SiC matrix CMC [17]
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where (dσc/dεc)i is the tangent modulus at i-th point in the monotonically-loaded tensile stress-strain (σc-εc)

curve,(for i-th stress, σi, and strain, εi), (dσc/dεc)0 is the tangent modulus in the linear region of the tensile

stress-strain curve where (dσc/dεc)0 ≈E0, U p i,  is inelastic energy absorption at σi during the tensile test and

U p
*  is the inelastic portion of the total energy absorption during the tensile test just up to the UTS, σcu.

Figure 6 compares D from Equation 1 to the simple model based on  D=1-( Ẽ /Eo) where Ẽ  is the tangent

modulus using the monotonic stress-strain tensile stress curves of a CMC.  D determined from Equation 1

reflects the rapidly increasing cumulative damage as the nonlinearity of the stress-strain curve increases

whereas the simple damage model based on elastic modulus seems to have a series of plateaus.

DAMAGE MODELS

Analytical
CDM has been developed generally along the concepts of the theory of irreversible processes with internal
variables. Total strain is divided into the sum of elastic, plastic and thermal expansion strains from which the
elastic and thermal strains are combined into a single reversible, thermoelastic strain (i.e. a state variable).
From the total observed strain and the temperature, the local state method develops the framework of CDM
from the thermodynamic state of material.  The first principle of thermodynamics expresses energy
conservation while the second principle of thermodynamics expresses the irreversibility of the entropy
production giving an interpretation of the energies stored as heat or stored in the material (see Figure 7).
Note that the energy stored by hardening corresponds to an increase in free energy (i.e. internal energy)
whereas the energy dissipated by damage is lost by the material (i.e., irreversible decrease in free energy).
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Figure 5:  Correspondence of AE cumulative counts and the nonlinearity of the stress-stain curves for a SiC
fibre-reinforced SiC matrix CMC [18]



a) Damage=f(tangent modulus) only     b) Damage=f(tangent modulus and inelastic energy)

Figure 6:  Comparison of damage parameters and strain-stress curves for a Si-C-O fibre

reinforced Si-C-N-O matrix CMC [20]

From these
bases, many
‘special’ case
isotropic
CDM models
have been
introduced for
damage
equivalent
stress
(plasticity and
viscoplasticity)
and  s t r a in
damage
(plasticity and
viscoplasticity).  For CMCs, anisotropic material damage models include maximum principal stress, 2nd
order damage tensor, 4th order damage tensor, and double scalar variable.  One such example includes [17]:

Ψ ∆= { } −{ }{ }[ ] { } −{ }{ } + { } −{ }{ }[ ] { } −{ }{ }1
2

1
2

ε ε ε ε ε ε ε εp
o

p c eff cC C (2)

and σ
∂
∂ ε

ε ε ε ε{ } =
{ }

= [ ] + [ ][ ] { } −{ }{ } + [ ] { } −{ }{ }Ψ
∆C C Co

eff c c p (3)

where 
Ψ

∆

= { } = { } = { } = { } −{ }
[ ] = [ ] = { } =

free energy, total strain vector plastic strain vector,

undamaged stiffness matrix, damaged, reduced stiffness matrix,  

ε ε ε ε ε

σ

, ,p c p

o
effC C stress vector

Employing a hierarchical approach (e.g., Equations 2 and 3) along with constitutive constants from uniaxial
tension and compression tests the multiaxial damaged stress-strain response of a CMC was predicted using
strain as the independent state variable.  The modeling is sophisticated but has been implemented in
industrial design codes, with good agreement with actual experimental results for this CMC (see Figure 8).

Numerical
Many examples of numerical damage models could be related.   These models may be as direct as applying
linear damage models sequentially (e.g., Miner’s Rule) or as involved as those that employ finite element
analysis (FEA) programs ‘drive’ the accumulation of damage.  Two FEA examples follow.

FEA model of an unnotched beam
In this study [21], a double meshed (i.e., one set of nodes, but two sets of elements, fibre and matrix) FEA
model was constructed of a flexure test specimen geometry that had been used to strength test a three-
dimensionally braided CMC [22].  A macrocode was written for the commercial FEA code such that matrix
or fibre elements were ‘killed’ if the maximum principal stress in the respective elements exceeded the UTS
of the respective materials.  Good agreement between empirical and numerical results is shown in Figure 9.
Note that most matrix elements have failed by the test’s end, leaving only fibre elements to carry the load.

FEA model of a notched beam
In this study [23], an FEA model with macrocode was constructed using the same double meshing procedure
and methodology [21, 22].  A single edge notched beam was modeled to compare the numerical results to R-
curve behaviour in a unidirectionally-reinforced CMC. In this case matrix elements substantially failed not
only near the notch tip but also distributed in the CMC.  Fibres failed only near the notch region.

DISCUSSION AND CONCLUSIONS

Nonlinear monotonic tensile stress-strain curves are speculative and analytical foci used to describe the
mechanical behaviour of CMCs and attendant micromechanics.  In attempts to describe and extract
additional information from these tensile tests, such methodologies as unload/reload tensile tests [e.g.,24-27]
have been proposed.  These methodologies provide information about in-situ mechanical properties of
constituent materials but still require detailed knowledge and modeling of the micromechanics.

CDM, although a relative ‘newcomer’ for describing the mechanical properties and performance of CMCs,
has the major advantage of simplifying the analysis of mechanical behaviour by reducing the requirements
\
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Figure 7: Illustration of the dissipation during plastic flow/deformation and damage [17]
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for knowledge about the individual micro
mechanisms of failure and properties and
performance of the constituent materials.
CDM describes the cumulative damage
process inherent in quasi-brittle CMCs as
reflected by their nonlinear stress-strain curves
and fracture surfaces.

In applying CDM to CMCs under ambient
conditions, both analytical and numerical
approaches have successfully described
mechanical behaviour in complex stress states.
With modifications, time/environmental
aspects of constituent materials and bulk
CMCs can be integrated into the damage
models to describe long-term durability.

ACKNOWLEDGEMENTS

This work was sponsored by the U.S. Department of Energy, Assistant Secretary for Energy Efficiency and
Renewable Energy, Office of Industrial Technologies, Industrial Energy Efficiency Division and Continuous Fiber
Ceramic Composites Program, under contract DE00OR22725 with UT-Battelle, LLC.

REFERENCES

1. Karnitz, M.A., Craig, D.A., Richlen, S.L. (1991) Ceram. Bull., 70, 430.
2. Aveston, J., Cooper, G.A., Kelly, A. (1971) In, The Prop of Fibre Comp, NPL, IPC Press, Teddington, U.K., 15.
3. Rice, R. W. (1981) Ceram. Eng., Sci Proc. 2, 661.
4. Marshall, D.B., Cox, B.N., Evans, A.G. (1985) Acta Metall., 33, 2013.
5. Rice, R. W., (1985) Ceram. Eng., Sci Proc. 6, 589.
6. Budiansky, B., Hutchinson, J.W., Evans, A.G. (1986) J. Mech. Phys. Solids, 34, 167.
7. McCartney, L.N. (1987) Proc. R. Soc. London, A., 409, 329-350.
8. Evans, A. G., Marshall, D. B. (1989) Acta Metall. 37, 2567.
9. Curtin, W. A. (1991) J. Amer. Ceram Soc., 74, 2837.
10. Inghels, E, Lamon, J. (1991) J. Mater. Scienc. 26, 5403 and 5411.
11. Evans, A. G., Zok, F. W. (1994) J. Mat. Scienc. 29, 3857.
12. Jenkins, M. G.  (1999) Advanced Composite Materials, 8, 55.
13. CMCs, Vol 5, MIL-HDBK-17, (Yellow Pages) (2000) DoD Handbook, Secretariat: MSC, Fort Wash., Penn..
14. Lemaitre, J. (1996) A Course on Damage Mechanics, Springer Verlag, Berlin.
15. Krajcinovic, D. (1996) Damage Mechanics, Elsevier, Amsterdam.
16. Chaboche, J.-L. (1999) In, Creep & Damage in Materials & Structures, Springer-Verlag, New York, 209.
17. Ahuya, S., Ellingson, W.A., Steckenrider, J. S., (1997) In, STP 1309, ASTM, W. Conshohocken, Penn., 209.
18. Jenkins, M.G., Piccola, J.P. Jr., Lara-Curzio, E. (1996) In, Frac Mech of Ceramics, Plenum, New York, 267.
19. Mamiya, T. Kagawa, Y., Jenkins, M.G. (2001) In, Proc. 2001 SEM Annual Conf, SEM, Bethel, Conn., 566.
20. Kessler, B. S., Jenkins, M.G. (2001) In, Proc. 2001 SEM Annual Conf., SEM, Bethel, Conn., 430.
21. Jenkins. M.G., Mark. K.Y. (2001) J. Materials Design and Analysis, in press.
22. Jenkins, M.G., Mello, M.D. (1996) Mater. Manuf. Processes, 11, 99.
23. Kwon, O.H., Jenkins, M. G., (2001) Univ. of Wash. Report.
24. Burr, A., Hild, F., Leckie, F. A. (1997) In, STP 1315, ASTM, W. Conshohocken, Penn.
25. Evans, A. G., Domergue, J.-M., Vagaggini, E., (1994) J. Am. Ceram. Soc., 77, 1425.
26. Steen, M., Valles, J. L., (1996) In, , STP 1309, ASTM, W. Conshohocken, Penn,  49.
27. Campbell, C. X.,  Jenkins, M. G., (2000) In, STP 1392, ASTM, W. Conshohocken, Penn, 118.

0

200

400

600

800

1000

1200

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

Experimental, F3
Experimental, F6
Experimental, F7
FEA  Model

A
P

P
LI

E
D

 F
O

R
C

E
 (

N
)

LOAD POINT DISPLACEMENT (mm)

Linear
Loading

Proportional 
Limit

Non Linear
Loading

Peak Load

Unloading

Tail

        a) Load-displacement results  b) ‘Unkilled’ elements at end of test

Figure 9: Results of FEA modeling of a CMC four-point flexure test specimen using element ‘kill’
commands for a 3-D braided SiC fibre reinforced SiC matrix CMC

Matrix elements

Fibre elements

Figure 8: Comparison of experimental and damage model

prediction results for a SiC fibre / SiC matrix CMC [16]



ICF100954OR 
 
 
 
 

DAMAGE EVOLUTION AND FRACTURE OF VISCOELASTIC 
COMPOSITES UNDER TIME-VARYING LOADS 

 
J. Varna1, A. Krasnikovs2 and R. Talreja3 

1 Lule  University of Technology, Lule , Sweden 
2Riga Technical University, Riga, Latvia 

3Georgia Institute of Technology, Atlanta, GA 30332-0150, USA 
 
 

1. Introduction and Problem formulation 
Symmetric  [0n, 90m]s cross-ply laminate with transverse cracks in 90-layers is shown in 

Fig. 1. Layers in the (x,y,z) -system are homogeneous, orthotropic and linearly viscoelastic 
with constitutive relations given by, 

( ) τ
τ
ετσ d

d
dtEt

t i
ii ∫ −=

0
)(   (1) 

where the superscript i =0, 90 designate the layer and ε i ,  σ i  and Ei  denote the strain, stress 
and stiffness tensors, respectively. In general, stresses and strains are functions of  the position 
ξ  characterized by dimensionless coordinates   and . In the following, stress, strain 
and stiffness symbols without the superscript stand for averages over the entire laminate. 
Lower index, if given, specifies the component under consideration. For simplicity residual 
thermal stresses are not included in analysis. It is also assumed that all stresses arising during 
the formation of cracks have relaxed and the laminate before the displacement application is 
stress free. 

dx / dz /

Plane stress formulation is used and the only applied loading is time dependent displacement 
in x-direction, see Fig.1, u . ltt xx 0)()( ε=

lu oxx ε=

0°

90°

b

lo

d

z

x

 
 
 
 
 
 
 
 
 
 
Fig. 1  Schematic showing the cross ply-laminate with cracks in the 90-layers. 
 
For the assumed constant spacing of cracks the solution must satisfy:  
1. Stress equilibrium equations 
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2. Strain-displacement relationships 
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3. Boundary conditions.   
Based on symmetry considerations only a quarter of the full repeating unit (Fig. 1) is used. 
Symmetry conditions are on sides [ ]h,dz ,lx 0 ∈−=  and [ ] 0z ,0,lx 0 =−∈ . Traction free- 
conditions are on = d+b and on the crack surface hz = [ ]d,0z ,l0x ∈−= , applied constant 
displacement in x-direction, on [ ]h,0z ,0x ∈= .  
4. All stresses and strains at  are zero. 0≤t
 
2. Theoretical analysis 
The expressions needed for calculation of stress-strain dependence in an arbitrary point for a 
general loading ramp are derived using Laplace transform technique and applying the linear 
viscoelastic correspondence principle. This principle states that the solution of a given 
viscoelastic problem in Laplace domain may be obtained using the solution of the 
corresponding elastic problem. The only modification is that instead of elastic constants the 
Carson transforms of the corresponding relaxation functions are used. We denote by ( )sf ,ξ  
the Laplace transform of an arbitrary stress-strain state characteristic ( tf , )ξ  and the Carson 
transform of the set of relaxation functions by )(~ sE . Here  is Laplace parameter. Due to 
linearity 

s
( sf ,ξ )  is proportional to the applied average strain ε x : 

   ( ) ( ) )()(~,, ssEsf x
k εξξ Ψ=   (4) 

Considering relaxation test with unit applied strain, 
sx
1

=ε  and denoting all time dependent 

functions with index R we have, ( ) ( )
s

sEsf k
R

1)(~,, ξξ Ψ=   (5) 

The inversion to time domain in this case becomes trivial if we realize that in relaxation test 
all stress-strain state characteristics are monotonous functions of time with a small curvature 
in logt scale and, hence, satisfy Schapery’s conditions for simple transformation [1]: 
 
  ( ))()(

/56.0
sfstf R tsR =

=    (6) 

leading to   ( ) ( ))(,, tEtf k
R ξξ Ψ=    (7) 

Function  is given by the linear-elastic solution using values of elastic constants equal to 
relaxation moduli in the particular instant t . 

Ψ

The expression for the general strain ramp, Eq. (4), may now be rewritten in terms of 
functions in relaxation test: 

( ) ( ) )()()(1)(~,, sssfss
s

sEsf xRx
k εεξξ =Ψ=  (8) 

Inverse transformation to time domain leads to  

  ( ) ( )∫ −=
t

x
R d

d
dtftf

0
,, τ

τ
ετξξ   (9) 

Stress state characteristics for laminates with cracks subjected to given strain ramp are 
1. Macro-response (laminate stress) of the laminate  

( ) ( ) τ
τ
ετσσ d

d
dtt x

t

xRx ∫ −=
0

  (10) 

2. Stress in defined points ξ in layers where fracture may occur: 
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( ) ( ) τ
τ
ετξσξσ d

d
dtt x

t
i
xR

i
x ∫ −=

0
,,   (11) 

3. Average crack opening displacement normalized by the 90-layer half-thickness d: 
(Since the presented calculations are for open cracks, this parameter is needed to check the 
validity of the method.) 

( ) ( )
d

tutu a
an =     ( )∫=

d

xa dzzudu
0

1     ( ) ( ) τ
τ
ετ d

d
dtutu x

t

anRan ∫ −=
0

 (12) 

From Eqs (10)-(12) the response of a damaged laminate to an arbitrary strain ramp can be 
easily calculated if the corresponding functions are known for relaxation test. The procedure 
to determine the characteristics in relaxation test follows. According to Eq. (7) functions from 
relaxation test may be obtained by solving a sequence of elastic problems corresponding to 
varying parameter . It may be done using FE method or by developing approximate 
analytical models. In this paper the macro-response of the damaged laminate (relaxation of 
laminate stress and average crack opening) is calculated using closed form expressions for 
elastic case [2,3].  

t

Average crack opening displacement may be calculated using the simple power law which, 
based on FE parametric analysis, was obtained in [3] as 
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 for normalized crack density l
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02=ρ  may be calculated using the following 
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Laminate stress:   ( ) ( )tt ExxR
01.0=σ   (15) 

Stress in location ξ  at a given instant of time  is obtained solving the elastic problem by 
FEM, using elastic constants equal to the relaxation moduli at this instant of time.  
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3. Numerical example 
We consider three-step loading as shown in Fig.2. In all steps the strain rate is constant, 

, and strain is first linearly increasing until t10 /ε %10 =ε , then decreasing to  and 
finally increasing again. Results are presented for CF/EP [0/90

%05.02 =ε
2]s laminate. 
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Fig.2   Three-step loading ramp with the same ramp rate in all steps applied to laminates.  
  
 Relaxation moduli of unidirectional lamina are shown in Fig 3. In relaxation test with the 
applied strain , the laminate stress relaxation follows Eqs (15). For a given crack 
density we use Eq.(14) for relaxation modulus. This expression includes the crack opening 
displacement  which is calculated using the power law Eq.(13). The calculated laminate 
stress and COD relaxation curves are presented in Fig.4. Fifth order polynomials are used to 
fit the calculated data. These fitting polynomials are used in Eqs. (10)-(12) for modeling stress 
response in the loading case shown in Fig.2.  
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Fig.3 Relaxation functions of the unidirectional CF/EP composite 
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 a)    b) 
Fig.4 Macro-response of [0/90-2]s CF/EP laminate  in relaxation test. Applied strain %1=ε x . Laminate 

with transverse crack spacing l0 /d= 5. a) )(txRσ ; b) )(tuanR  
 
As a critical site for further damage development we consider a) x=0, z=0 where the next 
transverse crack is expected, and b) the fibers in the 0-layer which are located at the tip of the 
transverse crack for possible fiber fracture. Stress relaxation at these points is shown in Fig.5. 
The polynomial fit to all time dependent functions in relaxation test is used to calculate the 
response to strain ramp shown in Fig.2. Expressions (10)-(12) are used. 
 
Before the response of the damaged laminate was simulated, the crack opening was inspected 
to insure that cracks remained open at all times. If due to hysteresis cracks would close, the 
used analysis becomes invalid. The calculated macro-response of the damaged laminate is 
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shown in Fig.6. Note, that in case of fast loading (t1=10) the loading, unloading and reloading 
curves almost coincide. For the low strain rate (t1=2e7), the unloading curve is below the 
loading curve and following reloading leads to slope which is higher than the initial loading 
slope, thus building a hysteresis loop. 
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Fig.5  Axial stress  in CF/EP  [0/90)(ti

xσ 2]s laminate. Relaxation test at applied strain %1=ε x . Crack 

spacing 5/0 =dl . a)  in 90-layer at x=0, z=0; b)  in 0-layer (average over the first closest 
the crack fiber). 
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a) b) 
Fig. 6 Stress-strain curve of [0/902]s CF/EP laminate with crack spacing 5/0 =dl ) obtained using the loading 
ramp shown in Fig.2. Strain rates t1=10 and t1=2e7 are used. a) the whole loading-unloading-reloading curve; 
b) detail at small strains. 
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Fig. 7  a)Stress in the middle of 90-layer (x=, z=0) ; b) Average stress   in the closest fiber to the crack 
tip (x=0, z/b=2.03) in 0-layer.  
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Fig.7a shows the x-axis stress response at mid-distance between two preexisting cracks due to  
the applied strain ramp. The hysteresis loop is remarkably large leading to compressive 
stresses (remember that the applied strain is positive at all times). The fact that stress at the 
considered point is compressive, while cracks are still open, is remarkable. Loading rate has a 
huge effect on the obtained stress level. Finally, Fig 7b shows the stresses in the 0-layer. The 
position considered is at the tip of the transverse crack. This stress, which is the average over 
the closest fiber diameter (layer thickness), gives an indication of possible fiber fracture due 
to stress concentration at the crack tip. Stresses are very high, approaching the fiber strength. 
They are much higher than predicted by commonly used analytical stress models.  Slower 
loading allows for stress relaxation and stresses are lower. 
 
4. Conclusions 
The stress response of a damaged laminate to an arbitrary applied strain ramp may be 
predicted by simple integration, provided the corresponding stress response in relaxation test 
is known. 
The time dependence of stresses in relaxation test is obtained using Schapery’s inversion 
method for Laplace transforms. To accomplish this, a sequence of elastic problems must be 
solved. 
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ABSTRACT 
 
Three sub-problems which are able to advance the problem of an optimization of the manufacture techniques 
and high-temperature superconducting (HTSC)  compositions, namely: (i) a yield criterion which can 
describe both the bulk movement and the consolidation of powder in a compaction process, (ii) a carbon 
segregation which embrittles intergranular boundaries, and (iii) a void transformation during sintering, are 
considered. In the proposed yield criterion, an effect of volume change on the strain of the powder during the 
compaction process is considered by adding the first invariant of stress tensor in the criterion. The carbon 
segregation processes are associated with slow, fast and steady states of the dislocation-screened crack 
growth. The phenomenological models of pore drag, shrinkage, coarsening and coalescence at the grain 
boundaries and a possible pore breakaway are developed by considering the third sub-problem.  
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INTRODUCTION 
 
It is obviously, that an optimization of the manufacture techniques and material compositions is the most 
important to obtain HTSC with improved and more controlled structure-sensitive properties. The techniques 
used to prepare the HTSC bulks are very complex and usually include some intermediate stages, the goal of 
which is to obtain a highly connected and align grain structure. During concrete thermal and pressing 
treatments the secondary phases and segregations form into the composition, rendering, generally, non-
simple effect on the final HTSC properties. For example, the melt-processing has been successfully applied 
to prepare the large-grain superconductive YBa2Cu3O7-x  (YBCO) ceramics with decreased content of the 
intergranular boundaries and improved critical current density (Jc) [1]. However, there are great problems 
connected with preparation of the optimum compositions, thermal and pressing regimes. Then, in order to 
rise Jc into (Bi, Pb)2Sr2Ca2Cu3O10 (Bi-2223) compositions a silver dispersion is inserted into calcinated 
powder and the intermediate cold or hot pressings are fulfilled [1]. At the same time, there is considerable 
problem of carbon which segregates to the intergranular boundaries and embrittles them. 
 
It is the aim of this paper to consider the next sub-problems which could help to improve the processing 
techniques and compositions for above HTSC systems: (i) a yield criterion which can describe the bulk 
movement and the consolidation of powder in a compaction process, (ii) a carbon segregation which 
embrittles intergranular boundaries, and (iii) a void transformation during sintering. 
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POWDERED HTSC COMPACTION AND YIELD CRITERION 
 
The computer models of the structure sintering, shrinkage, cooling and also the grain recrystallization for 
different YBCO and Bi-2223 compositions have been developed by using the finite difference method and 
Monte-Carlo procedures [2-6]. The more powerful finite element methods need detailed information on the 
critical characteristics and microstructure features. During the powdered HTSC compaction the mechanism 
of densification involves two processes, namely bulk movement and plastic deformation of particles. 
Because of the compact consists of numerous particles, one may be considered as a homogeneous 
continuum. Then, it is necessary to find a limiting condition or a yield criterion to describe the deformation 
during the compaction. Successful yield criterion is able to help in advance to optimum HTSC compositions. 
The deformation due to a grain slip results to an increase of volume in the compaction, while the yielding 
due to a consolidation leads to a volume decrease. At the transition point or critical state, the volume remains 
constant. Various yield criteria for the loose, porous and granular materials have been reviewed. However, as 
rule, these criteria do not take into account the effect of density on deformation. Moreover, due to the 
volume inconstancy during compaction the effect of hydrostatic pressure should be included in the yield 
criterion. At the same time, the limiting envelopes, stated by the Mohr-Coulomb's and related criteria, 
suggest an infinitely large shear stress to cause slip at compression, but this is not applied to granular 
materials. Therefore, the yield criterion for powdered compaction should suppose a closed limiting envelope 
(e.g., in the elliptic form), with asymmetrical conditions of the compressive and tensile stresses, because 
powders are not able to sustain tensile loading. Following to [7], for isotropic case of the powdered HTSC 
compaction it is considered 3D yield criterion in the form 
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where α, β and s are the material constants depended on the sample density, Y is the yield stress of the fully 
dense material, I1 and I2 are the first and second invariants of the stress tensor, respectively. Eqn. 1 can be 
represented in the terms of normal (σ ) and shear (τ ) stresses as 
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By using the yield function  f  as the plastic potential, the associated flow rule is obtained from the normality 
condition between the plastic strain increments, ijdε  and the yield surface in  the form 
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where ijδ  is the Kronecker delta, kkσ  and  are the hydrostatic and deviatoric stresses, respectively. 

Find the proportionality constant, 

'
ijσ

λd , from Eqns. 1 and 3 as [ ] )2/( )18/( 2/1''2 Ydddd ijijV βεεαελ += , 

where Vdε and are the volumetric and deviatoric strain increments. The material constants α, β and s 
can be found from the shear test [8]. For this, the yield locus is represented at the σ - τ  plane by the ellipse 
with Eqn. 2. Due to the assumption of isotropic deformation the transition point approximately coincides 
with the apex of the minor axis of the ellipse. Then the inclined angle (ψ ) of the critical state line against the 
abscissa (σ ), and the ratio (R ) of the ellipse major axis to the minor one can be treated as material constants, 
and from Eqn. 2 they have forms: 

'
ijdε

)3//(sYψ =tan β  and αα 9/)121( +=R . Finally, as the third 
necessary equation we take the dependence between the density of a powder compact and pressure needed to 
achieve that density [9], namely: )]1/()1ln[( 0 ρρ −−=KP , where P is the applied pressure, ρ0  and ρ  are the 
average densities of the loose powder and the presspowder, respectively, and K is an experimental constant. 
Then, taking into account the relationship: YRsP β+= 3/ , the experimental constants ψ, R and K can be 
used to determine the values of α, β  and s as 
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A satisfactoriness of the proposed criterion to compaction of the HTSC precursors can be verified by using, 
e.g. the triaxial compaction test. However, it should be noted, that the triaxial compaction tests of sand, 
concrete and rock have shown that associated plasticity cannot describe experimental data satisfactorily [10]. 
At the same time, this issue has not been discussed for the powdered HTSC compaction. 
  
 
CARBON SEGREGATION AND HTSC FRACTURE 
 
Carbon can be introduced into yttrium and bismuth HTSC ceramics by carbon-containing gases or liquids. 
During the processing it is possible to form nanometer-scale carbon inclusions with superconductor grains 
and enhance flux pinning substantially [11]. However, it is well known, that carbon or carbon dioxide 
segregated to the grain boundaries can degrade them and transport properties, respectively [12]. The 
segregation processes can be studied by using the microscopic models of the equilibrium slow and fast 
propagation, and also a steady state growth of a dislocation-screened crack. 
 
Equilibrium Slow and Fast Crack Growth 
Consider an intergranular crack with the length, 2a, in a carbonated HTSC. The crack lies along x axis in an 
elastic-plastic isotropic body with shear modulus, G, Poisson ratio, ν, yield strength, σy, and work hardening 
factor, n. The body is loaded by a remote stress, σa,  parallel to the y axis at a constant temperature, T. At the 
x axis two linear dislocation arrays with the length ry locate at the distance d from the crack tips. It is 
assumed, the size of the arc-shaped crack tips, q, remains constant during plastic deformation. The condition 
of the local equilibrium at the crack tip is that one must be screened by dislocation field and maintains a 
dislocation free zone with the size d. The loaded system "crack - dislocation arrays" maintains a local stress, 
σd, in the dislocation free zone and produces the next stress intensity [13, 14] 
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where Ka  is the applied stress intensity, and β  is the factor depended on the elastic and plastic deformation 
properties. The carbon segregation is found by the crack tip profile and the stress field ahead of the crack tip. 
The chemical potentials of C and HTSC can be stated following to [15] in various interface zones, namely: I 
- zone not affected by the stress intensity (x > a+d+ry), II - zone of screening dislocations (a+d < x < 
a+d+ry), III - dislocation free zone ahead of the crack tip (a < x < a+d), IV - arc-shaped crack tip zone (a-
q < x < a) and V - parallel flat crack surface zone (x < a-q). At equilibrium, the chemical potentials of 
carbon and superconductor must be the same in the all regions. So, the equilibrium carbon segregation 
depends on the binding energies and crack tip conditions. The binding energies of C at grain boundaries and 
crack surfaces (HB)b and (HB)s, respectively, are found by the standard chemical potentials of C and HTSC as 

 
     HTSCsHTSCmCsCmsBHTSCbHTSCmCbCmbB HH )()()()()(  and  )()()()()( 00000000 µµµµµµµµ +−−=+−−= .  (6) 
 
Here and further the subscripts of different parameters indicate the next: m is the matrix, b is the grain 
boundary, and s is the crack surface. The basic assumption of the model is that the embrittlement occurs as a 
reduction of the interface energies due to the carbon segregation. Moreover, it is taken into account that slow 
and fast fractures occur by maintaining the constant chemical potentials and the same carbon concentration 
between the crack surface and the grain boundary, respectively. Then, from the thermodynamic theory of 
[16, 17] it can be obtained the variation of the ideal works, expended in slow (γ s) and fast (γ f) fracture as 
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where the equilibrium carbon concentrations at zones III and V have forms 



 4

        

















+

−++−

















+

−+

=

)/(
)1(4

)(exp1

)/(
)1(4

)(exp

2

2

RT
G

VVHCC

RT
G

VVHC

hd
hdbBmm

hd
hdbBm

III

ν
σσ

ν
σσ

C  and 
)]/()exp[(1

)]/()exp[(
RTHCC

RTHC

sBmm

sBm
V +−
=C    (8)  

                                                                                       
here Cm  is the bulk carbon concentration, Vh  is the molar volume of carbon, R is the gas constant, 1/Ωi  is 
the carbon coverage at interfaces,  and are the critical values of carbon concentration at zone III 
required, for slow and fast fracture, respectively, γ

s
IIIC

≤cγ

f
IIIC

0 is the ideal work of intergranular fracture in the absence 
of carbon, and ∆µ is the chemical potential difference between the crack surface and the stressed grain 
boundary. The equations for constant carbon concentrations also can be found at zones I and IV. At the same 
time, due to the variable stress distribution (see Eqn. 5) the carbon content at zone II is not constant. The 
relationship between critical stress intensity required to propagate the crack (for slow, fast or steady state 
fracture) and the ideal work change due to the carbon segregation is stated by using the local energy balance 
condition  [15]: , where K02/)1( 2 +−− d GKν d  is the local stress intensity factor, connected with the 
dislocation free zone ahead of the crack tip (d) and local stress (σd) in this zone by the equation π d = (Kd 

/σd)2, the superscript c corresponds to definite fracture state. Then the threshold stress intensity, , is given 
by [15]                                                  

c
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where K0 is the fracture toughness, is the critical crack opening displacement (CCOD) required for 
various fracture processes (superscript c), and δ

c
cδ

c0  is the CCOD in the absence of carbon, defined as 
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Steady State Crack Growth 
Assume, that the carbon diffusion along stressed boundaries and crack surfaces is the mechanism that 
controls the intergranular embrittlement and affects the crack growth rate. By this, the bulk diffusion effects 
are neglected. Under the geometrical and loading conditions of above considered equilibrium crack growth 
problem, the steady state case indicates the crack growth with constant velocity. Taking into account the five 
grain boundary and crack surface zones (I-V) the fluxes of carbon in these regions, , can be stated as j

iJ
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where Di  is the diffusivity of carbon, C  is the carbon concentration, i is the subscript indicating b or s, and 
j is the superscript indicating various interface zones,  are the corresponding chemical potentials. The 
differentiation with respect to s is carried out only at zone IV, by this, s is the variable arc length at the 
correspondent part of the arc-shaped crack tip. The continuity equation of fluxes is 
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where t is the time. Based on the Eqns. 5, 11 and 12, and also the relationship between the interface energies, 

, and the amounts of carbon, C , in the various zones, derived from the Gibbs theory and dilute solute 
approximation as , the second-order differential equations, controlling the carbon 
diffusion in the intergranular cracking regions, can be obtained, analogously to [18]. It is assumed, the steady 
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state crack growth maintains the equilibrium values at the crack center and at the triple point of grain 
boundaries ahead of the crack. The interface conditions find that the chemical potentials and fluxes of carbon 
must be the same at each interface in order to maintain the continuity of the carbon flux. So, it is stated the 
boundary value problem for solution of which some relationships defined in the equilibrium crack growth 
are used. The carbon effect is determined by the ideal work of steady state fracture as 
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the superscript indicates the steady state fracture. The boundary value problem can be solved numerically, 
e.g. by using the Runge-Kutta method. The boundary conditions at the triple points allow to study the effects 
of grain sizes. Then, the model of the steady state crack growth caused by the carbon segregation can be 
added to previously developed modeling of the toughening mechanisms, acting into HTSC structures [3-6]. 
At the same time, the size effects can not be estimated in the cases of the equilibrium slow and fast cracks. 

•

 
 
VOID TRANSFORMATIONS DURING SINTERING AND CRITICAL CURRENT 
 
As it has been shown in [19] the critical current in the monofilamentary Bi-2223/Ag tape, at first, increases 
with annealing time, attains maximum value and then decreases with reaction time. This behavior has been 
connected by authors with action of competing mechanisms, which initially improve the grain boundary 
quality and then lower pinning strength. The last has been explained by the lead expelling during sintering. 
However, during BSCCO/Ag tape processing considerable porosity due to CO2 release can be observed, in 
particular leading to bubbles arising and the critical current decrease. For example, 200 ppm of carbon has 
caused up to 36% porosity in the core of Bi-2212/Ag tapes [12]. In the phenomenological analysis the grain 
growth and corresponding motion of pores located initially at triple grain junctions are assumed. The 
complete separation of a pore from a grain boundary occurs after the pore displacement at two-grain 
interface. It is accompanied by the grain disappearance and coalescence of the triple grain junction pores 
during the grain growth. The motion of the pore together with grain boundary takes place because of 
inducing a flux of atoms from leading to trailing surface of the pore. This approach allows to describe 
different pore motions accompanying grain growth, namely pore drag, shrinkage, coarsening, coalescence 
and breakaway. Though a grain size observed in the monocore Bi-2223/Ag tapes has remained constant 
during various durations (from 40 to 240 hours) of annealing [19], nevertheless, the grain size distribution 
should be different in the various cases. This is supported by considerable lead expelling monotonously 
increasing with annealing time [19]. But then these additions heterogeneously distributed into material can 
inhibit only a local grain growth in the Bi-2223 core. Moreover, the phenomenological analysis has shown, 
that for shrinkage of grain boundary pores and averting of pore separation there are two main conditions: (i) 
a small grain boundary mobility, and (ii) a large boundary diffusivity. However, simultaneously both these 
conditions can only be satisfied in the presence of appreciable addition drag, throughout the grain 
disappearance process. Finally, as it has been shown in the modeling of fracture processes in YBCO the size 
distributions play more important role to compare with the mean sizes [4]. Hence, a preservation of the grain 
size value in the different annealing times, generally does not allow to assert an absence of grain growth and 
microstructural alterations. In discussion of pore breakaway, at first it should be noted, that a pore attached 
to a grain boundary decreases due to grain boundary diffusion, but when the pore separates from the grain 
boundary and displaces into grain, one can shrinkage only thanks to much more slow diffusion of crystalline 
lattice. Further, the steady growth of a pore is possible at the dihedral angles of Ψ < π , and the pore stability 
rises with decrease of Ψ. In Bi-2223 core there is a spectrum of dihedral angles, connected with various 
grain boundary structures which form during processing. This spectrum corresponds to critical size interval 
of pores, as rule located at the low angle boundaries (those especially are character for Bi-2223/Ag tapes, 
where effective misalignment angle between grains is equal to approximately 7.5o [19]). Then, the 
distributions of different diffusivities and grain boundary mobilities exist thanks to heterogeneous 
distributions of additions. The material and structure property changes which suppress pore separations can 
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be estimated by comparing the critical pore size with trajectories of pore and grain sizes at the final stage of 
annealing. The approach developed allows to determine intervals of pore size change for avoidance of pore 
separation. It is most desirable behavior in annealing when grain boundary mobility, initial pore size (a0) and 
boundary diffusivity are very small. In this case a peak size of pore for the process of pore and grain 
coarsening coincides with initial pore size in precursor sample. Then the pore coarsening excludes during 
annealing. In other case, it is necessary to consider processes of optimum pore coarsening and averting of 
pore separation. The phenomenological analysis states that a lower limit for pore separation size, ac, at all 
reasonable values of  a0/R (where R is the grain radius) is given by )3/()3(2 3/12

bbsssc kTMD γγδ Ψ−Ω≈a , 
where Dsδs is the surface diffusion parameter, Ω is the atomic volume, γs and γb are the surface and grain 
boundary energies, respectively, Mb is the grain boundary mobility, k is Boltzmann constant, T is the 
annealing temperature. By selecting above parameters as following [19, 20]: Ω = 2.2∗10-30 m3, Dsδs = 
2.5∗10-21 m3/s, γs = 2γb, Ψmax = π/2, T = 1110K (here some parameters have been taken for Al2O3, because of 
their absence for Bi-2223), we obtain a very high value of  Mb ≅ 7000m/(Ns) even for ac = 100nm. More 
grain mobility is demanded for less pores separated from grain boundary. Obviously, the size of pores which 
can separate from grain boundaries during annealing on some orders of value more than coherence length  
( ≅ 1nm) in Bi-2223. Then, these separated pores can not serve as effective pinning centres and because of 
percolation features they must considerably diminish the critical current. Thus, the lead expelling causes a 
decrease of critical current in long reaction, but rather due to pore transformations occured during 
calcination, than thanks to decrease of the pinning efficiency in the grains, assumed in  Ref. [19]. 
 
So, the solutions obtained in this paper can be used in the finite element formulations by which the stress-
strain states and damage parameters during compaction and sintering of the HTSC powders can be predicted. 
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ABSTRACT 
Damage and dynamic fracture of the piezoelectric medium is an important branch of the 

fracture of smart materials and structures. Some new solutions for the damaged medium with 
micro-crack and micro-void are addressed and several solutions of dynamic fracture, wave 
scattering  of  crack weakened  piezoelectric-medium under mode III and mode I for the 
response of electrical-mechanical impact are given. Two different  boundary conditions of the 
surface for impermeable and perfect electric contact of crack surface are discussed.  

Domain polarization switch near the tip of a flaw plays a critical role on the fracture and 
fatigue behavior of ferroelectric ceramics under electrical and/or mechanical loading. We will 
discuss three types of experiments, and propose the pertinent meso-mechanics models based on 
domain switching to explain the data. 
 
1. DAMAGE ANALYSIS  OF  PIEZOELECTRIC PROPERTIES 
 

             Electromechanical coupling is known to be inherent in piezoelectric materials. They are 
used in actuators and transducers for a variety of applications..By way of Stroh’s formula 
and the property on the root of multiplicit in piezoelectricity, the logarithmic singularity 
at a crack tip in homogeneous piezoelectric materials was investigated by  Qin and Yu 
[ 1 ].Then a plane problem of a crack terminating at the interface between two 
piezoelectric solids was studied by using the concept of axial conjugate the technique of 
singular integral equations [ 1 , 2]. Further, the singular crack tip behavior for 
thermoelectroelastic problems was also studied. By application of Fourier 
transformations and extended Stroh’s formula. Considering the above theoretical results, 
the formulation for estimating effective material  parameters developed for 
thermopiezoelectric solids with microcracks or microvoids of various shapes deduced 
by Qin,Mai and Yu [ 3,4 ].These Models are capable to determinate the effective 



properties such as the conductivity,electrelastic modulu, thermal expansion and 
pyroelectric coefficients. Mori-Tanaka techniques give explicit estimates of the 
effective thermoelectroelastic moduli. Electromechanical coupling is known to be 
inherent in piezoelectric materials. 
 
2. TRANSIENT RESPONSE UNDER MECHANICAL_ELECTRICAL IMPACT  
mode III case 
In applications, piezoelectric materials are often required to resist dynamic loads. The 
anti-plane problems of a finite length crack and a semi-infinite crack subjected to 
sudden electromechanical disturbances can be found in the papers of Chen and Yu 
[5,6,7]. It was shown that the dynamic stress intensity factor(SIF) depends not only on 
mechanical impact, but also on the electrical impact, piezoelectric constants and 
dielectric constants. The dynamic stress intensity factor (DSIF) and the dynamic energy 
release rate (DERR) are shown to depend on the ratio of crack length to strip width and 
the combination of loading parameters.  
 
 
Mode I case 
For Mode I, the results of transient response are shown in Wang and Yu [10] also depend on the 
boundary conditions and the loading parameter λ. Compared with Mode III, the boundary conditions 
tend to couple SIF and EDIF even if the loading is static. DEDIF  exhibits a dynamic behavior 
owing to the more complicated coupling effect. For the crack driving force, the results also show 
that DERR (instead of DSIF) could shed information on crack extension. The dynamic electric 
displacement intensity factor (DEDIF) for Mode I exhibits the dynamic effect such that 
the electromechanical coupling effect tends to weaken the quasi-static approximation 
for electric fields.  
In addition,a problem of propagated Yoffe-crack is solved by Chen and Yu[11],other 
solutions of propagated Griffith Crack can be found in the paper of  Chen,Yu and 
Karihaloo[12]. 

3. SCATTERING OF INCIDENT WAVES BY A DEBONDED PIEZOELECTRIC 

INCLUSION 
 For the scattering of incident waves by a crack, the dynamic stress intensity factor and 
electric field intensity factor were given by Wang and Yu in [6] by application of the 
solutions of singular integral equations. Considered also is the scattering problem of SH 
waves by a debonded piezoelectric inclusion. Two types of material combinations are 
treated, namely, epoxy/piezoelectric and piezoelectric/piezoelectric. Near-field exhibits 
low frequency resonance behavior. Large sub-resonant peaks for the 
piezoelectric/piezoelectric far-field solution appear frequently in the high frequecy 
region[13,14].  
  
4. CRACK TIP DOMAIN SWITCHING AND UNCONVENTIONAL DOMAIN 
PLATE ASSEMBLIES 



Ferroelectric ceramics exhibit peculiar behaviors such as fracture and fatigue cracking 
near defects or electrodes under electric load. Reliability is a major concern that calls 
for a better understanding of their degradation mechanisms. Though the fracture of 
ferroelectrics appears as the outcome of the electrical loading, the crack extension itself 
is driven by stress concentration due to the incompatible switching strain. Recent work 
in [15] explored switch-toughening of ferroelectric ceramics. The intensive electric field 
near a crack tip stimulates local domain polarization switching. The switched domains 
generate incompatible strain under the constraint of un-switched material and 
consequently alter the stress distribution near the crack. To verify the theory by 
experiment, the specimens were poled to eliminate previous domain band structures. 
Cracks are introduced after poling. Lateral electric field was applied to cause field 
concentration near the crack tip. Domain switching occurs near the crack tip and its 
microscopy reveals banded structures [16], Fig. 1. 

 
 

Fig. 1.  SEM showing 90o domain switching zone near a crack tip under lateral electric 
field 

 
The observed band orientation indicates that the domain assembly near the crack tip is 
unconventional, caused by the highly localized crack tip electric field. An energetic and 
kinetic framework is proposed to quantify the parameters for the unconventional 
assembly and to take into account the embryos of domain structures. The elastic 
mismatch energy for a partially switched ferroelectric grain embedded in a 
polycrystalline ferroelectric matrix is formulated as a banded Eshelby inclusion. The 
domain wall energy is derived for unconventional domain structures via arrays of misfit 

dislocations, given a value of 0  for 2J/m023. 90Γ , the  domain wall energy. 

Micromechanics analysis quantifies various characteristics of unconventional domain 
band structures near a crack tip. The orientation of the domain wall is described by: 
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The constraining coefficient C is  for a spherical grain constrained 

in all directions, and  for long cylindrical grains unconstrained along the 
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Substitution of above data, plus , into (3) gives a 

predicted domain wall spacing of 

F/m10593.11800 8
0

−×== εε

m2178.0 µ=t , that is at the same order but larger 

than the measurement of Fig. 1. 
 
5. FRACTURE TOUGHNESS OF POLED FERROELECTRICS 
Experiments are conducted for SENB specimens of polycrystalline ferroelectrics when 
poled in longitudinal, vertical and through the thickness directions. Fracture toughness 
anisotropy is observed: the specimens poled along the longitudinal direction (normal to 

the crack front) has the least fracture toughness of mMPa94.0 ; the ones poled along 

the vertical direction (parallel to the crack) has the intermediate fracture toughness of 

mMPa08.1 ; and the ones poled out-of-plane has the highest fracture toughness of 

mMPa24.1 . The wakes of domain switching serve to raise the apparent fracture 

toughness. A model based on small scale domain switching is described in [17]. For a 
concrete calculation, we take the material parameters for PZT-5 furnished in the 
previous section. The toughening effect is given by: 



Ω−
≈

277.51
intrinsic

IC
KK . (4) 

Under a poling field of , the calculations [15] indicated that  for 
samples poled longitudinally and 

kV/mm5.2 022.0=Ω
044.0=Ω  for samples poled along the height. The 

difference explains the fracture toughness anisotropy reported in the literatures. For the 
case of anti-plane poling, the dimensionless quantity Ω  would be about 0.079 for 
PZT-5 if the specimen were composed of a mono-domain crystal directed in the 
thickness direction. The actual domain configuration under an anti-plane poling of 
strength , however, would lead to rather even polarization distribution 
within a cone from 

kV/mm5.2
45−  to 45 degrees with respect to the thickness direction. Then the 

 value should be scaled by a factor of , and become 0.064.  Ω 2/8 π

An intrinsic fracture toughness of mMPa83.

K

0  is taken to fit three sets of 

experimental data. The present analysis predicts  values of ss mMPa939.0 , 

mMPa081.1  and mMPa253.1  for the specimens poled in the longitudinal, height 

and thickness directions. The switching induced stress intensity factors for the 
ferroelectric specimens poled in different directions quantify our experimental data of 
Fang and Yang [18].  

Vickers indents of single crystal ferroelectrics undergone in-plane or anti-plane 
poling are conducted, the theory of domain switching is able to explain the intrigue 
cracking patterns under different directions of poling, Fig. 2. 

         

 
Fig. 2  Vickers indents for single crystal PLZT after anti-plane and vertical poling 

 
6. FATIGUE CRACK GROWTH UNDER ALTERNATING ELECTRIC FIELD 
The previous work by Cao and Evans reported fatigue crack growth in ferroelectrics by 
an alternate field whose amplitude is beyond the coercive value. By applying an 
alternate field with rectangular waveform, we observed [19] substantial fatigue crack 
growth even when the field amplitude is below the coercive field. Small scale switching 
model was proposed to link the fatigue crack growth to the unique domain switching 
sequence [20]. Our recent experiments indicate the important influence on the crack 
growth rates by the waveforms of the alternating field. For example, by changing the 
rectangular waveform to the sinusoidal waveform, the fatigue crack growth rate will 



reduce about two orders of magnitude. This finding may lead to many possibilities to 
suppress the fatigue growth rates by modulating the field wave patterns. The previous 
model [20] is modified to accommodate the case of arbitrary waveforms. Its prediction, 
without any fitting parameters, is compared with the electric fatigue cracking data. 
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ABSTRACT

Heterogeneity and heterogeneity-induced damage in a high explosive simulant material are studied. In
contrary to common practice, where it is assumed that the uniaxial compression sample is undergoing
homogeneous deformation, we find that the strain field within the sample at each loading level is a
distribution due to the heterogeneous nature of the material. As deformation proceeds, this distribution
evolves, which indicates the initiation and evolution of damage. It is also shown that damage initiation
occurs well before the applied load reaches its maximum value. The driving force that triggers the initiation
of damage is identified and estimated based on a theory that explicitly treats the high explosive as a
heterogeneous composite.
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Heterogeneity, heterogeneity-induced damage, damage initiation, and damage evolution.

INTRODUCTION

High explosive (HE) materials are heterogeneous at the microscopic level and this heterogeneity plays a
vital role in attaining the desired structural response in such areas as strength, stiffness, constitutive
response, and fracture resistance. Consequently, the ability of providing accurate quantitative estimates of
the constitutive behavior and flaw tolerance of HE materials is a direct concern for safety. HE materials,
such as the PBX 9501, are composed by two phases: the energetic crystal and the polymeric binder. Under
uniaxial loading, we found that the responses of the PBX 9501 high explosive in tension and in compression
are quite different. In tension, the PBX 9501 specimen fails at relatively low strain level and failure occurs
in a very narrow band normal to the loading axis. This behavior is similar to that of typical brittle solids. In
compression, failure happens at relatively high strain level. Failure is also accompanied by massive internal
cracking and the majority of the crack is parallel to the loading axis. The Poisson’s ratio, as usually defined,
is found to be an increasing function of the total axial deformation before the load reaches maximum value.
Based on the conventional uniaxial stress test, if the PBX 9501 is viewed as homogeneous, there will be no
driving force to generate the cracks observed in experiments. This concludes that the conventional way of
conducting and interpreting uniaxial stress experiment cannot provide any explanation of what we see in the
experiment. It is the objective of this investigation to observe the initiation and evolution of damage in a



high explosive simulant material under uniaxial compression, and to identify the driving forces that trigger
the damaging process.

MATERIAL DESCRIPTION AND TESTING TECHNIQUE

A high explosive simulant material, referred to as PBS 9501, was used in the present investigation. The PBS
9501 simulant material is composed of 94wt% C&H granulated sugar and 6wt% polymeric binder, which in
turn, is composed by 50% estane and 50% nitroplasticizer.  The reason of choosing such a material is that
PBS 9501 can simulate, at the macroscopic level, the mechanical behavior of the PBX 9501 high explosive,
which is composed by the HMX energetic crystal and a polymeric binder, as a function of strain rate and
temperature. Also, the sugar crystal and the HMX crystal are both monoclinic, so they are similar
microscopically as well. Both the PBS 9501 and the PBX 9501 have the same polymeric binder system.

When a heterogeneous material is subjected to homogeneous boundary condition, below certain length
scale, the deformation field will become non-uniform due to the heterogeneous nature of the material.
Hence, to experimentally study the heterogeneity and heterogeneity-induced damage, one would need a
technique that is able to monitor the full-field deformation throughout the entire sample. We developed an
optical technique called dot-matrix deposition & mapping. In principle, this technique is very similar to the
image correlation method [1], but avoids the ambiguity regarding the reflectivity of the specimen surface
during the deformation process, especially, when damage is involved. Before experiment, a matrix of dot
pattern is deposited on the surface of the specimen and the pattern is photographed at different moments
during deformation. One of such photographs is shown in Figure 1(a). This image is then processed to

identify the exact location of the center of each dot. Based on the coordinates of each dot, an element mesh,
as shown in Figure 1(b), for the moments of before and after deformation can be constructed. By assuming
that each element is undergoing homogeneous deformation, all three in-plane strain components can be
calculated using the coordinates of those four nodes. The field plot for each strain component that
corresponds to the deforming state in Figure 1(b) is shown in Figure 1(c). The formulation for obtaining the
strain components of each element is valid for finite deformation. Therefore, the technique we developed in
this study is able to deal with local large deformation associated with damage.

EXPERIMENTAL OBSERVATIONS

The specimen we studied has a rectangular shape with the width and the thickness of 12.7mm. The height of
the sample is 19.0mm. The specimen was loaded in compression at an equivalent strain rate of
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Figure 1: Dot-matrix deposition & mapping technique.



1 7 10 4 1. sec× − − . The size of the element as shown in Figure 1(b) is about 1 1mm mm× . Based on the
technique described in the previous section, in-plane strain components of each element are calculated at
each loading level. In the following we only present the result for the lateral strain component ε11 .

In Figure 2, the lateral strain component ε11 , at two moments during the early stage of loading is shown.
One plot is a scatter plot showing the strain magnitude of each element and the other is a distribution plot
showing the percentage of elements that experience certain strain. If the material is indeed homogeneous,

every element should deform exactly the same amount at the same time.  Therefore, for a homogeneous
material, all the data points in the scatter plot should fall on a horizontal line, and in the distribution plot we
will only have a vertical line.  However, in Figure 2, we can see that the deformation of the elements is
scattered around a mean value. Also for the early stage of loading the overall shape of the distribution plot
remains the same; only the mean value shifts responding to the overall deformation the entire specimen
being subjected to. The shape of strain distribution, therefore, indicates the heterogeneous nature of the
material. Note that the size of the element is about 1 1mm mm× , which is much larger than the average
diameter of the crystals.

In Figure 3, we study two consecutive moments along the loading curve. At time C, the compressive load is

360N and at time D, the compressive load increases to 432N. During such a small increment of loading, the
distribution of the lateral strain component ε11  exhibits a drastic change that indicates the initiation of
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Figure 2: Strain distribution showing heterogeneous deformation during early stage
of loading.
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Figure 3: Indication of damage initiation in the specimen under compression.



damage within the test specimen. At time C, the shape of the distribution of ε11  is the same as those shown
in Figure 2. At time D, several elements experience a much larger strain compared to the rest of elements.
Two of these elements experience larger tensile strain and other two experience larger compressive strain.
Simple analysis showed that the cracking of a material element under compression causes additional strain
increment in the lateral direction. Therefore, those two elements that exhibit larger tensile strain must also
experience cracking within the elements. At time D, where damage initiation is detected, the compressive
stress σ σ= 0 44. C where σC is the compressive strength of the material. Also, note that the two elements
that experience a larger compressive strain are located next to the ones that exhibit larger tensile strain.
When internal cracking occurs in an element, it will tend to expand more in the lateral direction. As a result,
the element next to the cracked element has to be compressed in order to keep the overall deformation
compatible.

Another observation can be made based on the results shown in Figure 3. At time D, if we ignore the
elements that exhibit larger strains compared to other elements, we find that the distribution of the strain
component ε11  is similar to that at previous moments. This suggests that the damage is confined within the
individual element. On the other hand, if the region of damage extends over several elements, we will see a
change in the overall shape of the strain distributions. This is demonstrated in Figure 4 where strain

distributions at times after damage initiation. As a result, the broadness of the strain distribution provides a
mean for monitoring damage evolution in the specimen.

DISCUSSIONS

Many theoretical investigations were conducted to explain the appearance of the splitting cracks in
compression of brittle solids, e.g., [2]. These theories require pre-existing cracks within the sample.
Although in most of brittle materials, microcracks do exist prior to the loading due to processing, the
accurate description of the distribution of cracks proves to be very difficult if not impossible. Meanwhile,
most of these micromechanical analyses treat the matrix material as homogeneous. From the experimental
observations shown in previous section, we see that the strain distribution clearly indicates the
heterogeneous nature of the material prior to the initiation of damage. It would be more appropriate of
applying a theory, which treats the simulant material as a heterogeneous composite, to study the initiation of
damage in compression.

Ortiz [3] proposed a general framework for the constitutive modeling of concrete starting from the first
principles of mechanics based on the theory of interacting continua or mixture theory, and a rate-
independent theory of damage. An important feature of this framework is that the concrete is treated
explicitly as a mixture comprising two distinct phases: mortar and aggregate. A conclusion of this
framework is that the externally applied stresses distribute unequally between the two phases. The average
stresses acting in mortar and aggregate must jointly equilibrate the applied loads but may be vastly different
from each other. Here we will adopt a very simple version of this mixture theory to show that purely
compressive uniaxial load will induce tensile stress normal to the loading axis within the crystal, and the
tensile stress is high enough to initiate damage before the overall compressive load reaches its peak value.
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Figure 4: Indication of damage accumulation and evolution in the specimen under
compression.



Consider a material element where the volumetric fractions of the crystal and the binder are f1  and f2 ,
respectively. Let σ1 and σ2  be the average or phase stresses acting in crystal and binder, and σ  the applied
stress. The requirement that σ1 and σ2  jointly equilibrate σ  can be expressed as

σ σ σ= +f f1 1 2 2 . (1)

In order to make it more apparent about the fact that lateral tensile stress can be induced when HE material
is subjected to uniaxial compression we consider a “virgin” HE specimen and assume that both crystal and
binder are isotropic and elastic. As a result, the phase stresses σ1 and σ2  can be related to the applied stress
σ  through

( )σα
α α αµ

µ
σ δ µ

µ
σij mm ij ij

k

k
= −







+1
3

, α = 1 2, , (2)

where kα  and µα  are the bulk and shear moduli of each constituent and k  and µ  are the bulk and shear
moduli for the composite. Under uniaxial compression, where external stress is characterized by
σ σδ δij i j= − 1 1 and σ > 0  is the magnitude of the applied compressive stress, the phase stress within crystal

σ1 has the following form
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Experimental measurements have shown that the binder material is almost incompressible, i.e., its Poisson's
ratio ν2 0 5≈ . .  Then, one can show that
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, (4)

where ν1  is the Poisson’s ratio of the crystal, E1 and E2  are the Young's modulus of crystal and binder,
respectively. For the simulant material PBS 9501, f1 0 96≈ .  and the Poisson's ratio of crystal ν1 0 2≈ . .
Meanwhile, within a wide strain-rate regime, the ratio of E E2 1/  is in the order of 10-3. As a result, the
second term in the braces of the above expression is negligible that leads to σ σT / / .≈ =1 3 0 351f . One can
also show that the lateral stress within the binder is almost zero.

In a typical uniaxial compression test of the PBS 9501, the apparent stress-strain curve is shown as the solid
line in Figure 5. The applied uniaxial stress is a monotonic increasing function of the axial strain before
reaching the maximum value. After this point, stress decreases gradually as the deformation continues to
proceed. If we take a crystal element from the compressive sample, the phase stress within the crystal is
characterized by σL , compressive and parallel to the externally applied load and by σT , tensile and normal
to the loading axis. The variation of the lateral tensile stress σT  is shown as dash-dotted line in the figure.
Experimental measurement also showed that the tensile strength of the PBS 9501 material is only about
15% of its compressive strength. If we assume that in tension, failure is mainly due to crystal cracking, we
may conclude that microcracks start to develop in crystals when σ σT C≈ 0 15. . The onset strain for
microcrack initiation within the compressive sample is indicated by the vertical dash-line in the figure.
Therefore, damage initiation would occur when the compressive stress σ σ≈ 0 42. C . This prediction matches
the experimental observation shown in Figure 3 very well.

Immediately after damage initiation, microcracks within the sample are so few that they do not interact with
each other. The enlargement of those cracks remains stable due to stress redistribution between crystal and
binder, and the applied stress keeps increasing as deformation proceeds. However, when the size or the



density of microcracks becomes large enough that the stress redistribution cannot ensure stable crack growth
any more, unstable crack propagation follows and this is the direct cause of the characteristic descending
branch of the uniaxial compressive stress-strain curve in Figure 5.

In this study, damage initiation and evolution in a high explosive simulant material are observed
experimentally. Such damage is the direct consequence of heterogeneity, or the significant mismatch of the
elastic constants between crystal and binder. The mixture theory, which explicitly treats the material as a
heterogeneous composite, correctly predicts failure in uniaxial compression sample without resorting to any
other artificial mechanisms.
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ABSTRACT 
 
The approach to a life time prediction presented in this paper is based on the review the of data received 
from laboratory realised low cyclic creep fatigue experiment with respective nickel base superalloy. The 
cyclic creep fatigue tests were run with relatively simple trapezoidal wave loading at temperature of 650°C. 
The tensile hold periods imposing on the fatigue stress have been introduced into load control low cycle 
fatigue. The time to failure, the time to failure corresponding to maximum applied load, and number of 
cycles to failure have been the criteria to evaluate the deformation behaviour of alloy subjected to creep 
fatigue loading. To make an attempt of alloy life prediction to the respective types of applied load the 
modified Kitagawa’s the linear damage criterion has been used. The two regression functions for respecting 
applied hold time interval were expressed to calculate the time to failure. The formulae can be used to 
predict the life of nickel base superalloy subjected to cyclic creep loading.             
 
 
KEYWORDS 
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INTRODUCTION 
 
Various components of industrial gas turbines and aircraft experience periods of both fluctuating and steady 
stress, due to complex situation of mechanical and thermal stress. Those components are subjected to operate 
under complex stress conditions, involving creep, fatigue and thermal fatigue. In deformation process both 
creep and fatigue can contribute to material damage. It was recognised that static creep and/or conventional 
fatigue test conditions approach cannot always assess the deformation process and life of the component.  
 
In the past two decades considerable effort has been brought to characterise the deformation process of 
nickel base superalloys that were stressed under the conditions of time-dependent load at elevated 
temperatures [1,2,3,4]. In such cases both creep and fatigue can contribute to degradation of the material The 
hold periods constitute the creep stress component in the fatigue cycle. Deformation characteristics under the 
creep-fatigue stress can differ considerably from those of the static creep. 
 
The study presents results gathered at deformation process of wrought nickel base superalloy EI 698 VD 
subjected to creep fatigue loading. The evaluation of deformation process and the life prediction of the alloy 
were done in relation to the hold periods introduced into low fatigue stress cycle at upper stress level. The 



service life prediction in relation to the respective type of applied stress is expressed by modified Kitagawa’s 
criterion being suitable for static and cyclic creep.  
 
EXPERIMENTAL  
 
The wrought nickel base superalloy EI 698 VD was selected as an experimental material. This alloy is 
suitable for  manufacturing of discs and shafts of aircraft engines operated at temperatures up to 750oC. 
Chemical composition of the alloy in mass % is as follow: C max. 0.08, Cr 13-16, Mo 2.3-3.8, Nb 1.8-2.2, 
Ti 2.3-2.7, Al 1.3-1.7, Fe max. 0.2, balance Ni. Microstructure of alloy after finishing heat treatment consists 
of  the equiaxed grain structure strengthened by coherent gamma prime precipitates. The alloy also contains 
MC and M23C6 carbides that do not contribute substantially to the strengthening.   
 
The tensile stress cycling load controlled tests were conducted at temperature of 650°C. The cyclic creep 
tests were of trapezoidal wave pattern. The seven different hold times ∆t = 0 (pure fatigue), 1, 3, 7.5, 15, 30, 
and 60 minutes at peak stress σ = 740 MPa were introduced in the tensile part of the load cycle. The net 
effect of these hold times is to systematically impose a creep stress component on the fatigue load cycling. 
The cycling frequency range was between 5.5 x 10-3 and 2.7 x 10-5 Hz and stress ratio R = 0.027. The stress 
ramp rate in one cycle, either during on-load or the off-load period, was 7.4 kN/min. No hold time was 
maintained at reduced load level of 20 MPa. The specimen longitudinal deformation, the failure lifetime or 
total time of the cyclic test, the number of cycles to failure, and the time at maximum load during cyclic test 
were recorded and compared with static creep.  
 
RESULTS AND DISCUSSION 
 
The results on the total time to fracture (TTF), time corresponding to maximum load (MLT), and numbers of 
cycles to failure (NCF) received at the cyclic creep experiment are summarised in Table 1.  
 
 

TABLE 1 
EXPERIMENTAL DATA RECEIVED AT CYCLIC TEST 

 
Parameter Hold time  [minute] 

 fatigue creep 1 3 7.5 15 30 60 
TTF [min] 44 268 2 500 54 972 18 942 30 300 13 896 5 662 3 406 
MLT [min] - 2 500 10 741 8 003 19 591 10 911 4 981 3 188 
NCF [min] 22 120 - 10 778 2 668 2 612 728 166 53 

εf 3.2 6.3 3.3 3.5 3.6 3.1 3.9 6.9 
 
The strain-time to failure dependencies, measured when strain was at the maximum load, corresponding to 
the initial stress of 740 MPa, for all hold times are illustrated in Figure 1. The low cycle fatigue test and 
static creep test results were conducted as well, and results are stated also in Table 1. As can be seen from 
the diagram in Figure 1 the introduction of stress reduction introduced into the creep process, and/or the 
introduction of cyclic stress component in static creep, resulted in life increase and decrease in the strain rate 
ε of the alloy in comparison with static creep. The time to failure was proportionally extended with 
decreasing of the hold period. 
 
In order to evaluate the creep fatigue resistance of tested nickel base superalloy the time criteria, such as 
time to failure or time to failure corresponding only to the maximum applied load can be used for this 
purpose. The evaluation of deformation behaviour according to the time to failure corresponding to the sum 
of hold periods at maximum load (MLT) is presented in Figure 2. The corresponding hold period of ∆t = 7.5 
minutes at maximum load seems to have specific influence on the deformation behaviour of alloy. Probably, 
in the cyclic creep with the hold time shorter than 7.5 minutes, in damage process more fatigue would 
participate at crack nucleation and its propagation. If  hold  time  is over this  critical dwell the life prediction 
dominating role in damage process would be taken over by creep. Comparing these   results   with the results 
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re 1:  Strain-time to failure dependencies                                   Figure 2: Plot of  time to  failure corresponding  to 
                                                                                                                      applied load as the function of  hold time 

ved on total time to fracture, the contradiction appeared. The longest life was corresponding to the test 
 hold time of ∆t =1minute. In case that total number of cycles to fracture was the criterion to evaluate 
eformation behaviour of the alloy the plot representing the dependence is documented in Figure 3. 
rdless the fact that there is observed continuous decrease in number of cycles to failure with increasing 

 time ∆t the relationship can not be interpreted generallyy as prior creep damage effect on the fatigue 
anisms and/or as influence of creep on cycles reduction. The main reason not to follow such 

pretation is the fact that creep damage which is time-controlled process will simply dominate at longer 
 times. That is why it would therefore be illogical to explain such behaviour to apply the concept of the 
r damage mechanism to influence the minor one. Besides that, the resulted number of cycles to failure 
h showed continuous decreasing tendency with increasing hold time just it does not need to be the result 
eep fatigue interaction. It can be accepted only as pure mathematics relation between time to failure and 
sponding cycles number causing the creep damage. 

 
her interesting result of experiment was observed in case of applied hold times of ∆t =3 and 7.5 
tes. The resulted number of cycles to failure showed very small difference. To verify the finding these 

 were repeated and results were proved to be correct and were not an effect of random data scattering.     
idering this fact, the explanation on such deformation behaviour could be based on the balanced  creep 
atigue participation in damage at these applied hold times.   

application of stress of reductions in creep turns the respective process into a cyclic deformation process 
e besides time-controlled creep process also fatigue process would participate in damage process. The 
xtension, observed when the hold periods were introduced in cyclic process would have been a result of 

ral additional aspects contributing to deformation process and modifying it. Among these aspects might 
cluded, the alternating stress higher and lower than the yield point for the respective stress amplitude, 
ffect of introducing the cyclic deformation onto the creep process and vice versa, repeated storage of 
sible anelastic creep deformation preceding the process of irreversible creep, and recovery of the stored 

rmation energy and release of anelastic deformation in time of the offs of the load. In this respect these 
 make more difficult the prediction of life for actual test condition. It is known that during the creep 
ue the each other stress component mutual interactions are involved in damage process. However, in 
r to predict the cyclic service life of structural part there is not need to have knowledge how to estimate 
ndividual creep and fatigue stress contribution in deformation process. For effective evaluation of their 
ibution would be more convenient to incorporate both of them into the one parameter. 

redict creep fatigue life of an alloy under considered laboratory test condition the linear damage 
ation rule [5] would be hardly appropriate to use  it  in case  when  creep  damage  may arise due to the 
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Figure 3: The dependence of hold time  on the                                       Figure 4: Frequency dependence of  k parameter 
                 number of cycles to failure  
                     
cyclic loading condition. To separate the creep caused by the applied stress and the creep damage caused by 
the strain accumulation the equation of Kitagawa et al. [6] which is a modification of the linear rule of 
damage accumulation is more practical to use. The Kitagawa’s equation can be written than in the following 
form where the frequency dependence of a parameter is assumed: 
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where N is total number of cycles to failure, Nf is number of fatigue cycles to failure corresponding to pure 
fatigue, t is the total time to failure at cyclic creep, statε  is creep ductility, and a is Kitagawa parameter is 
considered to be frequency dependent, i.e. expressing a process frequency dependence.  
 
This equation assumes explicitly that the creep life modification under the cyclic creep condition, however, 
it fails in evaluation  of fatigue degradation by creep, i.e. by the time-dependent process. The parameter  a 
 can  be  expressed as  a = 1 – 1/k. Parameter k determines the difference in a material life exposed in 
condition of cyclic creep and can be stated as k =t /trcyc stat., where is the life corresponding to the 
conditions of cyclic creep when only creep process is considered, and t

rcyct
stat is life corresponding to the course 

of static creep. Regarding these parameters the equation can be adjusted to the following form: 
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The equation expresses the simplest modification of the linear damage summation rule that enables to 
evaluate the creep fatigue interaction when life increase is involved. The only limitation of using it for life 
evaluation was an assumption that creep damage resulting from hold period and from on-load and off-load 
period in one cycle was taken equal. To summarise the creep damage resulting from fluctuating load, creep 
damage resulting from constant load and fatigue damage the modified equation can be written as: 
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where N -applied cycles number, Nf  -cycles to failure under fatigue, Nc -number of cycles representing pure 
creep when fluctuating load is applied, th -sum of holds at maximum load, tf -time to  failure at applied  static 
creep, k –parameter to characterise the different behaviour of material under cyclic and static creep.   



If we consider the cyclic creep as deformation process where fatigue and (cyclic) creep participate there with 
respect to time-controlled degradation, then the resulting degradation should arise due do superposition of 
these contributions. Of course, we cannot generalise this assumption to whole frequency reductions interval 
of the applied stress because at low frequencies of load reduction exclusively simple static creep would 
control the degradation process only. That is why any important changes between the parameters tcyc  and  
tstat can not be expected and there a continuous transition them must exit due to the change in stress reduction 
frequency. Kitagawa resolved the problem of a parameter frequency dependence by introducing a third 
member into the equation 1. In order to validate this equation over the entire frequency interval the limitation 
on admission only a negligible contribution resulting from cyclic deformation to total deformation must be 
introduced. It would be therefore more advantageous, to satisfy above limitation, to use only the first two 
terms of  Eqn. 2 and to assume the frequency dependence of the k parameter. However, in order to simplify 
the calculation procedure the creep process was separated in to the periods of hold time and periods of 
ramping time and the number of cycles was formally used as a parameter of damage, although time-
controlled process was involved. After these adjustments and using the data for creep life corresponding to  
maximum load and data from pure fatigue test to calculated the number of cycles to fracture corresponding 
to fluctuating load the following equation was received for applied loading: 
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The realised laboratory test did not provide the satisfactory data for precise determination of the time during 
which the creep at static load does not contribute to damage accumulation. However, according to the 
deformation dependencies in Figure 2 it can be assumed that hold times of ∆t =1 and 3 minutes are involved 
to comply with this assumption. In order to guarantee the stated prediction, the calculation was based on an 
extreme hold limit that is for  ∆t = 1 minute, when the effective period of static creep will be the longest. 
After subtracting this value from applied hold time the effective hold times related to maximum load were 
calculated and they are presented in Table 2. 
 

TABLE 2 
FRACTURE EFFECTIVE DWELL TIME AT THE MAXIMUM LOAD 

 
∆t 1 min 3 min 7.5 min 15 min 30 min 60 min 

MLTef 0 5 335 16 979 10 183 4 815 3 153 
 

To substitute this effective hold time to Eqn. 4 and utilising additional experimentally obtained data the 
k parameter and a parameter as a function of hold time at the maximum load was determined. The results of 
this calculation are presented in Table 3. 
 

TABLE 3 
PARAMETERS k AND a AS A FUNCTION OF HOLD TIME 

 
∆t 1 min 3 min 7.5 min 15 min 30 min 60 min 
k 1.03 2.62 7.5 4.2 1.95 1.25 
a 0.03 0.62 0.87 0.76 0.48 0.2 

 
It was already stated that k and a parameters are frequency dependent. The frequency dependence of  
k parameter can be related to frequency dependent process corresponding to, for example, the ability of 
storing and recovery of anelastic creep deformation. It is possible to assume that, in process of cyclic creep it 
should be a defined frequency at which the maximum dissipation of deformation energy resulting from the 
storing and recovery of anelastic creep deformation will be reached, because the frequency effect was 
introduced into the loading process as a result of different hold periods. Another possible example of the  
k parameter frequency dependence is equilibrium frequency dependence of hardening and softening process  
due to stress relaxing in off-times. The frequency dependence of k parameter, which was introduced into 
process by load reduction or by introduction of hold time onto low cycle fatigue, is presented in Figure 4. 



To model the life prediction behaviour of alloy the modified Eqn. 4 of the linear rule of damage was used. 
For applied load – temperature conditions to calculate the time to failure (MTF) as a function of the applied 
hold time th at the maximum load with respect to a and k parameters the following explicit formula was 
determined: 

                                                                MTF = ( )
( ) 6875.41375.24

5.60937
+−h

h

t
tk  th                                                              (5) 

 
For other parameters, which may be suitable for life prediction, the following relations were calculated:  

 
                                     NCF = MLT/th     and       TTF = MLT + 4 NCF                                   (6)       

 
To calculate the k parameter values it is not easy to find the regression function, which would describe its 
value with good reliability for whole interval of the applied hold times. That is why for interval of used short 
hold times th < 7.5 minutes and for interval of longer hold times, interval th > 7.5 minutes the different 
regression function has been used. The discontinuity at the boundary of the interval corresponding to hold 
time of ∆t = 7.5 minutes in plotted curve presenting the alloy model life prediction was the result. For the 
shorter hold time regression function of k  = 1.0105 th – 0.1567 and for longer hold time k = 44.53 th

-0.8862  

were determined.    
   
If these regression functions expressing the k parameter dependence on hold time would be substituted into 
the equation (5) the following formulae for life prediction, to differentiate the effect of shorter and longer 
hold time on superalloy behaviour subjected to cyclic creep would be resulting: 
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The graphic presentation of the model life parameters prediction MTF and NCF for defined testing condition 
of cyclic creep using the Eqn. 6 and Eqn.7 are shown in Figure 5 and Figure 6.   
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  Figure 5:  The plot of alloy model life prediction                                   Figure 6:  Model prediction dependence of number 
                    in condition of cyclic creep                                                                      cycles to fracture as function of hold time   
 
CONCLUSION 
The application of short repeated reductions of the applied stress of 740 MPa to reduced stress level of 20 
MPa resulted in change of deformation behaviour of alloy. By introduction of stress reductions onto creep 
the decrease of strain rate was observed and it was followed with life increase in comparison to static creep. 
For the laboratory tests condition the modified linear rule of damage summation was used to model the life 
prediction. The formulae differenting the effect of hold time at the applied maximum load with respect to 
a and k frequency dependent parameters to calculate time to failure were determined. These formulae 



respecting the applied hold time interval and introducing limitations they can be used to predict the life of 
nickel base superalloy subjected to cyclic creep loading.  
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Abstract 
     The effect of high temperature damage progression on crack growth and the life were clarified 
under creep –fatigue interaction and multiplication conditions. The following results were 
obtained.Damage progression behaviors initiated around a notch tip show different 
characteristics depending on applied load frequency and creep ductility. It dominates the life of 
creep crack growth and high temperature fatigue fracture toughness. 
 
Key words: creep-fatigue interaction and multiplication, damage, crack growth rate, crack growth 

life, SUS304stainless steel, Cr-Mo-Vsteel 
 
 
1. Introduction 
 
     To clarify the effect of high temperature creep and fatigue interaction on the characteristics of 
crack growth behavior is important as a problem of phenomenal matter and to predict the life of 
crack growth. As a method of clarification of these matters, the characteristics of the effect of load 
frequency(f) on crack growth rate and the life are separately estimated into time dependent and 
cycle dependent mechanism[1-3]. Furthermore, the crack growth life is dominated by creep and 
fatigue damage under high temperature condition[2,3]. To clarify the characteristics of damage 
progression, the machine system was designed to enable automatic observation of the mechanical 
behavior of deformation and damage progression around a crack tip during fatigue and creep 
loading under computer control and some results have been obtained for SUS304 and Cr-Mo-V 
steels[2-4]. 
     In this paper, on the basis of these results, the effect of high temperature damage on crack 
growth rate and the life were clarified and some analyses were performed. 
 



 
2. Testing method and specimens 
 
     The machine system was designed and developed to enable automatic real-time observational 
experiments with CCD microscope. This microscope can be moved in x, y and z direction with a 
specified displacement value and time interval under computer control. It can take pictures of 
deformation and damage progression around a crack tip. These pictures are digitized and 
analyzed by computer image analytical system. 
A specimen is a V type double notched specimen with 4mm width and 1mm thickness. Notch 
opening angle is 30゜and notch tip radius,ρis 0.05mm. Experiments were conducted under the 
vacuum condition of less than 10-5torr.Detailed method was written in another literatures [5-7]. 
 
 
3. Damage progression characteristics of SUS304 stainless steel under creep, fatigue and 

creep-fatigue interaction and multiplication 
 
     Behavior of damage progression around a notch tip under high temperature creep-fatigue 
interaction for various values of load frequency, f were plotted against non-dimensional time as 
shown in Fig.1 Where D is damage area, tf is fracture life for each specimen. These results show 
remarkable extension of creep damage is observed before creep crack initiation and after that, it 
saturates to some specified value. Under fatigue condition(1Hz), however, damage area is small at 
the stage of crack initiation, it lineally increases after crack initiation. This behavior is different 
from that under creep condition. Even though f decreases, this behavior does not saturates to that 
under creep condition as shown in the result for f=0.0017Hz. 

Fig. 1
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 Behavior of damage progression around a notch tip under high
temperature creep-fatigue interaction for various values of f. 
observation of damage progression behavior under creep and fatigue 
 Figs.2 and 3. The dark region around a notch tip is damage region. 

 the horizontal direction. Under creep condition, damage spreads over 
 and notch opening displacement becomes large. 
the case of fatigue condition with 1Hz, damage localizes around a crack 



and the value of crack opening displacement is smaller than that for a creep crack. Even though f 
decreases, for example, f=0.0017Hz, this fatigue effect is also observed in the morphology of 
damage region. 
 

            
 Fig. 2 The results of in situ observation of

damage progression behavior under
creep condition. 

Fig. 3 The results of in situ observation of 
damage progression behavior under 
fatigue condition (f=1Hz). 

 
 
 
     The characteristics of damage progression behavior under creep and fatigue multiplication 
conditions with stress hold time, tH were plotted against non-dimensional time as shown in Fig.4.  
 

 
 Fig. 4 The characteristics of damage progression behavior under

creep and fatigue multiplication conditions with stress
hold time, tH. 

 
 
 
These results show, with increase in tH, that is, tH≧9s, the characteristic is in good agreement with 
that under creep condition and the definite transition from fatigue to creep occurs, which is 
different from the characteristics of f under fatigue condition(creep-fatigue interaction). 



 
4. The characteristics of f on crack growth rate(CGR), its life and fatigue fracture 

toughness under creep-fatigue interaction and multiplication condition for SUS304 
stainless steel 

 
     The effect of f and stress hold time on CGR and its life were plotted against f(=1/(tH+2tR) as 
shown in Figs.5(a),(b) and 6(a),(b). Where tR is stress increasing and decreasing time. The 
characteristic of f on the life of each crack growth is qualitatively in good agreement with each 
characteristics of f on the low CGR when a crack starts to grow. Furthermore, even though f 
decreases, the characteristics of f on CGR and inverse value of the life do not saturate to those 
under creep condition and it was affected by fatigue effect as shown in Figs5(a) and (b). 
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intensity factor when final fracture occurs) was shown in Fig.8 which shows good correlation 
each other. That is, Kfc is found to be dominated by Da. 
     Therefore, under creep-fatigue interaction, low CGR, crack growth life and Kfc are found to be 
dominated by Da. These results were observed also for the case under creep-fatigue 
multiplication condition, that is, tH effect. These results show damage progression behavior in the 
initial creep crack growth region dominates the crack growth life and Kfc

 under high temperature 
creep-fatigue interaction and multiplication conditions. 
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It is well represented by concave damage law based on Kachanov-Rabatonov theory[9,10] given 
by eqn.(1). These characteristics are different from that for SUS304 stainless steel as shown in 
Figs.1 and 5. This will be due to the difference of creep ductility between Cr-Mo-V and SUS304 
steels. These results show Kachanov-Rabatonov law will be applicable to that for creep ductile 
materials such as Cr-Mo-V Steel. 

7/1)1(1
ft
tD −−=            (1) 

 
6. Conclusions 
 
 Under creep-fatigue interaction and multiplication conditions, damage progression behavior 
initiated around a notch tip show different characteristics depending on applied load frequency 
and creep ductility. It dominates the life of creep crack growth and high temperature fatigue 
fracture toughness.  
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Abstract 

 
We report on the unusual deformation behavior of  [001] single crystals of NiTi alloys in 
compression. Two compositions of NiTi with Ni contents (50.8 and 51.5% at. Ni) were examined. 
Pseudoelastic deformation occured   at both 25°C and 167°C in compression loading. The  reason for 
the higher pseudoelastic behavior temperature range is attributed to the suppression of slip due to the 
lack of favorable slip systems in the [001] orientation.  The results point  that with suitable orientation  
control the pseudoelastic behavior can be extended  to high temperatures. The transformation strains 
for the 50.8% at. and 51.5% at. Ni alloys were established via temperature cycling under compressive 
stress as 4.0% and 2.5% respectively. The 50.8%Ni results compared favorably with the theoretical 
prediction of 4.38%. 
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Introduction 
 
The NiTi alloys are a special class of materials which exhibit reversible transformations from 
austenite(B2) to martensite (B19’)  and  then martensite (B19’) to austenite (B2).  The transformation 
can be induced via a change in temperature  or the application of stress at temperatures exceeding the  
martensite start temperature, Ms . In both cases the transformation depends on the crystal orientation, 
and the loading direction because the habit planes associated with the transformation  are of low 
 1



 2

symmetry and the transformation is directional. Most experimental work confirm that Type II <011> 
twins have been established in the B19’ martensite  [1]. Theoretical calculations have been carried out 
to predict the twin types and the associated habit planes[2]. It has been shown [2] that if slip 
deformation occurs during transformation, this reduces the transformation strains. The slip 
deformation occurs readily with loading along certain crystal orientations but is difficult in specific 
orientations. The [001] orientation can not slip due to the  lack of available slip  systems. 
Experimental studies [3] have shown that <001>{100} and <001>{110} are the dominant slip systems 
in the B2 phase of NiTi alloys.  Also, the B2 phase has been shown to undergo twinning at  high 
temperatures [3]. Therefore, the [001] orientation is particularly attractive to achieve transformation at 
elevated temperatures where slip restricts the transformation.  
 
Another factor that plays a significant  role in the transformation process is the presence of 
precipitates in the material.  These precipitates  lower the transformation stress (in the peak aged 
condition) due to the coherency stress fields. In the overaged case, they provide barriers to dislocation 
motion  and also reduce the Ni content in the matrix domains increasing  the martensite  start and 
austenite finish temperatures. For example, for the 51.5%Ni alloys the martensite start temperature 
increases from <-200°C (77K) in the solutionized case to –37°C ( 236K)   for the overaged case. The 
increase in martensite start temperature with aging for the 50.8% is less dramatic and this increase is 
from  -98°C (175K) in the solutionized case  to  -55°C(218K)  for the overaged case.  
 
The purpose of the present work is to demonstrate the stress-strain response of binary NiTi single 
crystals with two different compositions under compressive loads. By choosing the orientation ([001]) 
that minimizes slip deformation, both compositions exhibited pseudoleastic deformation behavior 
over a temperature range near 200°C which is a factor of two higher than  the early works  in NiTi 
alloys [4]. The paper also establishes the transformation strains upon temperature cycling under stress 
for the 50.8% at. Ni and 51.5% at. Ni compositions as 4.0% and 2.5% respectively. These 
experiments also provide insight into the martensite and austenite start and finish temperatures for the 
two compositions under thermomechanical loads. 

 
 

Experimental Results  
 
Single crystal Ti-50.8 and 51.5% at. Ni samples were prepared from ingots cast by Special Metals Co.  
The single crystal samples were grown by the Bridgman technique in an inert gas atmosphere. The 
orientation of single crystal specimens was determined by using electron back-scattered diffraction 
patterns. Solutionizing of the specimens was conducted at 1000°C(1273K) for  2 hours in an inert gas 
atmosphere. Then, the  specimens were aged at 550°C(823K) for 1.5 hours and  this treatment is 
designated as ‘overaged’. The precipitate size is in the range 300-400nm for the 50.8%Ni case while it 
is about 750nm in the 51.5%Ni case. The introduction of Ni near 51.5% increases the volume fraction 
of the precipitates considerably with concomitant  increases in  overall strength of the austenite and 
martensite phases. Figure 1(a) is transmission electron microscopy (TEM) bright field image that 
illustrates the precipitates. There are four variants of precipitates but only two are visible under the 
imaging conditions employed to record this picture. In Figure 1(b) the precipitates after the same 
aging treatment are shown for the 50.8%Ni composition.  
 
There are two ways to evaluate the behavior of transforming alloys. The first method is to investigate 
the stress-strain response under loading and unloading at a constant temperature. The second method 
is to cycle the temperature under constant stress and monitor the strains. In Figure 2, the stress-strain 
response at 25°C(298K) and 167°(440K) is shown for the 51.5% at.Ni and 50.8% at. Ni  cases. The 
loading and unloading paths are illustrated with the arrows. Three observations are noteworthy. 



Firstly, the strength levels where pseudoelasticity is observed extends to stresses as high as 1500MPa 
at 440K which is unusually high for NiTi alloys. Secondly, pseudoelasticity is observed at room 
temperature 25°C as well as at 167°C for both compositions with pseudoelasticity of 100% for the 
51.5%Ni composition. Thirdly, the transformation region in 50.8%Ni material extends to higher 
strains compared to the 51.5%Ni case as seen in the 25°C data. This point is further elaborated in 
Figure 3. 
 
In Figure 3, the strain-temperature behavior is presented under temperature cycling conditions. The 
strain temperature path is illustrated with the arrows upon cooling and heating. The transformation 
strains for 50.8% and 51.%Ni compositions were determined as 4% and 2.5% respectively. The 
stress  level was maintained constant during the experiments. This stress level was chosen high 
enough to produce the growth of the most favorably oriented variant with respect to others and low 
enough to minimize inelastic deformation and ratchetting of the strains during thermal cycling. Some 
ratchetting in the compressive strain direction has occurred in the 50.8% Ni case (Figure 3) and this 
is subtracted from the overall strain range to determine the transformation strain.  The stress levels 
applied for the two compositions differ considerably, and the level of stress is primarily dictated by 
the flow properties near the martensite start temperature.  Since the resistance to transformation is 
lowest near the Ms  temperature, the application of high stress levels near Ms  could produce inelastic 
flow altering the transformation strain trends. The transformation strains from these experiments are 
summarized in Table 1 where the theoretical value for transformation in compression for the [001] 
orientation is also listed as 4.38%.  
 
We note that  the martensite start temperatures can be determined accurately  from Figure 3 by 
observing the rapid change in strain with spontaneous transformation. The levels are near -28°C for 
the 51.5%Ni and –47°C for the 50.8%Ni case. These results are consistent with the slightly lower 
transformation stress observed for the 51.5% at. Ni case in Figure 2 compared to the 50.8%at. Ni 
case. Some degree of difference between DSC and the transformation temperatures under stress is 
expected based on the thermodynamics considerations as well as the preferred variant formation 
corresponding to the stress-induced transformation. A comparison of the transformation temperatures 
based on the DSC measurements and the strain-temperature tests are compared in Table 3. We note 
that the Ms  temperatures for the 51.5%Ni is consistently higher compared to the 50.8%Ni case using 
both the DSC and the strain-temperature measurement techniques. The austenite finish, , 
temperature is slightly below room temperature for most cases producing a single crystalline cubic 
structure at room temperature.  

Af

 
 

Summary  
 
The stress-strain response of aged NiTi alloys with two different Ni compositions is reported. It is 
noted that both NiTi compositions  exhibit  pseudoelastic deformation over an unusually high range 
of temperatures. Theoretical calculations of transformation strains have been undertaken in our 
previous study [2] and the result is provided in Table 1 as 4.38%.  This is in close agreement with the 
experimental values obtained for the 50.8%Ni case. The transformation strains for the 51.5% Ni case 
are 2.5% which is lower than the theory. This difference can be explained based on the high volume 
fraction of precipitates which are untransformable. The results of the temperature cycling 
experiments were particularly insightful because they pointed out the transformation temperatures 
under stress and relative hysteresis in the two materials. The results in Figure 3 confirm that the 
material is in the fully austenitic state at room temperature and also that the hysteresis in the 50.8% 
case is significantly higher than the 51.5%Ni composition.  
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We note that the stress-strain response shown in Figure 2 does not exhibit a flat plateau region over 
which transformation occurs. Instead, the stress levels increase continuously during the 
transformation.  This behavior has been observed in previous studies and point out the presence of 
multiple variants of martensite during transformation which mutually interact and increase the 
difficulty for further transformation. The complete reversibility of transformation was observed for 
the T=25°C (298K) cases and the T=167°C (440K) 51.5%Ni case. For the T= 167°C (440K) 
50.8%Ni case the transformation is partially recoverable while it is fully recoverable for the 25°C 
(298K) case.    
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TABLE 1 
EXPERIMENTAL VALUES OF TRANSFORMATION STRAINS COMPARED WITH THE THEORETICAL VALUE IN 

[001] COMPRESSION 
 

Material Transformation strain,  [001] Compression 
NiTi 4.38%- Theoretical [ 1] (Type II-1 twinning)
51.5% at. Ni-Ti 2.5%-   Experimental (Figure  3) 
50.8% at. Ni- Ti 4.0%-   Experimental (Figure  3) 

 

 

      TABLE 2 
SUMMARY OF TRANSFORMATION TEMPERATURES FROM THE DSC MEASUREMENTS AND FROM THE 

STRAIN-TEMPERATURE RESPONSE UNDER STRESS 
 

  Ms  Mf  As  Af  
51.5%Ni at. -37°C -51°C 11°C 25°C DSC  
50.8%Ni -55°C -42°C -7°C 2°C 
51.5%Ni -28°C -47°C -6°C 3°C Strain- 

Temperature Tests 50.8%Ni -47°C -65°C -20°C 15°C 
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Figure 1: The Microstructure of the (a) 51.5% at. Ni and (b) 50.8% at. Ni NiTi alloys in the overaged 
state 
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Figure 2: Compressive stress-strain response of 51.5% and 50.8Ni NiTi alloys at 25°C(298K) and 
167°C(440K)  in the [001] orientation. 
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Figure 3: Strain-temperature behavior of two NiTi compositions under temperature cycling with a 
constant compressive stress. 
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ABSTRACT 
 

Description of an evolution of damage, spread in bulk of material, remains for the time being a complex 
problem. The fracture mechanics approach is not capable to deal with the problem in general, since for the 
large ensembles of defects it requires lot of information and becomes too cumbersome. As a compromise the 
use of some physical theories, for instance percolation theory, can be suggested. These theories neglect some 
information related to individual characteristics of defects (in the other words they operate with the 
parameters of groups of defects). 
 

Percolation theory deals with so-called "disordered systems", predicting behavior and certain properties 
of these systems, based on the properties of their elements. For simulation of cracking phenomenon, the 
possibility "to fail" is assumed for arbitrary element of this system. Then, using percolation theory approach, 
it is possible to study the dependencies between the probability of element' failure and formation of cluster 
of "failed elements", which connects opposite sides of the system (splitting it apart). 
 

In frames of the traditional percolation theory it is assumed, that the elementary failure events should be 
independent. However, the damage evolution is affected by the long-scale stress-strain field, which, in turn, 
depends on the present distribution of damage. Hence, the percolation theory should be adapted to account 
for the long-scale fields (i.e. correlation of events). In this paper the elements of simulation approach, which 
includes both: elements of percolation theory and damage mechanics, is outlined. The approach is 
demonstrated by modeling surface cracking of high-density polyethylene due to it UV-degradation under 
mechanical loading. 
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INTRODUCTION 
 
The fracture mechanics’ approach is not capable to describe the multiple cracks, developing quasi-uniformly 
in the bulk of material. Recently, in order to cope with the problem the percolation approach is employed [1 
– 7] more and more intensively. The main attention here is paid to the process of formation of crack’ 



networks, connectivity of such networks and also to parameters, which can characterize these structures, 
like: percolation threshold, correlation radii [8] or excluded volume [7]. 
 

Although these studies have been performed on different geometrical objects (discrete and conti-
nuous) and have had different subjects (i.e. parameters) to be investigated, there are some features that are 
common for these studies. The “elementary failure events” have been assumed to be independent: in the 
other words, in all the cited papers only geometrical aspects of the crack’ networks have been studied. In 
reality, however, the cracks grow, while affected by the long-scale stress field as well as by the other cracks. 
In order to account for this feature of the crack’ networks evolution, the percolation theory approach should 
be modified. In this paper the elements of simulation approach, which includes elements of both: percolation 
theory as well as damage mechanics, is outlined. The approach is demonstrated for the case of modeling of 
surface cracking of High-Density Polyethylene (HDPE), degraded under UV-radiation and mechanical 
loading. 
 
 
MAIN ELEMENTS OF PERCOLATION SIMUALTION APPROACH 
 
Percolation theory [8] is an interdisciplinary field of research that constitutes mathematical method for the 
theory of critical phenomena and phase transitions [9]. It deals with the properties of so-called “disordered 
systems” (it can be a spatial lattice or a random spatial distribution of geometrical objects), which rise as the 
collective properties of its elements. 
 
 In order to model development of intergranular damage in polycrystalline material, the Voronoi 
tessellation was chosen as the object for percolation simulations, since the principle of formation of this 
tessellation is accordant with the principles that constitute the formation of a polycrystalline solid. The 
“possibility to fail” is assigned to every element in the tessellation. Using random numbers seed an 
“elementary failure” is drawn for every element. Next, clusters (i.e. sets of connected “failed” elements), 
their properties and evolution are to be monitored. Further, the lattice is scanned for a “percolated cluster”, 
which connects two opposite sides of the tessellation, i.e. splits the object studied into two parts. The 
probability of percolated cluster formation (and corresponding “percolation thresholds”) is to be evaluated. 
 
 There are several studies [10 – 12], where the Voronoi tessellation is being considered as the object 
for percolation studies. All of them, however, consider non-correlated percolation and none of them consider 
percolation as the model for fracture phenomenon of a polycrystalline solid. The elements of cluster labeling 
(in the other words: preparation for clusters’ generation) for random lattices is given in [13, 14]. Further we 
will describe only some elements, related to simulation of correlated percolations. As mentioned above the 
“elementary failure” events in this model are correlated, but not directly – only through the long-scale field 
(namely stress-strain field). In order to construct such relation the stress-strain field should be calculated (for 
instance using Finite Element method) and mapped into the Voronoi tessellation (Fig. 1). Further the results 
of percolation simulations on the Voronoi tessellation at the end of every increment should be again mapped 
into Finite Element package. The above exchange of data was arranged in real time regime: in the other 
words, the Finite Element program and program for percolation simulations were waiting on each other at 
the moment, when the data from the other program are not yet calculated. 
 
Unlike in the investigations [14, 15], where direct percolation was studied, the decision about “elementary 
failure occurrence” was derived, based on the completion of deformational criterion: 

 crystall external cε ε+ = ε , (1) 

here crystallε  is a deformation of material due to internal stresses, externalε  denotes external deformation and cε  
means the critical deformation level. The stochastic data concerning the failure of elements of the Voronoi 
tessellation were transformed to the continuous damage field ω by averaging of the results of percolation 
simulations over the λ-size regions [15]. 
 
This approach was used to study the surface cracking in UV-degraded and mechanically loaded HDPE. 



  

ω(x,y) 

εij(x,y)

(a)        (b) 
 

Figure 1. The scheme of data exchange between two parts of simulation process: FE modelling (a) and 
percolation simulation (b). 

 
SOME ASPECTS OF BEHAVIOUR OF UV-DEGRADED HDPE 
 
The main physico-chemical features of ultra-violet (UV) degradation of HDPE, which relate to surface 
cracking of material, are given in [14, 15]. Substantial drop in the material ductility with time (fig. 2,a) 
inevitably leads to the moment, when the critical strains εc become lower, than the local strains in polymer. 
In other words the deformational failure criterion cε ε=  turns out to be locally feasible, what results in the 
cracking along the crystallites' boundaries. These local strains ε might be the result of either mechanical 
loading (let us call them “external strains”) or microstructural changes induced by UV-degradation of 
polymer (“internal strains”). Latter might be resulted by so-called “shrinkage due weathering” [16, 17]. 

 
The micromechanism of this phenomenon is as follows. The UV-degradation of polymer leads to 

additional crystallization of material: i.e. the amorphous regions that are closest to the crystalline lamellas 
transform into crystalline regions with the time passing by. The example of crystallinity’ evolution in 0.2mm 
HDPE film during UV-degradation test is presented in fig. 2b. Since the density of HDPE crystalline phase 
(ρc=1.001⋅10 6 g/m3) is higher, than that of amorphous phase (ρa=0.856⋅10 6 g/m3) [18], the crystallinity 
growth leads to rise of total density of degraded material, which can be calculated as follows [19]: 
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Figure 1. Strain failure, (a) and crystallinity Xc (weight fraction), (b) versus time of exposure to UV-radiation 
for 0.2mm HDPE film. Strain at failure registered for tension rate 3⋅10-6 s-1, [19]. 
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Assuming that the mass growth of polymeric material due to oxidation is small, the increase in density 
should lead to drop in volume of degraded polymer (i.e. degraded material “shrinks”). 
 

It should be noted that since UV-degradation requires constant replenishment of oxygen in material 
from surface, the spatial distributions of solved oxygen (as well as of the products of oxidation reactions) are 
formed [19]. In other words, the near-surface regions in polymers are most subjected to the UV-degradation 
and, hence, additional crystallization. Since these near-surface layers are tied with the bulk material, which 
does not suffer from these phenomena, the bulk material prevents these near-surface regions from shrinkage, 
what certainly will induce straining of outer surfaces: 

 ( ) ( )0 0 .t V V t Vε  = −  0

.ρ

  (3) 

Here V0 is the original volume (and the constant volume of bulk material, linked to considered part of 
surface); V(t) denotes the variation of volume of degraded surface layer due to shrinkage. Taking into 
account the above assumption about the stability of polymer mass during weathering and, that the volume of 
a whole part consists of volume of amorphous and crystalline parts, the eqn. (3) can be rewritten as follows: 

 ( ) ( )( ) ( ) ( )( ) ( )
1

0 1 1 1 0 0c c c a c c c at X t X t X Xε ρ ρ ρ
−

  = − − + × − +     (4) 

Based on these phenomenological relations earlier [15] the simulation of surface microcracking in 
UV-degraded HDPE using percolation approach was performed. That study, however, accounted only for 
the internal strains as the possible reason for microcracking (i.e. correlation due to the long-scale field was 
neglected). 

 
For simulation of the evolution of strain' field in UV-degraded HDPE the generalized Schapery 

model of relaxation type was modified in order to account for a continual damage parameter ω: 
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The model parameters used for FE simulation of visco-elastic behavior of HDPE are given in Table 1 
[20]. The details of the implementation of the model (4) – (6) in FE package MARC [21] are given in [22]. 
For this the user subroutine HYPELA [23] was employed. 

 
Table 1. The set of model parameters for description of creep-recovery behaviour of HDPE 

 
i Di αi βi γI λi 
1 .5976498·103 .1145182·101 -.259844·102 - 10+1

2 .140191·103 .8490412 -.1368976·102 .1786815·101 1 
3 .9025508·103 .132205·101 -.1379134·102 .9235095 10-1

4 .8507839·102 .8708816 -.2221988·102 - 10-2

5 .1189788·103 .9295784 -.1058856·102 .5253887·101 10-3

6 .1578546·103 .9738781 -.494870·102 - 10-4

7 .5585853·102 .9941104 -.1252381·102 .7399315·101 10-5

8 .6601488·103 .9040428 -.1707527·102 .5363343·101 10-6

9 .2640200·102 .123677·101 -.4865952·102 .129430·102 10-7

D0 α0 E0 С χ σ 0
.520395·102 .7241752 .1036215·10 .1499238·10-5 .121962·101 .9810459·101



RESULTS OF MODELING 
 

As the example for simulations an HDPE square plate, subjected for uniaxial tension and UV-degradation, is 
considered (fig. 1). Since the size of the Voronoi tessellation (i.e. number of elements in the tessellation) 
influences the results of percolation simulation (scaling effect), it is necessary to perform simulation for a set of 
lattices of different size. Next, using specific extrapolation technique [8], the conclusions concerning the behavior 
of infinitely large meshes can be derived. In this study the simulation was performed for 4 levels of stresses: 1, 3, 
6 and 10 MPa. It was shown that for this model the percolation threshold pc weakly depends on the stresses level 
(Table 2). 
 

Table 2. Percolation threshold pc of UV-induced microcracking in HDPE depending on the stress level 
 

Stress level, MPa - 1 3 6 10 
Percolation threshold pc 0.6307 0.6363 0.6627 0.6773 0.6821 

 

In the fig. 3 the variation of strain field and distribution of failed elements on the Voronoi tessellations 
versus stresses, applied to square plate, is given for the final moment of simulation at three stress levels: 10 MPa 
(Fig. 3, a), 3MPa (Fig. 3, b) and 1MPa (Fig. 3, c). The comparison of these fragments demonstrates an 
increase of the role of effective strains with the growth of the stress level: with the growth of stresses applied 
the formed clusters orient along the maximal shear strain direction. 
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ABSTRACT 
 
In recent years, significant activity around the world has been directed toward active control of 
mechanical structures. The goal of much of this research is to increase the reliability and safety of these 
structures against dynamic loadings. However, the design of most systems is done under conditions of 
uncertainty. If the uncertainties are not properly considered in the design of a control strategy, an 
absolute assurance cannot be given about the performance of the controlled structure. Such assurance 
can only be given in terms of a probability of failure in satisfying a criterion of performance: it is the 
reliability. This paper proposes a method to determine active mechanical structures effectiveness while 
assessing their estimated reliability, using design of experiments. Models joining active mechanical 
structures theories and those of reliability, and design of experiments method are presented. Numerical 
examples are provided through a controlled panel subjected to white noise excitation, to illustrate the 
effectiveness of the method.  
 
KEYWORDS 
 
Reliability, active control, vibration, design of experiments, white noise, LQG-control. 
 
 
INTRODUCTION 
 
Last decade has seen significant activity in the area of active control for mechanical structures against 
dynamic loading [1-3]. The principle of active control consists in attenuating a noise or a vibration while 
superimposing, with the initial amplitude, secondary amplitude of the same amplitude, but having an 
opposite sign. However, the design of most systems is done under conditions of uncertainty. The presence 
of such uncertainties can degrade control performance and can even lead to structural instabilities.  To 
ensure such a performance, to study the reliability of these systems seemed a measurement necessary [4-
7]. In this article, we propose to improve the active reliability of the structures by using the methods of 
the experimental designs. Initially we point out the various phases of the active systems design, the 
principle of evaluation of reliability, the methods of the experimental designs.  Numerical examples on a 
panel subjected to an excitation of noise of white, are presented. 
 
 
ACTIVE MECHANICAL STRUCTURES THEORY 
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There has been much research and many developments on active mechanical structures. Various 
methods incorporate concepts of modern control theory, and the active vibration control using 
piezoelectric sensors and actuators has drawn attention due to their higher applicability to real structures. 
Locations of both sensors and actuators have been determined with consideration of controllability, 
observability and spillover prevention. In the present case, the LQG-control technique is chosen, for the 
design of the controller [1-3,8-9].  
 
One considers a deadened linear mechanical system disturbed by a white noise W, of which the equation 
representative is written: 

DwKqqHqM
...

=++       (1) 
 

The equation of output or observation relating to this system is given by: 
 

         (2) qCy=
 

With E{w} = 0 ; E {w(t)w( t  )} = W δ t - ( t  ) and M, H, K are respectively the matrices of masses, 
damping, and stiffness. D, C are respectively the matrices of localization of the disturbances, and the 

exits.  are the vector displacement and its derivative. The equations (1) and (2) give a 
representation of the state of the following relationships: 

...
q,qq,

 








=

+=

xCy

wDAxx
.

         (3) 

 
With x which indicates the state of the system 

 
The control of the system is done in closed loop, by observation of his state; as shown in figure 1: 

 
Fig 1. Schematic diagram of active control 

 
The various phases of this technology of design lead to the following equations: 
For the mechanical structure: 

wDuBAxx
.

++=        (4) 
xCy=          (5) 

vxMz +=         (6) 
For observer 

)xMF(zuBxAx
.

−++=       (7) 
 

For controller 
xGu=          (8) 
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n~uu +=         (9) 
 
With M : localization matrix of sensors, x : the estimated state, z: the measurement of sensors, F: filter 
matrix, v: noise of measurement, G: gain matrix, B localization matrix of actuators, u: control vector, η~ : 
white noise, E { n~ } = 0 and E { n~ (t) n~ ( t  )} = −tδN (~  t ).  
According to the equations of (5) to (10) we obtain for the global system, the following equations: 
 

       (10) 
y=Cx       (11) 

 
The covariance of output is expressed by: 
 

Y= TCχC        (12) 
 
With χ  the covariance of the state solution of the equation of Lyapounov 
 

     (13) 
 
RELIABILITY ANALYSIS  
 
This paper proposes to study the robustness of the laws of controls in the presence of uncertainties around 
the parameters of design of an active mechanical system.  These uncertainties influence the stability and 
the performance of the controlled system. In the literature, a great importance is attached to the evaluation 
of the reliability of these types of systems [4-6]. Let us consider X = (X1, X2...  Xn) the vector of the 
characteristic variables of the studied system. The first stage towards the evaluation of its reliability is to 
establish the functional relation binding these variables. This noted function G (X) is called function of 
state or function of absolute limit [10]. 
 

G (X) = G (X1, X2… Xn)     (14) 
 

This function makes it possible to distinguish two fields:  the field of safety or reliability called S (Sure) 
with G (X) > 0, and the field of failure called F (Failure) with G (X)<0. G (X)=0 is the surface of absolute 
limit.  The reliability of the structure, noted PF is the probability that vector X is in an unfavorable 
position with the structure. 
 

fP = P[G(X) 0]       (15) ≤
 

fP =    (16) ndx...dx)dxx....x,(x... 21n212...XnX1,X
0G(X)

f∫∫∫∫
≤

 
n1n212,...XnX1,X dx....)dxx,...x,(xf  indicate the density of joined probability of the basic variables. Two 

methods are used to solve the integral (16):  techniques of simulations of Monte Carlo or methods of 
approximations (FORM/SORM) [7]. Theoretical complexity for the installation of this type of method 
around the active systems led us to apply an experimental step. This step is based on the theory of the 
experimental designs. 
 
 
DESIGN OF EXPERIMENTS METHOD 
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The method of the experimental designs helps in the study of the behavior of a complex system.  It 
showed its effectiveness in different field from mechanics.  
This method proposes a total model of behavior at the base of a series of experiments.  This model is 
valid in the field of definition of the experiments.  The number of experiments is depending on the 
number of the studied factors and the number of the methods chosen for each one. Each experiment of the 
plan brings information on the behavior of the studied system. The total analysis associated each 
experimental design is single.  This analysis shows the influence of each factor on the total behavior of 
the answer (fig. 2). Concerning the study presented in this paper, it is reasonable to adopt a numerical step 
of experimentation in order to limit the number of experiments to be led to the laboratory. 
 
 
 
 

 
 
 
 

Fig 2 Process of Design of Experiments 
 

 
Fig 3 Configurations end dimensions of the Panel 

 

excitation point  

Control point 

 
This paper presents the study of the active control of a vibrating panel which undergoes a white noise 
excitation (fig 3). The study is carried out with the method of the experimental designs. The whole of the 
undertaken experiments is numerical. Calculations are done with a software for modeling of structures 
developed under MATLAB. 
Concerning the application presented in this paper the objective is to determine the conditions of control 
of the standard deviation (σy) of clearance at the studied point. This standard deviation must be lower 
than 10E-3m (covariance=1E-6). 
It is about clearance according to the direction perpendicular to the plan of figure 3 (y). However, in the 
presence of the observer and of the regulator σy is 1.51E-3 (covariance=2.27E-6).  
The objective of the experimental step presented in this paper is to determine the adjustments of the 
factors of design to control the dispersion of the clearance measured with the node indicated on figure 3. 
This adjustment is carried out in a configuration given concerning the positioning of the sensors and the 
actuators.  
The experimental design carried out relates to three factors. These factors and their level are presented in 
table 1. In this case the number of experiments is 27. Table 2 presents the plan used as well as the results 
obtained. 

Table 1 
Factors Level Units 

 1                                  2                                3  
A: width of the Panel 
B: Young Modulus 
C: Thickness of the Panel 

0.5                            0.55                          0.6 
7.1981E+10        7.2E+10           7.2019E+10 
1.8                             2.0                            2.2 

m 
N/m² 
Mm 

 
The statistical analysis of the results for the experimental design confirms the importance of factors A, 
and C. At the same time, it reveals a strong presence of an interaction between these two factors. The 
nonlinear character of the results is with the results observed when A is on level 1 and C on level 1. This 
particular case is a configuration not wished for in design. Figure 4 shows the behavior of the factor A, B, 
C like that of the interaction AC. 
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A B C
Number of 

test
width of 
the Panel

Young 
Modulus

Thick of 
the Panel Y σy

1 1 1 1 7,10E-06 2,67E-03
2 1 1 2 3,83E-06 1,96E-03
3 1 1 3 3,43E-06 1,85E-03
4 1 2 1 7,04E-06 2,65E-03
| | | | | |
| | | | | |

23 3 2 2 2,06E-06 1,43E-03
24 3 2 3 3,81E-06 1,95E-03
25 3 3 1 3,33E-06 1,82E-03
26 3 3 2 2,06E-06 1,44E-03
27 3 3 3 3,81E-06 1,95E-03

Factors variability % d.o.f. variance
experimental 

Fischer 
A 1,71E-11 33,63 2 8,56E-12 5177,56
B 1,06E-16 0,00 2 5,28E-17 0,03
C 1,85E-11 36,33 2 9,24E-12 5592,18

e ffe ct o f facto r  A

AB 3,33E-16 0,00 4 8,31E-17 0,05
AC 1,53E-11 30,00 4 3,82E-12 2308,82
BC 7,52E-15 0,01 4 1,88E-15 1,14

Residual 1,32E-14 0,03 8 1,65E-15
Total 5,0891E-11

0,00E+00
1,00E-06
2,00E-06
3,00E-06
4,00E-06
5,00E-06
6,00E-06
7,00E-06
8,00E-06

0 1 2 3 4

facto r  A

R
es
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ns

e 
Y

 
Table 2  

Table 3 : Variance analysis 
 

Fig. 4-1: effect of A  
 
 
 
 
 
 
 
 
 

Fig. 4-3: effect of B 
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Fig. 4-3: effect of C 

 
 
 
 
 
 
 
 
 
 

Fig. 4-4: effect of AC 
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The mathematical modeling suggested by the method of the experimental designs shows that it is possible 
to obtain levels of answers closer to the desired objective (σy < 1.51E-3 thus a covariance < 2.27E-6). 
Indeed, the strong influence of the interaction AC disturbs the level of the results. 
Thus two configurations were retained to carry out experiments complementary with A to the level 
0.575mm, B on level 7.210E+10 N/m2 and C on the levels 19mm and 21mm.  The two results obtained 
are: with C with 19mm σy = 1.42E-3 (covariance=2.019E-6) and for C to 21 mm σy = 1.49E-3 
(covariance = 2.227E-6). 
Thus the configuration which consists in locking A on the level 0.575mm, B on the level 7.210e+10 
N/m2 and C on the level 19mm lead to an interesting technological solution. Indeed it is about a thin plate 
with an optimized width and an average Young modulus. 
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The mathematical model resulting from the method of the experimental design shows in this 
configuration that the standard deviation of the clearance of the studied point lies between [1.4E-3 and 
1.44E-3] with a confidence of 95%. Thus probability Pf (probability of failure) is in this case is 5%. 
 
 
CONCLUSION 
 
The evaluation of the reliability of an active structure is difficult to obtain according to steps employed 
today for the passive mechanical structures. Indeed, the use of the theoretical methods is not easy. The 
methodology of the experimental designs A made it possible to explore various configurations of design 
and to retain the best without the obligation to change the strategy of control adopted with the design.  It 
remains to explore the possibility of controlling the parameters of manufacture of this type of structure 
(roughness, surface treatment...) and their interactions with the active character of the structure. 
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ABSTRACT 
 
This paper presents a study on statistical feature of internal cracks developed in frost-damaged concrete. 
Concrete specimens were observed for internal cracking by means of digital microscope after they were 
subjected to a series of rapid freezing-and-thawing cycles. The intensity of cracking was estimated by 
means of the intersections of traverse line and cracks. The agreement of shapes between normal 
distribution and observed histogram of intersects was verified. Furthermore, the expedience of using 
intersections for quantification as well as applying a probability distribution to the estimation of cracks 
was substantiated. Although, in this paper, observed cracks were restricted to those observed on the cut 
surface perpendicular to the direction of length, consequent findings might provide useful information 
for assessing the feature of damaged concrete due to freezing and thawing. 
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INTRODUCTION 
 
In our study, the focus of interest is originally put on the field of damage assessment of concrete in 
existing reinforced concrete (RC) structures. This paper presents a study conducted as a part of series of 
investigation that was made to reveal the feature of internal cracking caused by frost damage.  
 
Relation between damages and internal cracks 
RC structures constructed in a cold district are possible to subject many freezing-and-thawing cycles 
during their design lives, and concrete is known to be deteriorated after a certain cycles. It has long been 
recognized that concrete is damaged by the internal pressure caused by freezing of the contained water 
[1,2]. Many investigators have implied that the intensity of damage is related to irreversible cracking 
within concrete. These and similar studies underscore the important role of internal cracking for the 
disruptive behavior and/or life of the concrete structures. On the other hand, in case of the frost-
damaged concrete, research interests have been mainly focused on the nature of freezing effects, and 
little research has been done on the internal cracking. 
 



 

Microscopic observation of internal cracks 
While progressive cracking has mainly been observed by means of indirect examinations such as 
dynamic elastic modulus, direct observation is preferable because this would provide the precise 
information pertinent to the mechanism of cracking: for example, the location, the exact size of internal 
cracks, and so on. The use of powerful microscopes has been able to study the formation of internal 
cracks [3], and some insight features have been obtained on the change in concrete. A direct observing 
method by means of microscope for studying microstructure and crack growth within concrete was 
introduced by Hsu [4] and Shah and Sanker [5]. As demonstrated by them, a meso-level microscopic 
observation could be a useful tool for detecting distributed internal cracks. The most apparent properties 
of internal cracks are the number and the size including length, width and depth. In practice, however, 
the most widely used characteristic is the length of cracks developed on the surface during and/or after 
the freezing-and-thawing cycles.  
 
The purpose of this paper is to estimate the deteriorated properties of frost-damaged concrete by means 
of microscopic observation of internal cracks. Statistical features of the cracks are also analyzed.  
 
 
EXPERIMENTAL WORK 
 
Specimen preparation 
The specimens used were concrete prisms whose dimensions were 100×100×400mm3. The nominal 
value of compressive strength was 30MPa. Ordinary Portland cement was used. The coarse aggregate 
was crushed gravel with the maximum size of 20 mm and the fine aggregate was crushed sand. No 
chemical or mineral admixtures were applied to the concrete mix. Approximately 48 hours after casting, 
specimens were removed from the steel molds and transferred to a standard water curing room where 
curing was continued at approximately 20℃ until the day freezing and thawing tests started.  
 
Frost damage simulation  
A series of rapid freezing-and-thawing test was carried out in this study for frost-damage simulation. 
The freezing-and-thawing cycles were applied according to the ASTM specification, “C 666, Procedure 
A”. The cycle consists of alternately lowering the temperature of the specimens from 5 to -18 degree 
Celsius and raising it from –18 to 5 degree Celsius in 4 hours.  
 
The tests were started when specimens were reached at an age of 14 days. Immediately after the curing 
period, specimens were weighed, and measured for fundamental transverse frequency, in accordance 
with the method of ASTM C 215, on the basis of which the frost damage levels were identified. After 
these measurements, the freezing and thawing cycles were started. The specimens were removed from 
the apparatus at intervals of 30 cycles. After rinsing out the container as well as adding clean water, 
they were returned to random positions in the apparatus with upside-down basis. In each interval, one 
specimen having a role in fixing the data of particular cycle was selected and kept out. The specimen 
was tested again for fundamental transverse frequency, weighed, and took procedures of preparation for 
microscopy. The freezing-and-thawing cycles were applied until the number of cycles was reached 
more than 300. 

 
Preparation for microscopy 
Since microscopy requires the specimen of a suitable size, a piece of cube (100mm in length) was taken 
from the frost-damaged prism. A transverse section, perpendicular to the longitudinal direction, was cut 
out directly through near the center of the prisms: thus the block of specimen has the size of 100 mm 
square in the section.  
 
In total 7 concrete prisms were used to observe the cross section under a microscope. Each section was 
observed for internal cracking by means of optical microscope, which equipped with a high-resolution 
CCD digital camera and storage devices. Since this microscope did not require thin sections, time-
consuming preparations of those samples could mostly be omitted. Cross sectional area was ground 
carefully by precision grind machine until no trace of saw could be seen. A red liquid for penetration 
was sprayed over the area for the staining. This was done to distinguish more clearly between cracks at 



 

the interface and those through the matrix. After several times, mortar surface became a color of light 
pink, and deep red lines representing internal cracks could be clearly distinct in the view. The stained 
surface was then ground again on a grinding wheel. The sections were then slowly dried in room where 
the atmosphere was kept at 20℃ and approximately 65 percent relative humidity. Neither the sawing 
process nor the drying process on specimens was considered to significantly affect the measured 
characteristics of cracking because their effects were verified to be negligible through the preparatory 
tests.  

 

 
Observed areas 
The observed area used for the microscope observation was 6350mm2 in total per section so that a 
sufficiently wide range of size could be covered. The observed data presented herein were obtained 
from the sample areas determined by dividing the observe area into 10×12 segments. Each segment 
has the dimension of 6.4×8.4mm2, and is designated as “sample area” in this paper (see, Figure 1). At 
first, the feature of each sample area was recorded on a MO-media as a digital image. Subsequently, all 
images (in total 840) were processed.  
 
 
EXPERIMENTAL RESULTS AND DISCUSSION 
 
General feature of the internal cracks observed in the sample areas 
At the beginning of the observation, relevant sample area was served onto the PC monitor from the MO 
media. The sample area was composed of matrix and inclusions, as shown in Figure 2. When observed 
at the previously mentioned magnification, those compositions are regarded to be in the scale of meso-
level. The observation indicated that many internal cracks were identified in the sample area, regardless 
the intensity of the frost damage. Cracks through the mortar area, so called mortar cracks, began to 
increase noticeably and form continuous crack patterns from initial cycles whereas they would be 
developed at about 70～90 percent of the ultimate load in case of mechanically damaged concrete [4, 
6]. Since internal cracks were shaped like a network pattern similar to cracks of parched earth, and their 
lengths were spread over a considerable extent, those cracks were not allowed to identify individually. 
Therefore, neither counting nor tracing of cracks was practicable. Hence, newly devised procedure for 
quantification would be required. As described later, intersections of traverse line and cracks were used 
in this paper as a parameter for estimating the intensity of internal cracking.  

 



 

 

 
 
Relation between internal cracking and intensity of frost damage 
Equivalent freezing-and-thawing cycle 
Since specimens did not necessarily show the correspondence of damaged feature with nominal number 
of freezing-and-thawing cycle, the term “equivalent freezing-and-thawing cycle” was introduced to 
indicate the real stage of intensity of the frost damage. The equivalent freezing-and-thawing cycle was 
defined as the estimated value led from the correlation between nominal freezing–and-thawing cycle 
and dynamic Young’s modulus of elasticity. The former was indicated by the apparatus, and the latter 
was calculated from the fundamental transverse frequency measured by the reference specimens. Frost 
damaged specimens were calibrated according to the established correlation, and the respective 
equivalent freezing-and-thawing cycle was determined. Hereafter, in this paper, the equivalent number 
of freezing-and-thawing cycle will be used for representing the number of freezing-and-thawing cycle.  
 
Intersections as a parameter for quantification 
Three linear-traverse-lines, which were referred to as test lines in this paper, were first drawn and were 
superimposed on each sample area as shown in Figure 3. Subsequently, intersections of test lines and 
cracks were counted. Since this process was repeated for every sample area, in total 360 test lines per 
observed area were drawn. These procedures were processed by using software, which enables to 
generate graphics as well as to perform some calculations.  

 

 
Relation between damage intensity and extent of internal cracking 
Figure 4 shows the comparison of extent of cracks within each sample area for sound and damaged 
specimens. For clarifying, results relating to three specimens are presented. Each bar represents total 
number of intersections included in respective sample area. Compared damaged specimens (Figure 4-b 
and c) with sound one (Figure 4-a), it is obvious that damaged specimens produce a higher extent of 
internal cracking. Figure 4-a also showed that cracks densely distributed are contained widely even in 
the sound (0cycle) concrete. This is a manifestation of the well-known phenomenon of existing cracks 
observed experimentally and/or microscopically by many investigators.  



 

 

 
Statistical distribution of intersects 
Figure 5 illustrates typical relation between damage intensity and increasing feature of intersects for 
three different freezing-and-thawing cycles. Although other diagrams were omitted to save the space, 
they showed essentially a similar trend. Each bar represents the number of test lines counted for the 
certain rank of intersections, and the line superimposed is drawn according to the normal distribution 
law. As shown in each diagram, there is an interesting agreement between bars and the line, and the 
Chi-square test carried out on each group of data did not reject the agreement at the usual significance 
level. These results suggest that the distribution of intersects could be approximated by a normal 
distribution.  

 

 
Practical quantification of internal cracks 
As intersections are essentially dimensionless data without perceptible area or length, the term “density 
of cracks” that is estimated by the Eqn. 1 is introduced for the practical quantification:  
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where,  is the estimated density of cracks (mm/mmAL 2);  is the expected density of intersects 
(points/mm), which is practically estimated by the average value; L is the longitudinal length of the 
sample area; Lx
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Figure 7 represents the estimated density of cracks as a function of the freezing-and-thawing cycle 
increases. As shown in Figure 7-a, internal cracks increased with two stages that are a steeply increasing 
stage in lower cycles less than 30, and a gradually increasing stage in more than 30 cycles. The relation 
might be approximated by a bi-linear function when cycles were converted into logarithmic numbers as 
shown in Figure 7-b. The cyclic number of the break point was in the vicinity of 150 cycles.  
 
 
CONCLUSIONS 
 
Based on the results of this study, the following conclusion can be made.  
1. Mortar cracks began to increase and form continuous patterns even in the initial cycles.  
2. Cracks were not allowed to be identified individually since internal cracks were shaped like a 
 network pattern similar to cracks of parched earth, and their lengths were spread over a considerable 
 extent. 
3. Damaged specimens produce a higher extent of internal cracking, and those cracks increase as the 
 freezing-and-thawing cycles increase. 
4. Intersects of a test line and cracks were utilized for crack quantification, and their distribution could 
 be approximated by a normal distribution.  
5. Internal cracks were increased with two stages that are a steeply increasing stage in lower cycles 
 less than 30, and a gradually increasing stage in more than 30 cycles. The relation might be 
 approximated by a bi-linear function, when cycles were converted into logarithmic numbers.  
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ABSTRACT 
 
There are many methods for determination of stress intensity factors KI, KII. Evaluation of stress intensity 
factors determination using maximum energy release rate theory and complex J integral is the main purpose 
of the paper. A number of numerical analyses using the Compact Tension Shear (CTS) specimen were 
performed for determination of stress intensity factors. Virtual extension method (VCE) in framework the 
finite element method was used for crack propagation analysis. Calculated crack propagation angles with 
VCE method were compared to experimental results and crack propagation angles calculated using a 
maximum tangential stress criterion. Accuracy of determination crack propagation angles using virtual crack 
extension method was evaluated for different fracture mode. 
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INTRODUCTION 
 
For general, cracked structures it is necessary to consider the combined effects of mode I, II and III loading 
in linear elastic fracture investigations. In fact, mode III is largely separable and can be dealt with in an 
independent manner, but the combined effect of modes I and II, under tensile and shear loading, presents 
difficulties in analysis. Several mixed-mode fracture criteria exist, and they can be generally divided into two 
groups, depending on their scopes. Some criteria are concerned only with the local information at or around 
the crack tip (local approach) whereas others consider the global or total information about the whole body 
containing the crack (global approach). In the local approach, one needs to choose a parameter (or physical 
quantity) that measures the severity experienced by the local material particles at or around the crack tip. 
Widely used parameters include the maximum principal stress, the maximum circumferential stress (σθmax) 
and the minimum strain energy density (Smin). The local approach appears to be based on a choice of the 
parameter through intuition. In contrast, the global approaches are based on the total potential (strain) energy 
of the system. The fundamental physical quantity in the global approach is the strain energy release rate G, 
which is the sole fracture parameter that governs the behaviour of the crack. G represents the strain energy 
that is lost by the system through unit surface extension of the crack. Richards [1] showed the most accurate 
criterion for crack propagation on CTS specimen is MTS criterion. 
 
 



VIRTUAL CRACK EXTENSION METHOD (VCE) 
 
The Virtual Crack Extension method, originally proposed by Hellen [2], is based on the criteria of released 
strain energy dV per crack extension da 
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which serves as a basis for determination of the combined stress intensity factor around the crack tip 
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Figure 1: Initial and extended crack tip configuration 
 
If VC is the strain energy obtained for all degrees of freedom not present in the crack tip elements, and VN is 
the energy in the crack tip elements when the tip is not extended, while VD is the energy in these elements 
when the tip is extended, Figure 1, then the total energies of the initial and altered bodies, V , 
respectively, are equal to 
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Thus for a virtual crack extension δa it follows 
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which is clearly independent of VC. It follows that only strain energies VN and VD in the crack tip elements 
need to be calculated for every possible crack extension. This results in a very efficient method for 
determination of the instantaneous energy release rate and thus the stress intensity factor for any given crack 
extension. Following the same argument, the energy release rate G and the stress intensity factor K can be 
easily determined for several different possible crack extension directions for a cluster of points on an arc 
around the initial crack tip with radius da, see Figure 2a 
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Assuming the validity of the maximum energy release criterion, the crack will propagate in direction 
corresponding to the maximum value of jaV )dd( , i.e. in the direction of the maximum stress intensity factor 



jK . Computational procedure is based on incremental crack extensions, where the size of the crack 
increment is prescribed in advance. The virtual crack increment should not exceed 1/3 of the size of crack tip 
finite elements. For each crack extension increment the stress intensity factor is determined in several 
different possible crack propagation directions and the crack is actually extended in the direction of the 
maximum stress intensity factor, which requires local remeshing around the new crack tip. The incremental 
procedure is repeated until full fracture occurs or until the stress intensity factor reaches the critical value Kc, 
when full fracture is imminent. For improved numerical results, special fracture finite elements are used in 
the first circle of elements around a crack tip, with ordinary elements elsewhere, Figure 2b. In these special 
fracture finite elements, the displacements are proportional to the square root of the distance from the tip. 
Since the tip stresses are singular, they are not calculated at the crack tip node. 
 

 a)                                                                                      b)
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Figure 2: Virtual crack extensions of the crack tip 
 
Following the above procedure, one can numerically determine the functional relationship K=f(a) and the 
critical crack length ac at K=Kc from the computed values of K at discrete crack extensions a. 
 
 
DETERMINATION OF CRACK PROPAGATION 
 
Maximum Energy Release Rate using the Complex J Integral (MERRJ) 
The maximum energy release rate criterion is based on the assumption that the energy release rate may be 
expressed as a function of the J1 and J2 integrals [4]. This theory is of particular practical interest since it 
compliments the finite element VCE method for mixed mode situations. Since J is equivalent to G for the 
linear elastic case, the values of stress intensity factors are 
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where J1, J2 are energy release rate for crack extensions parallel and perpendicular to the crack, ν−=κ 43  
for plain strain and ( ) ( ν+ )ν−=κ 1/3

0θ
 for plain stress. The maximum energy release rate is for a crack 

extending at the angle : 
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to the plane of the crack and has magnitude 
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The Maximum Tangential Stress criterion (MTS) 
Erdogan and Sih [3] used the stress equations for determination of direction of crack propagation. The crack 
propagates in direction of maximum tangential stresses calculated on a circle of sufficiently small radius 
around the crack tip.  Angle of crack propagation 0θ  is determined with: 
 

( ) ( )2
II

2
II

II0

K8KK

K2
2

tan
++

−
=

θ
  (9) 

 
For opening-mode loading ( , equation (9) yield )0K,0K III =≠ 00 =θ , while for sliding-mode loading 

, it results in . ( )0,0 ≠= III KK ο6,700 −=θ
 
 
NUMERICAL ANALYSES 
 
Different crack propagation methods were evaluated for the CTS specimen shown on Figure 3. 
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Figure 3: CTS specimen with loading device 

 
A 2,5 mm fatigue pre-crack is on the end of the 52,5 mm long notch. The CTS specimen is loaded with a 
static load of 15 kN. In computational analysis this load is replaced with three equivalent nodal forces in x-y 
direction as shown on Figure 3. Different load cases for load angles between 0° and 90°, with a step of 15°, 
were used to simulate different fracture mode conditions. Pure Mode I condition was simulated with load 
angle of 0° while pure Mode II was simulated with load angle of 90°. The mixed mode conditions are 
simulated using load angles between 15° and 75°.  
 

 
RESULTS 
 
Figure 4 shows distribution of strain energy release rate G around the crack tip. The curve is seen to be 
sinusoidal, showing clearly that the directions of maximum G and minimum G are opposite. There are two 
directions of no energy release. Between them the energy release rate is negative, therefore crack extension is 
physically impossible in these directions. The value of G depends primary on KI, resulting in highest value of 
G at pure Mode I, while G has the lowest value at pure Mode II. 
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Figure 4: Plot of G against angle θ 
 
The stress intensity factors KI, KII, shown in Table 1, were determined from Eqn. 6 using VCE method for 
determination of J1 and J2. At the start of crack propagation a kink in crack path is observed under mixed 
mode loading. The results in Table 1 are therefore given for a loaded initial crack configuration. In 
experimental testing [6] it has been observed that the crack propagation angle is θ0 = 24° for load angle α = 
30°, θ0 = 46,2° for α = 60° and θ0 = 52° ± 2° for α = 75°. 
 

       TABLE 1: STRESS INTENSITY FACTORS KI, KII 
 
 0° 15° 30° 45° 60° 75° 90° 

KI 549,85 531,29 476,67 389,79 279,05 138,32 0,09
KII 0,19 56,49 109,24 153,73 186,20 217,28 222,58

 
The results of computational analyses show a reasonable agreement between VCE method and MERRJ 
criterion for crack propagation is shown on Figure 4: 
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Figure 4: Plot of θ0 against crack increment 
 

Crack propagation angles calculated using VCE method are shown on Figure 5 while crack propagation 
angles calculated using MTS criterion are shown on Figure 6. Comparison between experimental crack 
propagation angle θ0 and calculated crack propagation angle θ0 shows that the MERRJ criterion is less 
accurate when KII>KI as crack does not kink immediately. Crack propagates to the experimental value after a 
few increments.  
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Figure 6: Crack propagation angle for MERRJ criterion 
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Figure 7: Crack propagation angle for MTS criterion 
 
 

CONCLUSIONS 
 
There are several criterions for determination of stress intensity factor KI, KII and crack propagation angle. 
Determination of stress intensity factor KI, KII using VCE method was evaluated. It can be observed that for 
cases where KII is dominant the VCE method is less accurate. Therefore special care should be considered 
using this method for determination of crack propagation angle.  
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ABSTRACT 
 
High-chromium white cast iron essentially consists of chromium carbides embedded in a matrix of high alloy 
steel. The carbides yield an excellent wear resistance, but also bring about a very low fracture toughness. The 
work described here concerns the experimental determination of the dynamic fracture properties of hypo-
eutectic cast iron and the specific experimental problems that arise from its brittleness. Research is performed 
on how a sufficiently discriminative and reproducible measure for the fracture toughness of the cast iron can 
be obtained using Charpy-like specimens in combination with an instrumented drop-weight impact tower. It 
is found that a compliant tup causes the least load oscillations and that at low impact velocities, the meas-
ured KId values correspond well with those measured with a static test. However energy measurements with 
a compliant tup are troublesome: the total fracture energy is overestimated due to the kinetic energy attained 
by the specimen. Furthermore, to calculate the energy at fracture initiation the elastic compression of the tup 
should be taken into account. The results seem not to be affected by using a notch instead of a crack. 
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INTRODUCTION 
 
High-chromium white cast iron is a composite material which in the hypo-eutectic form consists of a net-
work of eutectic carbides embedded in a martensitic or austenitic matrix [1]. The material is primarily used 
because of the excellent wear resistance provided by the eutectic carbides. This type of white cast iron has 
poor fracture properties, both static and dynamic. This is mainly attributed to the network of eutectic car-
bides, providing a low energy route for cracks to extend. 
 
The long-term objective of this research is to gain insight in the factors that determine the dynamic fracture 
properties of this material in order to be able to control these to a certain extent. In the first instance the re-
search is aimed at the use of an instrumented drop-weight impact tower using Charpy-like specimens as a 
discriminative, reproducible and easy technique for determining the low (dynamic) fracture toughness of 
high-chromium white cast iron. 
 
In this paper experiments are described on a hypo-eutectic high-chromium white cast iron. The development 
is outlined of a drop-weight test suitable for this material, with an emphasis on the experimental obstacles 
and the considerations which led to the final set-up. 
 
 
MATERIAL 
 
Table 1 summarizes the approximate chemical composition of the high-chromium white cast iron investi-



gated. This composition represents a hypo-eutectic alloy. The 
material was cast in ingots of which the dimensions, i.e. length 
× width × height, are 250 × (80-89) × 125 mm. Using electric 
discharge machining, slabs were taken from the middle of these 
ingots normal to the length direction with a thickness of 10 
mm. The macrostructure in these slabs depends on the distance 
to the ingot surface. Since solidification starts at this surface a columnar structure is present in the outer re-
gion of the slab with an orientation normal to the surface. In the center no obvious orientation is visible, a 
structure known as equi-axed. All specimens are taken from the center part of the ingot. 

TABLE 1 
CHEMICAL COMPOSITION OF THE 
WHITE CAST IRON [WEIGHT %] 

C Cr Si Ni Mo Mn Cu 
2.0 17.1 0.29 0.93 0.91 0.72 0.18

 
Figure 1 shows the as-cast microstructure of the material as it is tested. The white phases are the eutectic 
carbides. In-between the carbides martensite is found, while in the remaining matrix pearlite (black), ferrite 
and retained austenite are present. 
 

 
Figure 1: Micrograph of the as-cast structure of  the white cast iron 

 
 
EXPERIMENTAL SET-UP 
 
The static fracture properties of a material with the brittleness of high-chromium white cast iron can be ob-
tained by measuring the plane strain fracture toughness, KIc according to ASTM E399 [2]. This well-defined 
test method does, however, involve the costly and time-consuming preparation of suitable specimens, in-
cluding the introduction of pre-fatigue cracks. To determine dynamic properties the standardized Charpy 
impact test [3] is available, which only uses a notched bar of 10×10×55 mm dynamically loaded in 3-point 
bending and therefore is much less expensive and faster to perform. However, from a fracture mechanics 
point of view, the standard Charpy test has a number of disadvantages. 
1. For materials that exhibit a distinct amount of plastic deformation a plane strain condition at the notch tip 

is not guaranteed. This, however, will not be a problem for the white cast iron considered here, since 
plasticity is limited. 

2. In the standard Charpy test only the total energy needed to fracture the specimen is determined. There-
fore no information about crack initiation is obtained. This can be overcome by using an instrumented 
test set-up capable of monitoring the load. 

4. The effect of the loading rate cannot be investigated in a pendulum set-up. However, a drop-weight test 
set-up does provide this versatility. 

 

 
Figure 2: Set-up of instrumented drop-weight impact test 

 



These considerations led to the use of an instrumented drop-weight impact tower for performing the test (see 
Figure 2). It consists of a mass of approximately 70 kg that loads the specimen by dropping it from a certain 
height. The load is transferred to the specimen by means of a tup and is digitally monitored as a function of 
time through a set of strain gauges mounted on the tup. 
 
The dynamic fracture toughness, KId, is derived from the load at which crack extension initiates. For the brit-
tle cast iron this is assumed to be the maximum load, Pmax. Thus, from [4], 
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 where S = specimen span, 
 B = specimen thickness, 
 W = specimen height, 
 a = notch length. 
 
In order to calculate energy values, the load versus time record is converted to load versus displacement 
data, a conversion which is based on the velocity during the test. In turn this velocity is calculated using the 
initial impact velocity and by considering the forces acting on the drop weight, i.e. gravity and the specimen 
load. Note that for the brittle material tested here and the relatively high impact energy of the drop weight, 
the velocity during the test will typically only drop slightly below the initial velocity. 
 
Two energy values are assessed: the energy needed to initiate crack growth, Ei, and the total energy to frac-
ture the specimen, Ef. These are calculated by integrating the area under the load-displacement curve until 
maximum force and under the whole curve respectively. To account for small differences in specimen di-
mensions the energies are divided by the area of the net section. 
 
 
EXPERIMENTS TO EVALUATE IMPACT TEST 
 
There are a number of experimental aspects that need to be clarified before reliable impact tests on the white 
cast iron can be performed: 
1. The energy involved in the fracture of a material as brittle as white cast iron is very low. The question 

arises whether the test set-up is capable of determining such low values accurately. 
2. Impact testing brittle material involves a relatively short time to fracture. Immediately after impact the 

load signal will inevitably oscillate. Also because plasticity in the specimen is only limited, it will take 
some time before these are damped. This can possibly mask crack initiation, thereby disabling the meas-
urement of K  en E . Id i

3. In standard Charpy specimens a V-notch (0.25 mm tip radius) or a U-notch (1 mm tip radius) is intro-
duced. The workmanship with which this notch is machined will vary and it is uncertain whether the tip 
radius is small enough to simulate a natural crack. Introducing a fatigue crack would be preferable, but 
this is cumbersome in the white cast iron considered here and also contrary to the objective in this re-
search, i.e. the development of an easy test method. 

These aspects are assessed by performing the tests described below. 
 
Tup Capacity 
Tests are performed at a velocity of 3.4 m/s using a small-capacity tup (15 kN) and a high-capacity tup (220 
kN). Specimens were prepared with a notch with 0.2 mm tip radius (see below). The resulting load-
displacement curves, shown in Figure 3, differ considerably. The high-capacity tup causes the load to in-
crease more rapidly and to a considerably higher value, resulting in a displacement at maximum force that is 
much smaller. Furthermore, the load oscillations are significantly larger and take longer to damp. 
 
Table 2 summarizes the numerical results. The fracture toughness and the total fracture energy are strongly 
affected by the tup used. The initiation energy seems unaffected. 
 

TABLE 2 
RESULTS OBTAINED AT 3.4 M/S WITH TUPS WITH DIFFERENT LOAD CAPACITIES 

Tup capacity [kN] KId [MPa√m] Ei [kJ/m2] Ef [kJ/m2] 
 15 30.6 4.6 12.1 
220 62.8 4.6  5.8 
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Figure 3: Load-displacement curves at an impact velocity of 3.4 m/s using different tups 
 
Impact velocity 
Using the 15 kN tup, tests are performed at different impact velocities, i.e. 1, 2, 3 and 5 m/s on specimens 
with a notch with 0.2 mm tip radius (see below). Furthermore, some static tests are performed using an elec-
tro-mechanical tensile machine. Figure 4 shows two examples of load-displacement curves obtained at 1, 2 
and 5 m/s respectively. The values for the maximum load are affected by the velocity. Only at 1 m/s the os-
cillations are damped well before the maximum load is reached. 
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Figure 4: Load-displacement curves at different impact velocities using 15 kN tup 

 
In Table 3 the average fracture toughness and energy values are summarized, including the number of tests 
and the 95% reliability interval. All measured values tend to increase with impact velocity. 
 

TABLE 3 
RESULTS OBTAINED AT DIFFERENT IMPACT VELOCITIES WITH 15 KN TUP 

Velocity [m/s] N° of tests KId [MPa√m] Ei [kJ/m2] E  [kJ/m2] f
static 2 25± 5 7.9±2.4   −* 

1 2 27±26 6.1±1.2  7.5±0.1 
2 2 31± 9 7.1±1.0 10.1±6.7 
3 1 29 8.3 11.4 
5 1 45 9.3   −** 

* specimen not completely broken 
** measurement interrupted shortly after fracture 



 
Notch geometry 
Specimens are prepared with different notch geometries. Notches are introduced by electric discharge ma-
chining (EDM) using wire diameters of 0.3 mm and 0.15 mm, thus creating notch tip radii of 0.2 and 0.1 
mm. Furthermore, pre-fatigue cracks are introduced in some specimens. Both static tests are performed as 
well as impact tests with the 15 kN tup at a velocity of 1 m/s. This velocity is chosen to be sure that KId and 
Ei can be measured. In Table 4 averaged results are summarized, including the number of tests and the 95% 
reliability interval. From these results no obvious effect of the notch geometry can be deduced. 
 

TABLE 4 
RESULTS OBTAINED FOR DIFFERENT NOTCH GEOMETRIES 

Notch N° of tests KId [MPa√m] Ei [kJ/m2] Ef [kJ/m2] 
Static test (1 µm/s) 

crack 2 22±21 6.2±5.1  −* 
r = 0.1 mm 2 21± 8 6.8±3.4  −* 
r = 0.2 mm 2 25± 5 7.9±2.4  −* 

Impact test at 1 m/s using 15 kN tup 
crack 3 27.0±9 6.0±3.3 7.7±3.5 

r = 0.1 mm 7 28.2±0.9 6.0±0.5 8.3±1.4 
r = 0.2 mm 2 27.0±26 6.1±1.2 7.5±0.1 

* specimen not completely broken 
 
 
DISCUSSION 
 
Tup Stiffness 
The effect of the tup capacity on the load-displacement curves (Fig. 3) can be understood by considering the 
stiffness of the tups. For the 15 kN tup the stiffness is calculated to be 200 N/µm, while the 220 kN tup is 
estimated to have a stiffness that is at least 5 times higher. During loading the tups will become shorter. For 
example the 15 kN tup will be more than 30 µm shorter at maximum load. This means that the actual speci-
men displacement is the measured displacement minus the compression of the tup. Thus the actual loading 
rate applied to the specimen is lower for the 15 kN tup than for the 220 kN tup. This is an explanation for 
the smaller load oscillations and the larger displacement at maximum load found for the 15 kN tup. 
 
Obviously, the calculation of energy values should in principal be based on actual specimen displacements 
rather than measured values. The fact that in Table 2 the energies for crack initiation, Ei, are the same, is be-
lieved to be more of a coincidence. Ei is not only influenced by using incorrect displacements, but also by 
the impossibility to correctly determine the moment of crack initiation. Due to load oscillations the maxi-
mum force is no longer a good measure. This also makes it impossible to determine meaningful KId values. 
From Figure 4 it can be concluded that at velocities of 2 m/s and above no reliable KId and Ei values can be 
obtained. 
 
The total energy Ef should in principle not be affected by compression of the tup or by load oscillations, 
since these are elastic phenomena. The area under the measured load-displacement curve is equal to that un-
der the actual curve if it is determined over a period that starts before impact and ends when the load signal 
has permanently returned to zero. The reason is that at these instants the tup is not compressed and the 
measured load corresponds exactly to the actual load. The fact that Table 2 suggests a large effect of the tup 
stiffness on Ef is explained below. 
 
Kinetic Energy 
The energy transferred from the tup to the specimen is not only used to fracture the specimen, but also to 
accelerate it. A fair estimate of this kinetic energy can be made if one simply assumes that the load point, i.e. 
the contact point between tup and specimen, has a velocity equal to the impact velocity. At 3.4 m/s this 
amounts to 0.17 J. Divided by the net section area, this corresponds to 2.1 kJ/m2, a value that cannot be ne-
glected compared to the energies measured (see Table 2). 
 
A correction for the kinetic energy attained by the specimen during impact would be feasible. However the 
elastic compression of the tup causes the load-point velocity to deviate from the nominal impact velocity. 
Initially, due to the rising load, the load-point velocity is somewhat lower. From the moment the crack initi-
ates and the load drops, the load-point velocity increases and rises above the nominal impact velocity. These 
velocity changes depend on the tup stiffness. For a stiff tup the kinetic energy the specimen ultimately at-
tains will be close to the estimate given above, whereas for a compliant tup this value can be considerably 
higher. To quantify this, extensive calculations would be required, but it is believed that this effect does ex-



plain the large difference found in Ef for the two tups. 
 
From Table 3 it can be seen that Ef increases with impact velocity. This can also be explained by the kinetic 
energy that the specimen ultimately acquires due to impact. It must be noted that it is impossible to establish 
whether in this case the material behavior is also partly responsible. 
 
Notch geometry 
The results in Table 4 indicate that an EDM notch with a tip radius of 0.2 mm simulates a real crack quite 
well. From Figure 1 it can be seen that the coarseness of the carbide structure of the cast iron is of the same 
order as this tip radius. It could be argued that in all cases there will be pores or crack-like defects close to 
the notch tip that become critical at approximately the same load level as a sharp pre-fatigue crack would. 
 
Preferred Test Set-up 
Because of the smaller oscillations, it seems favorable to use a low-stiffness tup. However, to obtain a more 
accurate value for the specimen displacement and thus for Ei, a correction is necessary. This can be done by 
subtracting the compression of the tup from the measured displacement. An estimate for the tup compres-
sion, discarding possible dynamic effects, follows from the load divided by the tup stiffness. 
 
For the measurement of the total fracture energy, Ef, a high-stiffness tup is advantageous since then the ki-
netic energy of the specimen is only slightly enhanced after fracture. However at low velocity, e.g. 1 m/s, 
this effect is expected to be small. For instance the kinetic energy before fracture at 1 m/s is only 0.015 J 
(corresponding to 0.18 kJ/m2). When measurements are performed at a single (low) impact velocity and they 
only have a comparative nature, a low-stiffness tup could be acceptable. 
 
Clearly, to obtain KId or Ei for the cast iron, measuring at low velocities is essential. It is uncertain whether 
such values are also representative for the behavior of the cast iron at higher velocities. Measuring at high 
velocity would require alternative techniques to detect the moment of crack initiation and to account for load 
oscillations. 
 
 
CONCLUSIONS 
 
The following conclusions are drawn with respect to obtaining the fracture properties of high-chromium 
white cast iron using an instrumented drop-weight impact tower with Charpy-like specimens: 
1. By using a compliant tup, the loading rate and the load oscillations are decreased, but the amount of ki-

netic energy transferred to the specimen is increased. 
2. Values for KId or the energy involved in crack initiation, Ei, can only be measured at low velocity (≤ 1 

m/s). 
3. For a compliant tup E  can only be accurately determined by accounting for compression of the tup. i
4. The total energy, E , is strongly affected by the amount of kinetic energy transferred to the specimen. f
5. The increase in Ef with impact velocity is attributed to an increase in kinetic energy that is ultimately 

transferred to the specimen. 
6. An EDM notch with a tip radius of 0.1 or 0.2 mm yields the same results as a pre-fatigue crack. 
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ABSTRACT 
 
Fracture toughness of several types of rock is determined using the semi-circular bend (SCB) specimen and 
the single edge-cracked round bar in bending (SECRBB). The methodology for the evaluation of level I and 
level II fracture toughness and K-resistance curve using a single specimen is presented. K-resistance curve 
is shown to yield true fracture toughness even when under-sized specimens are employed. In order to 
simulate the in-situ conditions, tests were also done at elevated temperatures, high confining pressures, and 
different moisture levels. Fracture toughness of Kimachi sandstone increases moderately with increasing 
temperature up to 2000C. In addition, it increases rapidly with increasing confining pressure before reaching 
a steady value. Increasing moisture content was found to reduce the fracture toughness. 
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INTRODUCTION 
 
The fracture behaviour of rocks is different from those in most man made materials due to their inherent 
properties. Sedimentary rocks such as sandstone and oil shale can be categorised as transversely isotropic as 
their properties are uniform in the plane of bedding, but may differ from those in the direction normal to 
bedding [1]. In addition, rocks behave nonlinearly under stress. They are subjected to explosive as well as 
non-explosive fragmentation for resource extraction. Fracture toughness is a valuable property in predicting 
the behaviour of material during fracture processes. A number of test specimens and methods have been 
suggested to determine the fracture toughness of rock materials [2-4]. The chevron-notched bend specimen 
[3] and the short rod specimen [2] have been incorporated into a standard method for the fracture toughness 
measurement of rock by the International Society for Rock Mechanics (ISRM) [5]. The semi-circular bend 
(SCB) specimen proposed by Chong et al. [6] and the single edge-cracked round bar in bending (SECRBB) 
specimen [7] are complimentary to the standard method. For example, the SCB specimen can be used as a 
third specimen for the complete characterisation of fracture toughness from a single core in materials such 
as sedimentary rocks [6]. It is suitable for measuring the plane strain fracture toughness of materials 
undergoing substantial nonlinear deformation before failure [8]. Lim et al. [8] has successfully used the 



specimen to measure the fracture toughness of a synthetic mudstone which is a relatively weak rock 
behaving nonlinearly. 
 
In past most rock fracture toughness tests have been performed under ambient conditions. However, it is 
essential that the measurements be carried out at in-situ conditions such as elevated temperatures and 
pressures, and in wet environments. This paper presents the methodology of determining levels I and II 
fracture toughness using the SCB specimen. Level II fracture toughness is especially required for materials 
behaving nonlinearly. Furthermore, methods of determining fracture toughness of rock at elevated 
temperatures and high confining pressures are given. Tests were done over a wide range of temperatures 
varying from ambient conditions up to 2000C. It was observed that the effect of increasing confining 
pressure on the fracture toughness dies down at moderately high pressures. Therefore, the confining 
pressure of the tests was restricted to a maximum value of 7.5 MPa. 
 
 
TEST PROGRAM 
 
Most tests were done using SCB specimen. However, SECRBB specimen was also used for comparison and 
verification of some of the results. Both specimens are core based and therefore easy to prepare. The testing 
program covered the following areas: 
(a) Fracture toughness of Kimachi sandstone was determined at ambient condition using 100 mm diameter 

SCB specimens. Fracture toughness was also measured according to the ISRM standard method. 
(b) Effect of elevated temperatures on fracture toughness was measured using a custom built test system 

that facilitated loading the specimen in three-point bending while immersed in an oil bath. The oil bath 
can be heated to a desired temperature up to 2000C. SCB specimens of 60 mm diameter and SECRBB 
specimens of 30 mm diameter were tested. 

(c) The effect of confining pressure on fracture toughness was measured using the same test rig described in 
b above. The jacketed oil bath containing the test specimen was subjected to a confining pressure up to 
7.5 MPa. However, the test specimen was not heated simultaneously. 

(d) The effect of moisture content on fracture toughness of Kimachi sandstone was determined using dry as 
well as partially wet test specimens. 

 
Specimens are made such that the notch is aligned with one of three principle orientations known as the 
arrester, the divider and the short transverse (ST) [6]. Specimens are prepared by slicing rock cores while 
noting the direction of bedding. Each core disc is then split into two halves producing two specimens having 
almost identical properties. Finally, a straight notch is introduced using a diamond impregnated wire saw or 
a thin circular saw. A circular saw having a thickness of 0.3 mm was used to cut the notch during this test 
program. SECRBB specimens were also made of cores with their notches oriented in the arrester and the ST 
orientations. Very little machining is required as only a straight edge-notch is introduced. The specimens 
were oven dried at 600C for a few days and all dimensions were recorded prior to testing. 

 
 
 
 
 
 
 
 
 
 

COD 

LVDT 

 

load 

 
 
 
 

Figure 1: Fracture toughness test rig including SCB specimen 
 



Tests at Ambient Conditions 
SCB specimens made of Kimachi sandstone were tested using a MTS closed loop servo hydraulic test 
system (Figure 1). The sizes of specimens were approximately 100 mm diameter, 25 mm thickness and a 
crack length to radius ratio, a/R, of 0.5. A special fixture was used to load the specimen in three-point 
bending. The fixture allows the two support rollers to rotate and move apart slightly as the specimen was 
loaded, thus permitting roller contact and minimising frictional effects. The top loading pin was attached to 
the upper platen of the load frame. This fixture helps to achieve the proper alignment in the load transfer 
system. In addition, the SCB specimen must be properly aligned parallel to the axes of the loading pins as 
the pins make line contact with the specimen. A crack opening displacement (COD) gauge was attached to 
the specimen using knife-edges positioned across the mouth of the notch. The load-line displacement was 
measured by taking the average reading of two linear variable differential transducers (LVDTs) that were 
placed between the top and the bottom loading platens. Tests were done using COD control mode at a 
constant rate of 0.06 mm/min. At least one partial unloading was done before reaching the peak load and a 
number of partial unloading-reloading cycles were done in the post-peak region (Figure 2). The high 
stiffness of the test frame enabled recording the complete post-peak behaviour in each test. In addition, a 
number of tests in the ST orientation was done using partially wet Kimachi sandstone specimens. 

Figure 2: Typical load-displacement record illustrating the determination of p factor 
 
Measurement of Fracture Toughness at Elevated Temperatures and Pressures 
The machine facilitates testing specimens under three-point bending while immersed in a jacketed oil bath 
that can be subjected to hydraulic pressures up to 30 MPa and temperatures up to 2000C. It can 
accommodate a number of different types of specimens including SECRBB and SCB specimens. SCB 
specimens of 60 mm diameter and 25 mm thickness as well as SECRBB specimens of 30 mm diameter 
were used for these tests. Kimachi sandstone specimens prepared in all three orientations were included in 
the test program. The notches of the specimen were covered with either several layers of taped paper (for 
high-pressure applications) or aluminium foil (for high temperature applications). Knife-edges for the COD 
gauge were attached and the specimens were covered with a layer of silicone to prevent any oil 
contamination. The specimens were placed in the loading platform with COD gauge attached and then 
immersed in the jacketed oil bath. In the case of elevated temperature tests, the oil bath was heated to the 
desired temperature and allowed approximately 2 hours to stabilize the conditions of the specimen. 
Specimens were then tested to failure under either LVDT or COD control. LVDT measured the load-line 
displacement. Partial unloadings were done at regular intervals before and after the peak load similar to the 
tests done at ambient conditions. The strain rate of each of the tests was 0.075 mm/min. 
 
Method of testing at high confining pressures was similar to that of elevated temperature except that a 
desired confining pressure was applied instead of raising the temperature of the oil bath containing the test 
specimen. Most tests were done under LVDT control while a few was performed under COD control. As the 
silicone layer does not permit pressures to be applied on the free surfaces of the notch, the resulting closure 
of the crack due to the confining pressure was measured using the COD gauge. The load, load-point 
displacement and the crack opening displacement were recorded as a function of time during each test. 
 



 
EVALUATION OF RESULTS 
 
The level I fracture toughness, KI, is determined using the peak load, the non-dimensional stress intensity 
factor and the specimen dimensions [5]. For the SCB specimen it may be given as 
 

 2Rt)a ( F Y  K I π=        (1) 

 
where Y is a non-dimensional stress intensity factor, F is the peak load, a is the crack length, R is the 
specimen radius and t is the thickness. The span to diameter ratio is 0.8. The stress intensity factor Y is a 
function of the crack length to radius ratio, α. The best fit curve for Y is given by [6,9] 
 
    Y = 5.6-22.2α+167α2-576α3+929α4-506α5     (2) 
 
The stress intensity factor for SECRBB specimen is given in reference [10]. For level II testing, a 
nonlinearity correction factor is incorporated. The evaluation closely followed the procedure adopted in the 
ISRM standard method. As shown in Figure 2 the displacement ratio 
 
      p = Xu / Xl       (3) 
 
defines the degree of nonlinearity. The two chosen unloading lines must span the maximum load. In 
addition, the average value of loads at unloading positions must be as close as possible to the peak load. 
Then the nonlinearity corrected fracture toughness is determined from the following equation: 
 
     IIc K p)-p)/(1(1  K +=       (4) 
 
The corrected fracture toughness is equivalent to the upper limit of the K-resistance curve of the rock. If 
specimens smaller than those satisfying the minimum dimensional requirements are employed, fracture 
toughness must be evaluated using a K-resistance curve instead of using level II value [11]. If the crack 
length is known, using Eqn. 2 the stress intensity factor can be determined for each cycle. Then the K-
resistance for each cycle can be derived as 
 
     IiRI, K p)-p)/(1(1  K +=       (5) 
 
where KIi is a level I value determined using the non-dimensional stress intensity factor and the load at the 
unloading point of the cycle. In this case, p is taken as the average degree of nonlinearly of the given cycle 
and two adjacent cycles. The crack length is measured using the experimentally determined compliance. 
The non-dimensional compliance, C' is given as 
 
     C' = E'DC        (6) 
 
where C is the compliance, which is the ratio of the load-point displacement and the load, D is the diameter 
and ) 1(E  E' 2 υ−= . E and ν are Young's modulus and Poisson's ratio respectively. For example, for SCB 
specimen the relation between the non-dimensional compliance and the crack length is given by 
 
  C' = 1366 α3 - 867 α2 - 51.9 α + 129.4       (7) 
 
Fracture Toughness at Ambient Conditions 
Table 1 gives fracture toughness of Kimachi sandstone. Figure 3 shows a K-resistance curve derived using a 
single SCB specimen. The curve reaches a limit of 1.0 mMPa . This value is higher than the level II 
toughness. It also agrees with the fracture toughness measured using chevron bend specimen according to 
ISRM standard, which yielded 0.99 mMPa . Furthermore, this result agrees with that published by 



Matsuki et al. [11]. This observation further reiterates the minimum specimen size requirement unless a K-
resistance curve is used to determine the fracture toughness. Also, fracture toughness of Kimachi sandstone 
decreases almost linearly with increasing moisture content. At about 8% water content the fracture 
toughness is only about 33% of its value for dry material. This decrease is usually attributed to the build up 
of pore pressure that reduces the inter-particle bonds between grains in the process zone. 
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Figure 3: K-resistance curve for Kimachi sandstone 
 
 

TABLE 1 
FRACTURE TOUGHNESS OF KIMACHI SANDSTONE 

 
Orientation No. of 

specimens 
Level I 
fracture 
toughness 
( mMPa ) 

Level II 
fracture 
toughness 
( mMPa ) 

Divider 6 0.45 0.65 
Arrester 6 0.48 0.69 
ST 9 0.41 - 

 
Tests at Elevated Temperature and High Confining Pressure 
Figure 4 gives the level I fracture toughness of Kimachi sandstone at elevated temperatures. Note that this 
result for ST orientation was produced using both SCB and SECRBB specimens. Fracture toughness shows 
a gradual increase with temperature. There is nearly 50% increase compared to the value at room 
temperature. 
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Figure 4: Fracture toughness of Kimachi sandstone at elevated temperature 
 

Figure 5 shows fracture toughness of sandstone subjected to confining pressure (Note: mostly level I). 
Fracture toughness is quite significantly influenced by the confining pressure. In addition, it reaches a 
steady value when the confining pressure is about 4 MPa. This may be caused by the closure of the pre-
existing microcracks and other discontinuities within the material due to the application of the confining 



pressure. Once that happens, rock behaves as if it has a uniform matrix and the fracture toughness remains 
constant. However, this limit value is several orders of magnitude higher than the fracture toughness of 
unconfined rock. As the silicone layer prevents the hydraulic pressure act on the notch, the notch tends to 
close due to the pressure on the remaining surfaces. This was adjusted using a suitable mathematical 
formulation [12]. Notch closure measured using the COD gauge assisted the adjustment. 
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Figure 5: Variation of fracture toughness of Kimachi sandstone with confining pressure. Upper 
and lower graphs are for ST and divider orientations respectively 

 
 
CONCLUSIONS 
 
Fracture toughness tests were performed using SCB and SECRBB specimens. Firstly, level I and level II 
fracture toughness was measured for Kimachi sandstone. The crack growth was determined using the elastic 
unloading compliance measured at regular intervals of each test. Following a procedure similar to the 
analysis of level II fracture toughness, the crack growth resistance was measured using the unloading-
reloading cycles following the peak load. This result in combination with crack growth data enabled the 
construction of K-resistance curve using a single specimen. The methodology also yields fracture toughness 
unaffected by the specimen size. 

The fracture toughness of Kimachi sandstone increases moderately with increasing temperature. The level I 
fracture toughness increased by approximately 50% at 2000C compared to the value at ambient temperature. 
The elevated temperatures appear to make the rock tougher and allow it to absorb more strain energy prior 
to failure. Fracture toughness was also found to increase substantially with increasing confining pressure. 
For example, for the divider orientation, fracture toughness of Kimachi sandstone increases from 0.45 

mMPa  at atmospheric pressure to 1.5 mMPa  at a confining pressure of 2.5 MPa, an increase of 230%. 
However, it reaches a steady value and is not affected by further increase of confining pressure. 
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ABSTRACT 

 
This study examines the microstructural role of crack face bridging mechanisms in a 
monolithic ceramic, subjected to cyclic loading conditions at room and high 
temperatures. By utilizing a unique post-fracture-tensile experiment, the fatigue 
properties of a commercially available alumina are examined. Based on the current 
results, one will conclude that the wake zone bridging consists of a combination of 
bridging by frictional and unbroken ligaments. At room temperature, when the peak 
loads, initial crack opening displacement and number of cycles are held below values 
which cause grain sliding, no fatigue damage is evident. Above the threshold values, 
however, notable damage may be observed. This cumulative wear process reduces the 
effectiveness of the bridging. At high temperature, it was found that the relaxation of 
normal forces due to the softening of the grain boundary phase gives a rise to ratcheting 
behavior. For the quasistatic bridging problem, accumulation of damage has been related 
to grain size features, but apparent from data in this study, fatigue related damage 
depends upon damage to sub-grain size features. 
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INTRODUCTION 

 

In the past, ceramics were considered to be immune to fatigue damage from cyclic 
loading due to their low dislocation mobility and corresponding lack of crack-tip 
plasticity [1]. Despite several early observations to the contrary [2,3], enhanced crack 
propagation under cyclic loading was commonly attributed to environmentally induced 
stress corrosion cracking [4]. However, recent work has demonstrated a true fatigue 
effect in many ceramics, such as Al2O3 [5-13] and Si3N4 [10,13-17], where subcritical 
crack growth rates, under cyclic loads, can greatly exceed growth rates under static loads 
at equivalent stress intensity levels. As a part of this new interest the question arises - 
what role does the microstructure play in the behavior, and specifically, how do the 
bridging grains contribute to fatigue crack growth resistance? 
It is now well recognized that the toughness of many non-transforming monolithic 
ceramics, under monotonic loading often increases as the crack extends, resulting in a 
rising crack growth resistance (R) curve [18]. This toughening behavior is primarily due 
to grain bridging in the wake zone of the advancing crack, which reduces the effective 
stress intensity factor at the crack tip [19-21].  

During cyclic loading, it has been suggested that the degradation of such 
toughening mechanisms promotes fatigue crack growth. Indeed, recent work [9-12,17,23] 
has indicated that in grain bridging ceramics, repetitive sliding wear of the bridging 
grains, under cyclic loading, reduces the load bearing capacity of these wake zone 
elements and lowers the toughness of the material. Lathabai, et al [23], modeled the 
decreased bridging capacity under cyclic loading by assuming a reduction in the 
frictional coefficient between the bridging grains and their sockets in the surrounding 
material. Also, a frictional wear mechanism was proposed by Dauskardt [10] in which a 
micromechanical model was developed to relate the reduction in grain pullout stresses to 
material removed by wear processes at the grain/socket interface. Indirect evidence for 
this mechanism of fatigue crack growth has also come from examination of fracture 
surfaces where wear tracts and wear debris have been observed [11,17,23]. 

The purpose of the present study is to examine the cyclic loading behavior in 
room and high temperature conditions of a monolithic alumina, which shows significant 
R-curve toughening by grain bridging. By utilizing an experiment called the post-
fracture-tensile (PFT) test, developed by Hay and White [24-27], we are able to isolate 
discrete elements of the crack wake zone for detailed study. Previously, the PFT 
experiment has proven effective for the evaluation of the wake process zone resulting 
from quasistatic crack extension [24,26,27]. Of particular interest here is the damage 
induced by repeated loading and unloading of the bridging grains. 

 
PROCEDURES 

 
Material and Specimens 
 
The alumina used in this study is a commercial 99.7% alumina, obtained through Johnson 
Matthey, and is the same as that characterized previously [24,27,30]. The average grain 
size, found from a polished and etched surface, is approximately 18 µm and a majority of 
the grains (~90%) are less than 35 µm. A monotonically loaded fracture surface, shown 
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in Figure 1 (a), indicates the size, morphology and spatial arrangement of the grains. The 
grain size distribution for this alumina, obtained from polished and etched surfaces, is 
shown in Figure 1 (b). 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
   (a)       (b) 
 

Figure 1: Fracture surface (a) and grain size distribution (b) of material studied 
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PFT Experiment 
 

To obtain R-curve information, and to provide specimens for the second stage of 
testing, double cantilever beam (DCB) specimens were cut from bulk plates measuring 
50 mm x 100 mm x 4 mm. A schematic of the specimen is shown in Fig. 2(a), where 
h=8.5mm, w=4mm, w’=2mm, L=48mm, and a0=13mm. A half-thickness side groove 
down the center of the specimen restricts crack deviation from the desired fracture plane. 
Specimens were fractured on an Instron testing machine at a displacement rate of 0.75 
µm/min. Crack lengths were observed optically and crack growth was arrested by load 
removal when the crack had grown approximately 16 mm. Figure 2(b) shows the R-curve 
data obtained for this microstructure, where a plateau KR value of 4.6MPa.m½ is reached 
after 9mm of crack extension. 

 
The second part of the experiment, referred to as the post-fracture tensile (PFT) 

test, requires the machining of tensile specimens from the cracked DCB specimen for the 
direct characterization of the bridging mechanism. The PFT technique provides a unique 
tool to isolate incremental segments of the crack-wake. Shown in Figure 2(a), the region 
behind the crack tip is sliced into several 1mm wide strips. Each strip is through-cracked 
and held together only by bridging elements as shown by the schematic in Figure 3b. The 
two side grooves, which were machined prior to slicing, facilitate tensile loading on two 
knife-edges. We have examined the effects of introducing these PFT loading grooves 
prior to, or following the fracture test. Since the PFT data obtained by both methods are 
indistinguishable, we conclude the grooving step does not adversely affect the wake.  
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  (a) 
         (b) 

Figure 2: Schematic of DCB and PFT specimens (a), R-curve behavior of the alumina 
tested (b). 
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 Details of the experimental setup and data collection techniques will not be 

elaborated upon here as they have been extensively outlined in previous publications [24-
27]. For these particular results, three PFT specimens have been fatigued to obtain 
information on load-cycling effects at room temperature and high temperature.  Two 
came from the position nearest the crack tip, which we call PFT#1and PFT#2 (refer to 
Figure 2a) and the other came from the fifth position away from the tip, which we call 
PFT#5. All PFT specimens were subjected to series of cyclic tests.  

 
RESULTS AND DISCUSSION 
 

In Figure 3(a), load-displacement data for the #1 PFT specimen is presented for 
two maximum loading conditions. From this data, it is evident that this specimen exhibits 
the same linear elastic type behavior at maximum load of 0.32 Kg before (Test1) and 
after (Test 2) 10,000 cycles, and the compliance remains constant at approximately 0.11 
µm/kg. Immediately following this test, PFT#1 was sinusoidally loaded to a higher 
maximum load of 0.72 kg and unloaded (Test 3), as shown in Figure 3(a). During this test 
we observe an interesting behavior evidenced by the formation of a hysteresis loop. 
Starting from the premise that the existence of this loop indicates the presence of some 
type of energy loss mechanism, we further assert that a damage mechanism, related to the 
fracture of the elastic ligaments and the sliding of the bridging grain, have been activated 
when the applied load or displacement reaches some critical value. Similar hysteretic 
behavior has been observed by Vekinis, et al [22] Dauskardt [10] in alumina and by 
Gilbert, et al [17] in silicon nitride. 
 
 The effects of cycling an additional 10,000 times to the same maximum load, 0.72 
kg, are presented in Figure 3(b). From this data, two interesting points of note become 
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evident. Firstly, the initial elastic compliance remains unchanged at 0.11 µm/kg. 
However, the load at which the behavior becomes non-linear has been reduced from 0.41 
kg to 0.32 kg. This indicates that cycling the specimen a further 10,000 times at 0.72 Kg 
has reduced the effectiveness of the elastic bridging (Test 4). Secondly, as we approach 
the maximum load of the cycle, we observe a greater increase in the specimen 
compliance. In first cycle, this compliance reached 0.22 µm/kg. However, after 10,000 
cycles, it has increased quite substantially to 0.63 µm/kg (refer to Test 4). These results 
indicate that a damage mechanism may have been activated due to the combination of 
fracture of elastic ligaments observed under the SEM and continuous sliding of the 
bridging grains. Those mechanisms, therefore, have the effect of degrading the bridging 
capacity and hence the toughening ability of this alumina has been reduced. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
   (a)      (b) 
 

Figure 3: Load increase effect (a) and high cyclic loading effect (b) 
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The PFT procedure was used to investigate temperature effects on the wake zone 
behavior of alumina.  Here, an isolated wake zone element obtained from a DCB was 
subjected to load cycling at various temperatures. A temperature interrupted PFT test was 
adapted to elucidate the effects of Thermal Expansion Anisotropy (TEA).  The test 
consisted of initially testing a PFT at room temperature to obtain the load-displacement 
behavior.  Continuation of the procedure then evaluated load-displacement behavior at 
600 and 800 °C, follow by a repetition of the room temperature test.  The results of a 
temperature interrupted PFT test is shown in Figure 4(a).  All the tests were performed to 
the same test load level. 

The room temperature test primarily shows linear-elastic behavior. Following the 
room temperature result, the specimen is evaluated at 600 °C.  The increased compliance 
with temperature and the formation of a nearly-closed hysteresis loop at 600 °C is related 
to the reduction of the misfit strain associated with thermal expansion anisotropy.  This 
causes a relaxation of the clamping forces on bridging grains and lowers the bridging 
stress.  Continuing to 800 °C, it is observed that the deformation behavior then develops 
to a gross-slip condition. 

 4 4



 Low cyclic loading tests were performed on a #5 PFT specimen, taken from about 
7 mm behind the crack tip in a region of larger initial COD than the #1 PFT specimen. 
The #5 specimen therefore exhibits a lower stiffness and a lower peak load capacity than 
the #1 specimen24. Thus lower maximum load values were chosen for fatigue testing of 
this specimen. Figure 4(b) shows all of the test data obtained on the #5 PFT. As before, 
the material exhibits linear elastic behavior up to a maximum load of 0.15 Kg. The 
compliance also remains the same indicating that no fatigue degradation occurred up to 
this point in our test procedure. 
 

However, by increasing the maximum load to 0.25 kg, we observe the formation 
of open loops indicating the predominant sliding mechanism activity discussed 
previously. We mention here the appearance of residual opening displacement that get 
larger as the load increases. It is also worth to mention that the stiffness of the loading 
and the unloading parts remain approximately the same, which means, from the contact 
point theory that even though sliding occurred during this set of tests (residual opening 
displacement), the distribution of contact point stays the same. 
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Figure 4: Effects of cyclic loading of PFT #5 (a) and of high temperature on PFT #2 (b) 
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CONCLUSIONS 
 

The post-fracture-tensile (PFT) technique has been successfully applied to an 
investigation of cyclic fatigue of wake zone processes in a commercial alumina at room 
and high temperature. At room temperature, when the peak loads and number of cycles 
were held below the critical values which cause frictional sliding of the grains, no fatigue 
damage was observed. Below these threshold points the material behaved linear 
elastically and no compliance changes were observed as a result of cycling. Above the 
threshold values, however, fatigue damage resulted from the fracture of the elastic 
ligaments and continuous sliding action of the grains. Also, the load at which non-linear 
behavior begins was seen to be reduced and the final loading compliance increased quite 
substantially. Final Results indicate that a frictional wear mechanism is activated after a 
certain number of cycles depending on the applied loads, allowing the bridging grains to 
slide in their sockets. This cumulative process reduces the effectiveness of the elastic 
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contact points of the wake mechanism as evidenced by the reduction in the length of the 
initial elastic region. Also, the frictional bridging stress was degraded which resulted in 
an increased compliance towards the end of the loading cycle. In PFT #5, situated far 
from the crack tip, it was clear from the results obtained that frictional sliding was the 
only bridging mechanism active, which is generally associated with residual crack 
opening displacements 
 Finally, the effects of temperature indicated some interesting properties of the 
TEA. Increasing the test temperature caused the reduction of the misfit strain associated 
with TEA. One can conclude that temperature increase caused the relaxation of the 
normal forces due to the softening behavior of the grain boundary phase. This effect was 
clear at 800 oC by the development of gross slip behavior or residual crack opening 
displacement.  
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ABSTRACT 

The effect of load history on the fatigue crack growth threshold in Ti-6Al-4V at room 
temperature was evaluated using two specimen configurations.  Short crack tests were conducted on 
notched specimens under load control to produce low cycle fatigue surface precracks in the size 
range 25 µm – 600 µm at R=0.1 and R=-1.  The threshold for high cycle fatigue (HCF) crack 
propagation was then determined at 600 Hz using a step loading procedure.  Long crack tests were 
conducted on C(T) specimens by subjecting them to constant high ∆K controlled prior cracking at 
R=0.1 and then determining the threshold using a procedure comprising an increasing ∆K, constant 
R, step-load method.  In both test types, stress-relief annealing (SRA) is applied to some of the 
specimens after the load history has been applied but before the threshold determination.  While the 
load history is seen to effect the subsequent threshold in the form of an underload or overload 
effect, results show that SRA removes all load history effects and produces a true material threshold 
which is independent of the load history.  This true threshold is found to be slightly lower than the 
value obtained using C(T) specimens and standard load shed techniques. 
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High cycle fatigue, Load history effects, Small cracks, Overloads, Threshold 

 
 

INTRODUCTION 
Many HCF failures in gas turbine engines are the result of in-service damage due to fretting, 

foreign object damage (FOD), LCF, or others [1].  In the presence of damage and due to the large 
numbers of cycles applied in short periods of time the idea of a threshold below which HCF does 
not occur is necessary.  Damage tolerance for HCF when initial cracks are present would therefore 
require the determination of a crack growth threshold applicable to the conditions under which the 
crack was formed.  This study investigates the high cycle fatigue (HCF) threshold of a typical fan 
blade material, Ti-6Al-4V, when naturally initiated fatigue cracks, which have been created using 
different LCF loading sequences, are present. 

 
EXPERIMENTS 

 
All specimens were machined from forged Ti-6Al-4V plate.  The titanium alloy had an alpha-

beta microstructure of approximately 60% primary alpha with the remainder transformed beta.  The 
mechanical properties of the Ti-6Al-4V plate are σy = 930 MPa and σUTS = 980 MPa. 

 
Small Crack Testing 

Double notch tension test specimens were stress relieved after machining and then electro-
polished in the gage section in the vicinity of the notches.  The two notches had the same depth but 
different notch root radii, thereby producing almost no bending when applying fixed grip axial 
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loading.  The notch geometries were chosen so that failure could be confined to the more severe 
notch having an elastic stress concentration factor, Kt, of 2.2. 

LCF was conducted at stress ratios of –1.0 and 0.1 under load control to initiate a crack using 
a sinusoidal wave form at a frequency of 10 Hz with a superimposed hold time of 0.5 s on each 
cycle during which the DCPD measurements could be made.  Maximum stress levels (430 MPa at 
R=0.1 and 265 MPa at R=-1.0) were chosen which corresponded to approximately 250,000 cycles 
to failure.  Cracks were typically detected with DCPD at cycle counts between 20,000 and 100,000 
at which point the tests were stopped and the specimens inspected in the SEM to confirm the 
existence of a crack.   

To fully characterize the geometry of these cracks in order to determine ∆Kth, the crack shape 
was determined by heat tinting the LCF cracked specimens at 400°C for four hours prior to HCF 
threshold testing.  Heat tinting marks the crack profile for post fracture measurement of the crack 
geometry without affecting any subsequent crack growth properties. 

The LCF cracked specimens were then tested in HCF using a step loading procedure to 
determine the failure stress [2]. The tests were conducted in a custom built HCF apparatus at a 
frequency of 600 Hz.  The thresholds in the form of values of ∆K were determined from the load for 
crack extension to occur, and from the measurements of the initial crack size using heat tinting.  K 
values were determined using the finite element method to modify existing solutions developed for 
a semi-elliptical surface crack and corner crack in a single edged notch tension specimen.  In this 
work, ∆Kth is defined as the value of ∆K where propagation begins from a no-growth state.  It was 
interpolated using the average of the load where no crack extension occurred and the load at which 
crack extension was observed.  From the crack measurements made from the fracture surfaces, the 
interpolated threshold stress and the modified stress intensity factor solution, a value of ∆Kth was 
determined which represents the onset of crack propagation. 

 
Long Crack Testing 

Threshold testing was conducted on C(T) specimens under K-controlled conditions using a 
sinusoidal waveform at a frequency of 50 Hz using a step load procedure similar to that used in the 
HCF testing [2] in order to determine at what K level crack extension occurs.  The method involves 
subjecting a specimen to 200,000 cycles at a K level below which crack extension was anticipated 
to occur.  The 200,000 cycles was determined to be sufficiently large so that crack extension would 
be detected.  If crack extension is not detected within the block of 200,000 cycles the level of K is 
increased 0.2 MPa√m and the test repeated until the crack extension occurs.  The threshold is 
defined to be the average of the K levels where no crack extension occurs and where crack 
extension first occurs. Because the increments are 0.2 MPa√m, the error is at worst 0.1 MPa√m. 

 
RESULTS AND DISCUSSION 

 
Small Cracks 

Cracks initiated under LCF were measured under load in a SEM to determine the surface 
crack length, 2a.  The depth of the crack was determined from the fracture surface that showed the 
heat tinted pattern of the crack after LCF but before HCF.  Figure 1 shows the linear fit of the “a” 
and “c” crack data.  The values of “a” from the heat tinted surface, covering a range from 25 to 400 
µm, were in general agreement with the surface crack measurements in the SEM. 

One method for evaluating threshold crack growth data is to compare stresses for a given 
crack size against crack length for LCF generated cracks and data extrapolated from a long crack 
growth threshold test.  Such information can be presented in the form of a Kitagawa diagram [4], 
which plots stress against crack size.  Using logarithmic scales, a crack growth threshold for a 
geometry where K is proportional to √c (c is flaw size) produces a straight line of slope=-0.5 while 
the endurance limit of an uncracked material is a line of constant stress. 

For any given geometry, all combinations of crack length and stress corresponding to a K 
solution equal to the threshold value establish the threshold crack growth line. This line now 
represents the fracture mechanics solution down to arbitrarily short crack lengths and makes no 
assumptions about the lack of validity of the solution for such short cracks.  The short crack 
anomaly is easily demonstrated because the threshold value from the K solution produces stress 
levels for arbitrarily short cracks that are above the endurance limit yet below the crack growth 
threshold.  Much more important is the concept of data points below the endurance limit and below 
the threshold ∆K for short cracks of a particular size.  It is clear that such cracks could not be 
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naturally initiated since they develop under stress levels that are below the endurance limit.  It 
follows, therefore, that data plotted on a Kitagawa diagram representing a crack length and stress 
below the endurance limit generally represent a condition where the crack was initiated above the 
endurance limit.  An alternate explanation might be that a complex stress field allows the initiation, 
but not propagation of a crack.  In this case, the simple K solution that produces the line of constant 
K is no longer valid and the actual K solution has to be represented in the diagram.  With this in 
mind, the question is raised as to whether any point on a Kitagawa diagram is unique or, instead, is 
dependent on the history of loading in getting to that point.  The long crack threshold is clearly an 
example of a data point which is dependent on load shed history.  While standards have been set for 
determining this threshold by following a predetermined history, the history dependence and the 
existence of a unique long crack threshold still have to be questioned. 

The data for the HCF threshold after a LCF crack was initiated are plotted in a Kitagawa type 
diagram in Figure 2.  In the figure, a line is drawn representing the long crack threshold of Kmax=5.1 
MPa√m for R=0.1.  The line represents the stresses calculated from the long crack thresholds above 
and the linear fit from the a/c data (Fig. 1).  The horizontal line represents the experimentally 
determined endurance limit for the notched specimens corresponding to 107 cycles.  It can be seen 
that the data which were obtained using LCF at R=-1.0 (triangles) tend to fall slightly below the 
projected long crack threshold, the type of effect being representative of what one would expect 
when a material sees an underload during prior cycling.  Conversely, the circles which represent 
data obtained under LCF at R=0.1 show what appears to be equivalent to an overload effect since 
the threshold values of stress are consistently above the long crack threshold. 

Also shown are small solid circles and triangles which represent specimens which were 
cracked in LCF, stress relief annealed (SRA), and then tested in HCF.  The small circles represent 
specimens which were cracked using the same stress level as the larger circles (R=0.1) while the 
small triangles represent specimens which were cracked at the same level as the larger triangles 
(R=-1.0).  The data indicate that the stress relief annealing process, which eliminates residual 
stresses, provides a baseline threshold level for different crack lengths, independent of load history.   

 
Long Cracks 

Long crack threshold testing was conducted to determine the effect of different Kmax prior 
history on the measured long crack thresholds.  The range of Kmax used for precracking was 6 to 25 
MPa√m.  The resulting measured Kmax thresholds, covering the range 4.6 to 11.2 MPa√m, vary 
linearly with the Kmax used for the precrack (Fig. 3).  Additionally, identical tests were conducted 
on specimens subjected to SRA.  The long crack Kmax threshold measurements for these specimens 
were 4.5 to 4.9 MPa√m for R=0.1 regardless of the prior ∆K level.  These data provide a nearly 
constant estimate of the threshold that is slightly lower and more conservative than the long crack 
threshold, measured by standard load shed techniques, of 5.1 MPa√m.  Similar experiments were 
conducted at R=0.5. The results are shown in Fig. 3 where the SRA threshold is 5.6 MPa√m, which 
is only slightly lower than the long crack threshold, from standard load shedding, of 5.8 MPa√m 

 
Small Crack / Long Crack Threshold 

The short crack threshold data from the DE(T)specimens can be plotted in the same format as 
the long crack data using the final crack length and stress amplitude necessary to initiate the cracks 
to calculate the Kmax precrack.  The Kmax precrack ranged from 3.6 to 24.7 MPa√m and the 
measured Kmax threshold ranged from 4.1 to 10.8 MPa√m.  The small crack data (the open circles 
and open triangles in Fig. 4) appear to follow the same trend as the long crack data for the HCF 
thresholds produced at R=0.1.  The SRA short crack specimen data (filled circles and triangles) 
produce thresholds that are near the measured SRA long crack thresholds.  The Kmax thresholds for 
the small cracks appear to be independent of the crack lengths that are related to the Kmax of the 
precrack.  The crack sizes of the small crack threshold data (Fig. 4) correspond to the data shown on 
the Kitagawa diagram (Fig. 2).  The smaller cracks have lower Kmax precracks due to the constant 
maximum applied stress (430 MPa at R=0.1 and 265 MPa at R=-1.0) that was used for the LCF 
crack initiation.  It is important to note that because of this, the plastic zone sizes for the small crack 
data are much smaller than the cracks.  It is also important to mention that the LCF R=-1.0 HCF 
threshold data (open triangles in Fig. 4) follow the same trend as the SRA HCF threshold data, 
indicating that R=-1.0 appears to be an appropriate stress ratio for initiating small cracks without 
loading histories.   It is speculated that the compression portion of the R=-1.0 loading may remove 
closure effects, similar to what occurs when periodic underloads are applied. 
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CONCLUSIONS 

Threshold values obtained on notched short crack specimens which are precracked in LCF at 
R=0.1 and R=-1.0 show a definite load history effect.  LCF conducted at R=0.1 prior to HCF 
produces an overload effect which, in turn, increases the subsequent HCF threshold.  On the other 
hand, LCF at R=-1.0 produces a slightly lower threshold than that from standard load shedding.   

These results, when plotted in the form of a Kitagawa diagram, indicate that values of crack 
growth threshold are not unique but instead depend on the loading history used to produce the 
cracks.  The small crack threshold data collected by initiating cracks in LCF and subsequent SRA 
and the threshold data collected by first initiating cracks in LCF at R=-1.0 appear to follow the 
same trend.  These data are below the long crack load shed threshold on the Kitagawa diagram, 
indicating that load history free small crack data can be collected by either initiating at R=-1.0 or 
using SRA. 

Load-history free threshold measurements in the C(T) specimen can be made by first 
precracking the specimen with subsequent SRA and threshold testing.  In addition to the 
measurements being load history free, many tests can be completed with one specimen resulting in 
a significant time savings when the stress relief annealed step test is used. 
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Figure 1 Experimental results for measured crack geometries. 
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ABSTRACT 
 
Molecular dynamics simulations have been performed to study the mechanical properties of single-walled 
carbon nanotube under tensile loading with and without hydrogen storage.  Advanced bond order potentials 
were used in the simulations.  (10,10) armchair and (17,0) zigzag carbon nanotubes have been studied.  Two 
deformation stages of armchair carbon nanotube were found. In the first stage, the elongation of nanotube 
was primarily due to the altering of angles between two neighbor carbon bonds. The Young’s Modulus 
observed in this stage is comparable with experiments.  In the second stage, the lengths of carbon bonds were 
extended up to break point due to the increase of tensile loading. The tensile strength in this stage is higher 
than that observed in the first stage. Similar result was also found for the zigzag carbon nanotube. Hydrogen 
molecules stored inside and/or outside of nanotubes reduced the fracture strength of both types of carbon 
nanotubes. The competition in formation of hydrogen-carbon and carbon-carbon bonds was found to be 
responsible for the detrimental effect.  During the deformation, some carbon-carbon bonds were broken and 
reconstructed.  If hydrogen molecules were around, H atoms would compete with the carbon atoms, to form 
hydrogen-carbon bonds.  
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INTRODUCTION 
 
A single-walled carbon nanotube (SWNT) can be described as a graphene sheet rolled into a cylindrical shell 
and is a quasi one-dimensional system [1]. Apart from the well-known electrical property [2] of SWNT, its 
remarkable mechanical properties and potentially high hydrogen-storage capacities are also intensively 
studied.  Due to the nanosize of SWNT, a direct measurement of its mechanical properties is rather difficult. 
However, this extreme size is very suitable for performing atomistic simulations. Currently, the atomistic 
simulations on hydrogen in SWNTs are mainly focused on two issues: how much hydrogen can be stored 
and where the atoms are stored.  An interesting question is, since carbon nanotubes are both promising for 
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use in structure and hydrogen storage, what is the effect of hydrogen on mechanical properties of carbon 
nanotubes? In this article, we report our MD simulations on single-walled nanotubes under a tensile loading 
with hydrogen storage.  
 
 
METHODOLOGY 
 
Brenner’s hydrocarbon potential, a bond order potential, is used in this simulation [3-5]. Nanotubes in this 
paper are (10,10)×100u armchair type and (17,0) ×58u zigzag type, respectively.  The subscript u denotes a 
repeat unit of SWNT along the axial direction.  These units were chosen so that the two types of nanotubes 
have a similar diameter and tube length.  
 
To simulate the tubes under tensile loading, we followed two steps.  First, the tubes were annealed at 
simulation temperature for 5,000 MD steps. The time interval between two MD steps is 0.5 fs.  Then, the 
tube was pulled in axial direction (i.e., z-direction) with a strain of 5×10-4. Following each step of pulling, 
some additional MD steps were used to relax the structure.  A periodic boundary condition has been used 
along the axial and horizontal directions and the simulations were performed at 300 K and 600 K, 
respectively.  
 
Unlike the continuum shell model, SWNT is constructed by hexangular carbon rings so that its mechanical p
roperties are strongly depended on its chiral directions. Bond angle and bond length are the two crucial factor
s that control the deformation. For armchair SWNT, the elongation of tube due to the altering of bond angles 
can be up to 15 % if the C-C bonds are assumed to be rigid.  While for zigzag SWNT, one-third of the C-C b
onds are parallel to the axis. The loading force is then directly acting on these bonds so that they are easy to b
reak. Fig.1 shows the tensile force (Fz) along the axial direction of the armchair (10,10) and zigzag (17,0) S
WNTs as a function of strain (Fz-ε curve) without hydrogen.  The tensile force Fz is deduced from an early w
ork [6] by changing the volume to tube length.  
 
 
RESULTS AND DISCUSSION 
 
A detailed examination of nanotube structures in Fig. 2 reveals that the elongation of the (10,10) nanotube is 
initially due to the altering of bond angles (Stage 1). Under further pulling, the contribution from the 
elongation of the C-C bonds becomes significant and plays the main role (Stage 2). When the strain is up to a 
critical level, some groups of the C-C bonds are broken.  Then, the tube starts necking and the force Fz 
decreases dramatically (Stage 3).  
 
Compared with the (10,10) SWNT, the (17,0) zigzag SWNT has significantly smaller maximum strain and 
maximum tensile force.  Here, we define the maximum strain (MS) and the maximum tensile force Fz (MTF) 
at the turning point on Fz-strain curve that has the highest value of Fz.  Due to the nature of the hexagonal 
carbon ring, pulling the zigzag tube along its axial direction would cause some second nearest neighbor C-C 
atoms to become closer and to form new C-C bonds.  In the local regions of these newly formed bonds, some 
old carbon-carbon bonds have to break due to the saturation of covalent bonds. This would lead to the 
necking and breakage of the zigzag SWNT. 
 
A range of 4~10wt% of hydrogen stored in SWNT were reported [7].  In the following simulations, the 
armchair (10,10) and zigzag (17,0) SWNTs were used again for comparison.  In our simulation, these 
SWNTs were pre-stored with 4.17 or 8.34 wt% of hydrogen gas (H2), both are in the reported range.  The 
absorption of hydrogen in carbon nanotubes has been theoretically studied [8, 9].  In the current simulation, 
however, the details of the absorption procedure are not of primary concern.  We place H2 molecules into 
tubes directly.  The initial positions and the orientations of H2 molecules in the tubes are chosen randomly.  
To avoid the overlap of atom positions, atomistic relaxation was performed.  When this is done, 5000 MD 
steps were used to anneal the structures of carbon and hydrogen atoms at simulation temperatures and the 



tensile loading were then carried out.  The results show that the maximum tensile force and the maximum 
strain both decreased due to the storage of H2, see Figures 3(a) and (c).  
 
The effect of stored molecular hydrogen on mechanical properties of SWNT was found to strongly depend 
on temperature.  It can be seen from Figures 3(a) and (c) that the reductions of MS and MTF caused by 
hydrogen storage at 600K are much larger than that at 300K.  As proposed in the following text, the 
competition between the carbon-carbon bonds and the carbon-hydrogen bonds are believed to be the main 
reason that causes the reductions in MS and MTF. The effect of H2 on the zigzag (17,0) SWNT seems not as 
significant as on the armchair (10,10) one (Figures 3(b) and (d)).  
 
The interstitial channels between adjacent nanotubes in a rope of SWNTs may also be the possible sites to 
accommodate H2, although there are still some debates at present on this issue.  Motivated by this possibility, 
we also studied the case in which H2 is stored in outside surface of the tubes. The simulation procedure is as 
follows. A (10,10)×100u SWNT was placed in the center of a box of 3nm×3nm in length and width.  The 
height of the box was set equal to the length of the SWNT.  H2 molecules were stored in the box, while the 
space inside the tube was kept empty.  In order to compare to those tubes with H2 stored inside, the molar 
fractions of H2 were chosen to satisfy that the pressure of the hydrogen gas outside the tubes is equal to that 
of those tubes with H2 stored inside (4.17 and 8.34 wt%).  Periodic boundary conditions were used in the X, 
Y and Z directions of the box.  The simulation temperature was 300K.  Compared to the hydrogen-free 
SWNT, the reductions in the maximum force are 37.7eV/Å and 82.7eV/Å for 4.17 and 8.34 wt% hydrogen 
storage, respectively, see Figure 3(c).  The increase in reduction of MTF might be due to the increase in 
effective contact area between H2 and the nanotube surface, because the outer surface area of the nanotube is 
larger than the inner surface area. 
 
There may be a couple of reasons that had caused the reduction of strength of nanotubes by hydrogen storage. 
One of reasons might be the high pressure of H2 acting on the wall of the tubes.  Take the (10,10) armchair 
tube with 4.17 wt% stored hydrogen as an example.  The atomic ratio of H/C is 1:2.  If we assume that all 
hydrogen atoms stored inside the tube are in the gas phase, the pressure of gas would be 95.2 MPa at 300K.  
Such high pressure of hydrogen gas acting on the wall of tubes would change the loading mode of the tube.  
In addition, under the high-strain tensile loading, some bonds in the carbon rings were broken and this 
created local defect regions on the wall.  The pressure of hydrogen gas would drive molecular hydrogen 
passing through these defect regions and cause the regions to extend into holes.   Another important reason 
comes from the competition in formations of the hydrogen-carbon and the carbon-carbon bonds.  Fig.4 
shows the total number of the C-H bonds during the tensile deformation.  In this figure one can find that the 
number of the C-H bonds is significantly increased when the tube necking starts.  Since some C-C bonds 
were elongated and broken during the deformation, hydrogen atoms were likely to “catch” some of the free 
carbon bonds to generate the C-H bonds (see Fig.5), so that the fracture of SWNT was then accelerated.  
 
 
CONCLUSIONS 
 
MD simulations based on a new bond order potential have been performed to study the mechanical 
properties of SWNT under tensile loading with and without hydrogen storage.  The results show that: 
(1) The tensile deformation of SWNTs up to the point of necking experiences two stages, controlled by 
altering of the C-C bond angle and the C-C bond length, respectively;  
(2) Hydrogen storage in SWNT reduces the maximum tensile strength of the tube as well as the maximum 
tensile strain; and 
(3) The competition between the formations of the H-C and the C-C bonds may be responsible for the 
reduction in the mechanical strength of the SWNT with H2 storage.  
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Figure 1. Tensile force along axes of the armchair (10,10) and zigzag (17,0) SWNT as a function of strain.  
The numbers 1, 2 and 3 denote the three deformation stages of armchair SWNT under tensile loading.  
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Figure 2. Typical snapshots of the armchair (10,10) SWNT without hydrogen during tensile deformation.  
Brighter color denotes higher kinetic energy of the carbon atoms. 



 
 
 
 
 
 

 
Figure 3. (a) maximum strains of (10,10) nanotubes; (b) maximum strains of (17,0) nanotubes at 300 K; (c) 
maximum tensile forces of (10,10) nanotubes; and (d) maximum tensile forces of (17,0) nanotubes at 300 K. 
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Figure 4. The variation in the number of the C-H bonds in the (10,10) armchair SWNT stored with 4.17wt% 
hydrogen during tensile deformation. 
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Figure 5. Snapshots of the (10,10) SWNT with 4.17wt% hydrogen storage: (a) a cross section at 4.7ps; (b) 
the same cross section at 7.6ps; and (c) a view at the point of fracture.  Small white balls are hydrogen 
molecules or atoms. 
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ABSTRACT 
 
The research presented in this paper is aimed at overcoming a major obstacle that currently slows 
effective damage tolerance assessments of rotorcraft fuselage and drive system components.  
Because cyclic loads are accumulated at a very high rate in rotorcraft, a substantial portion of the 
fatigue crack growth lifetime can be associated with cracks that do not lend themselves well to 
conventional fracture mechanics analyses.  Accordingly, this effort was undertaken to address the 
small, arbitrarily shaped and warped, intrinsic, fabrication and service-induced cracks that can 
initiate fatigue crack growth in rotorcraft components.  The resulting methodology is based on an 
innovative approach in which a symmetric Galerkin boundary element method (SGBEM) alternates 
with a finite element method (FEM).  This technology is uniquely able to provide stress intensity 
factors (and, when appropriate, elastic-plastic crack tip criteria), to enable accurate and efficient 
fatigue crack growth predictions to be obtained for conditions pertinent to the full range of rotorcraft 
applications.  This paper outlines the computational fracture mechanics analysis procedure that was 
developed.  It also reviews the validations of the resulting methodology that were made in terms of 
critical comparisons with existing literature solutions for complex crack shapes.  In addition, to 
illustrate the potential for practical applications of the methodology for rotorcraft, and for other 
applications where the safe operating lifetime is dictated by load cycles that are amassed at an ultra 
high rate, example computational results are presented for progressive fatigue crack growth from an 
elliptical crack initially inclined to the loading direction. 
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INTRODUCTION 
 
The damage tolerance (DT) methodology, largely spearheaded in work initiated over three decades 
ago by the U.S. Air Force, is now firmly based and widely applied for life determinations and for 
setting inspection intervals in both military and commercial aircraft.  Applications of the DT 
methodology to a given aircraft structural component require comparable technological capabilities 
in four distinct areas: (1) performing nondestructive inspections to detect, or postulate, the existence 
of a crack-like defect, (2) anticipating the applied cyclic loads, (3) measuring the characteristic 
fatigue crack growth and fracture properties of the material, and (4) devising fracture mechanics 
analysis techniques for quantifying fatigue crack growth and the ultimate failure state.  As concluded 
in a recent international workshop focused on rotorcraft damage tolerance (RCDT), the currently 
existing capabilities in all of these four areas are insufficient for RCDT applications [1].  The main 
reason is the combination of complex structural configurations with very rapid accumulations of 
cyclic loads.  For example, there would be one, four and eight load cycles per blade revolution in the 
main rotor system that is shown in Figure 1 for which the rotational speed would be about 300 rpm. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1:  A typical rotorcraft drive and blade system 
 
Because rotorcraft structural components accumulate cyclic loads at very high rates, very small 
arbitrarily shaped and warped cracks will often be the initiators of fatigue crack growth.  Other 
barriers to practical RCDT applications also exist; e.g., rotorcraft structures make extensive use of 
surface treatments to retard fatigue crack growth, and they also are generally operated in ways that 
require highly variable and complex flight load spectra to be used for fatigue life predictions.  
Notwithstanding, with limited resources available for rotorcraft research, a simultaneous attack on 
all of the outstanding issues is not possible.  To accelerate the practical implementation of RCDT, 
the Federal Aviation Administration (FAA) has focused its research on advancing the accuracy and 
efficiency of fracture mechanics calculations.  While fuselage structure is certainly a concern for 
RCDT, the more challenging problem is involved with the dynamic components in the drive system; 
c.f., Figure 1.  This paper describes an innovative fracture mechanics approach aimed at providing 
the basis for RCDT applications for this class of components. 
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ANALYSIS METHODOLOGY 
 
An efficient and highly accurate technique utilizing a combination of the symmetric Galerkin 
boundary element method (SGBEM) and the finite element method (FEM) was developed for the 
analysis of three-dimensional non-planar cracks.  This methodology addresses not only the initiation 
of growth, but also the subsequent unconstrained growth (i.e., as exclusively dictated by the 
deformation state existing at and near to the current crack tip) in structural components of non 
simple geometries.  In this approach the crack is modeled by the SGBEM as a distribution of 
displacement discontinuities, as if in an infinite medium.  The FEM is used to perform the stress 
analysis for the uncracked body only.  The solution for the structural component containing the crack 
is obtained in an iteration procedure, which alternates between FEM solution for the uncracked body 
and the SGBEM solution for the crack in an infinite body.  Numerical procedures, and the attendant 
Java code, are developed for the evaluation of crack tip parameters and fatigue crack growth 
modeling.  
 
The SGBEM, originated by Bonnet et al. [2], is a way of satisfying the boundary integral equations 
of elasticity in a Galerkin weak form, as opposed to the method of collocations that is generally used 
to satisfy the integral equations in the traditional BEM.  The SGBEM is characterized by weakly 
singular kernels.  After a special transformation that removes the singularity from the kernels, the 
boundary element matrices can be integrated with the use of conventional Gaussian quadrature.  The 
crack is modeled as a distribution of displacement discontinuities with the crack surface discretized 
by quadratic eight-node boundary elements.  Quarter-point singular elements are placed near the 
crack front. With the use of the SGBEM/FEM alternating procedure, the crack tip parameters for 
planar and non-planar cracks in infinite media, and for embedded and surface cracks in finite bodies, 
can be calculated.  

 
More specifically, for an infinite three-dimensional body containing a non-planar crack of arbitrary 
geometry, consider that a distributed load is applied at the crack surface. The crack can then be 
described by a distribution of displacement discontinuity for which the following weakly-singular 
boundary integral equation is valid for the crack; c.f., [2-4]: 
 
    (1) ∫ ∫∫ =−−
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where is one of crack surfaces;  are displacement discontinuities for the crack surface; u  
are the components of a continuous test function; and t
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k are crack face tractions.  Using Eqn. (1), the 
SGBEM models an arbitrary non-planar crack in an infinite body under external loading.  The FEM 
solution for an uncracked finite body then enables a solution for a finite body with a crack to be 
obtained by superposition.  While this can be done with a direct procedure, the alternating method 
advanced by Atluri [5] provides for a more efficient solution without the need for assembling the 
joint SGBEM-FEM matrix. 
 
The basic steps of the SGBEM-FEM alternating iteration procedure are (1) using FEM, obtain the 
stresses at the location of the hypothetical crack in a finite uncracked body that is subjected to given 
boundary conditions, (2) using SGBEM, solve the problem of a crack, the faces of which are 
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subjected to the tractions found from FEM analysis of the uncracked body, (3) determine the residual 
forces at locations corresponding to the outer boundaries of the finite body that result from the 
displacement discontinuities at the crack surface, (4) using FEM, solve a problem for a finite 
uncracked body under residual forces from SGBEM analysis, and (5) obtain the stresses at the 
location of the crack corresponding to FEM solution.  Steps 2 to 5 are repeated until the residual load 
is sufficiently small.  Usually, less than 10 iterations are enough for convergence. Then, by summing 
all the appropriate contributions, the total solution for a finite body with the crack is obtained.  This 
procedure is described in detail by Nikishkov et al. [6].   
 
Having the converged solution, the next step is to compute the crack tip parameters associated with 
fatigue crack growth.  For simplicity, consider mode I fracture for which the SGBEM/FEM 
alternating procedure solution is used to evaluate: 
 

 πν /24)1(
3

2 r
uEK I −

=         (2) 

where, as usual, KI is the mode I stress intensity factors; E is the elastic modulus, ν  is the Poisson’s 
ratio, r is the distance from a point on the crack surface to the crack front, and u3 is the normal 
component of the displacement discontinuity at that point.  For modeling fatigue crack growth it is 
only necessary to add another element layer to the existing crack model.  To advance a point at the 
front of a nonplanar crack it is necessary to know the direction and extent of crack growth.  
Cherepanov’s formulation [7] of the J-integral has been found to provide the most effective criterion 
for fatigue crack growth according to which the crack grows in the direction of the vector J

r
∆  with 

the crack growth rate determined by the relative magnitude of J∆  using a conventional fatigue crack 
growth relationship (e.g., from the NASGRO database).   
 
The procedure for the advancement of the front of a nonplanar crack is (1) using the SGBEM-FEM 
alternating method, solve the problem for the current crack configuration and determine ranges for 
the stress intensity factors for the element corner nodes located at the crack front, (2) for each corner 
node determine the crack front coordinate system by averaging the coordinate axis vectors 
determined at the corner points of two neighboring boundary elements, (3) for each corner node, 
calculate the crack advance ∆a and the crack growth direction, (4) move each corner node in the 
local crack front coordinate system and transform the movement to the global coordinate system, (5) 
find the locations of crack front midside nodes, using cubic spline interpolations for corner nodes 
from several neighboring elements, and (6) shift the quarter-point nodes of the previous crack front 
elements to midside positions on the element sides normal to the crack front.  After terminating the 
crack growth procedure, the total number of cycles N is calculated as a sum of the ’s.   iN∆
 
This algorithm has been implemented as a Java code because its numerous attractive features (e.g., 
object-oriented nature, simplicity, reliability and portability) despite its somewhat slower speed in 
comparison to C and Fortran.  A comparison of finite element codes written in C and Java shows 
that in many cases Java provides comparable performance as the C language [8].  While the manual 
tuning that is required for Java requires some additional effort, the use of Java leads to an overall 
development time reduction in comparison to other languages because of easier programming and 
debugging. 
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VALIDATIONS OF THE METHODOLOGY 
 
To assess the accuracy of the methodology, the Java SGBEM-FEM alternating code, displacement 
discontinuity finite element alternating method, (DDFEAM) was applied to the solution of complex 
crack shape problems taken from the open literature.  For these comparisons, 8-node quadrilateral 
boundary elements were used for the crack surface discretization, and the Gaussian integration rule 
was used with three points in each of the four directions employed for computing boundary element 
matrices for regular and singular cases.  Quarter-point singular elements were placed at the crack 
front.  The finite element models consisted of 20-node brick-type finite elements.  The following 
open literature solutions were examined:  
 

• Penny-shaped crack under tensile and shear loading -- compared with exact solutions given 
by Sneddon [9] and by Kassir and Sih [10]. 

• Inclined elliptical crack under tension – compared with exact solution for 45o inclination 
given by Kassir and Sih [10].   

• Circular arc crack under tension – compared with exact solution by Cotterell and Rice [11]. 
• Spherical penny-shaped crack under internal pressure and tension – compared with numerical 

solution given by Xu and Ortiz [12] and by Li, Mear and Xiao [13]. 
• Embedded circular crack in a cylindrical bar and in a cube – compared with numerical 

solution given by Li, Mear and Xiao [13]. 
• Semi-elliptical surface cracks – compared with numerical solution given by Wu [13]. 
• Inclined semi-circular surface crack in a plate – compared with numerical solutions given by 

Shivakumar and Raju [14], and by He and Hutchinson [15].  
 

Good to excellent agreement was obtained in all cases.  A detailed description of these comparisons 
can be found in the paper of Nikishkov et al. [6]. 
 
APPLICATION OF THE METHODOLOGY 
 
As a first step in testing the practicality of the methodology for a representative drive system 
component of a rotorcraft.  The analysis that was made was for a small planar crack in a much larger 
body under mixed-mode loading conditions.  The initiating defect was taken to be an elliptical crack 
inclined at 45o to the direction of a remote applied tensile loading.  The minor/major semi-axis ratio 
a/c was taken as 0.5. The crack was discretized by 68 quadratic boundary elements.  For simplicity, 
a Paris Law fatigue relation model was used in which C = 1.49⋅10-8 and m = 3.321 to represent 7075 
Aluminum.  The elliptical  initial crack was analyzed and the stress intensity factors KI, KII and KIII 
calculated for each of the nodes along the crack front.  Then, in accord with the calculated J-integral 
vector orientation and magnitude at each individual point, the crack front was advanced to new 
positions via scaling to the maximum crack advance (∆a)max.  A new layer of elements was then 
generated between the old and the new crack front lines, and the process repeated.  The stress 
intensity factors that were determined inn this process were normalized to the reference value 

aKo πσ= .  The values along the crack periphery that resulted from each of six individual crack 
advance increments, each with  (∆a)max /a = 0.1, are shown in Figure 2.  A three-dimensional view of 
the crack after all six increments of growth have been completed is presented in Figure 3. 
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Figure 2:  Calculated results for the stress intensity factors along the front of the initial crack, and 

along each of six subsequent crack fronts, for simulated fatigue crack growth from an 
initial elliptical crack oriented at 45o to the direction of a remote tensile loading 

 

 
 

Figure 3:  Three-dimensional view of the crack face after six crack growth increments  
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SUMMARY AND CONCLUSIONS 
 
To help meet the demanding conditions associated with rotorcraft damage tolerance (RCDT), an 
SGBEM-FEM alternating method has been developed for predicting fatigue crack growth from non-
planar cracks.  The accuracy of the procedure was demonstrated by critical comparisons with a 
variety of solutions for complex cracks.  To demonstrate its potential for attacking practical 
problems, fatigue crack growth from an inclined elliptical initial crack was calculated.  While the 
results presented in Figures 2 and 3 are certainly in good qualitative agreement with observations of 
fatigue crack growth (e.g., crack growth takes place with KII =0), it is not possible to directly assess 
the computed results using experimental data.  However, some checks can be made by comparing 
with other numerical solutions.  Such comparisons show that the distributions of the stress intensity 
factors along crack front during crack growth are similar to those obtained by Mi and Aliabadi [16], 
while the shape of the final crack is similar to crack shapes obtained both by them and by Forth and 
Keat [17].  Hence, while the progress that has been described in this paper is still at a preliminary 
stage, it is believed that an excellent start has been made towards overcoming the full range of the 
research challenges that need to be met for the implementation of a practical RCDT approach. 
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Development of cohesive models from the

study of atomic scale fracture processes
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Abstract

In this work, we make a comparison of continuum simulations using a cohesive mod-
eling approach with the predictions of atomistic simulations. Cohesive approaches
to modeling fracture differ from classical approaches by embedding the physics of
the fracture process directly in the simulation procedure. Cohesive zone methods
use a traction-separation relationship to provide the constitutive relations for the lo-
calized failure mode of deformation. For modeling brittle fracture, the form of these
traction-separation relations is typically based on simple physical arguments and
motivation from semi-empirical atomistic potentials. First, we derive the parame-
ters for the cohesive relations based on evaluation of Griffiths condition with the
atomistic system. We then compare the fracture behavior predicted by this cohesive
model with the results of atomistic simulations under quasistatic and dynamic load-
ing conditions. We find that while cohesive approaches adequately reproduce the
atomistic results under quasistatic loading, dynamic conditions reveal the significant
effects dispersion has on the behavior of dynamically propagating cracks.

Key words: fracture simulation; atomistic simulation; cohesive modeling;
multiscale modeling

1 Introduction

As early as 1933, Prandtl[3] employed a cohesive traction relation, motivated
by atomistic considerations, to analyze debonding between two slender beams.
Cohesive approaches to modeling fracture replace the point singularity model
of the crack tip with a stress or traction response that incorporates a finite
cohesive strength and a finite work to fracture. These approaches promise to
reproduce the behavior of propagating cracks more accurately because the
dissipation mechanisms associated growth may be directly incorporated in
the cohesive relations. The approach of restricting the mechanisms of cohesive
fracture to act only across discrete surfaces is gaining wide acceptance in the
fracture modeling community. A finite element implementation of the cohesive
surface approach was introduced by Needleman [2]. Ironically, while cohesive

Preprint submitted to Elsevier Preprint 29 May 2001



approaches admit a very detailed description of crack tip processes, these
processes are largely unobservable due to the small length scales involved
and the relative inaccessibility of the fracture process zone. In this work, we
attempt to validate the cohesive surface approach by comparison with a model
atomistic system. Atomistic simulation provides physically realistic energetics
and dynamics of crack growth processes that can be readily analyzed.

Depending on the material system, the fracture processes may be numerous
and complicated. For this work, we consider only brittle fracture, which we
define to mean that all dissipation during the fracture process is associated di-
rectly with the creation of new free surfaces. Accordingly, our continuum sim-
ulations employ a rate and history independent bulk constitutive model. The
atomistic system used in this study is similar to the one considered by Farid et
al. [1] to study the behavior of crack growth under severe loading conditions.
Given sufficient driving force, this system activates additional mechanisms
of dissipation during fracture. These include increasing the fracture surface
area through roughening and relieving stresses through dislocation emission.
In this study, crack driving forces are maintained below a level at which these
dissipation mechanisms are activated. Therefore, we expect to understand the
fracture behavior in terms of the surface dissipation and the transport of strain
energy by elastic waves or dispersion by phonons for the atomistic system.

The strip geometry used in this study is illustrated in Figure 1. If the strip is

h
h/2

a0=0.83h

L=6.86h

d/2

d/2

Fig. 1. Geometry of the two-dimensional strip.

sufficiently long in the lateral dimension, a J-integral analysis can be used to
determine the static crack driving force under plain stress as

G =
E h ε2

2 (1− ν2)
, (1)

where E is Young’s modulus, ν is Poisson’s ratio, and ε = δ
h

is the nomi-
nal applied strain. This quasistatic analysis only applies to the onset of crack
growth. Accurate predictions of the response of either the continuum or atom-
istic system during dynamic propagation remains a challenge for analysis.
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2 Methods

Over a domain Ω with a boundary Γ, the variational form of the dynamic
equation of equilibrium in the absence of body forces may be written as∫

Ω

ρ
∂2u

∂t2
· δu dΩ +

∫
Ω

σ : δε dΩ +
∫

Γint

t(∆) · δ∆ dΓ =
∫
Γh

t · δu dΓ, (2)

where ρ is the mass density, u is the displacement field, ε = 1
2

(
∇u + (∇u)T

)
is the infinitesimal strain tensor, and the Cauchy stress σ and traction t are
related through the normal n as t = σn. Contributions from surface tractions
in (2) appear over regions of the boundary Γh ⊆ Γ with externally applied trac-
tions and over pairs of internal surfaces Γint due to the variation in the surface
opening displacement δ∆. For this study, we use a model traction-separation
relation similar to the one introduced by Tvergaard and Hutchinson [4]. The
magnitude of the cohesive traction is expressed as a function of a nondimen-
sional effective opening displacement

∆ =
√

(∆t/δ∗t )
2 + (∆n/δ∗n)2, (3)

where δ∗t and δ∗n represent the characteristic tangential and normal opening
displacements, respectively. As illustrated in Figure 2(a), the tri-linear mag-
nitude of the traction t̂(∆) depends on a single shape factor ∆∗. The traction
response is assumed to be reversible up to ∆ = ∆∗, after which the surface is
assumed to have failed. Defining a traction potential

ϕ(∆) = δ∗n

∆∫
0

t̂(ξ) dξ (4)

yields the rate-independent, mixed-mode traction-separation relation

t(∆) =
∂ϕ(∆)

∂∆
= δ∗n t̂(∆)

∂∆

∂∆
(5)

and a fracture energy

Gc =
1

2
σcδ
∗
n. (6)

The cohesive surface relation (5) is not intended to represent the response of
any specific material. Surrounded by an elastic medium, the detailed shape of
the relationship is not expected to have a significant effect. The relationship
simply introduces a well-defined fracture energy into the simulation procedure
with a clear point of complete failure in a form that facilitates analytical study.
The stress response of the bulk is defined by

σij = [µ δijδrs + λ (δirδjs + δisδjr)] εrs, (7)

where µ and λ are Lamé constants.
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The approach for the atomistic simulations similarly makes use of a model sys-
tem. The single crystal sample is constructed from a two-dimensional, hexag-
onal lattice bound by the Lennard-Jones 6-12 potential

φLJ(r) = 4 ε
[
− (σ/r)6 + (σ/r)12

]
, (8)

where σ sets the length scale of the potential and −ε is the depth of the
potential well. In order to allow us to control the range of influence of the
potential without introducing abrupt behavior at a cut-off distance, we use
the modified potential

φ(r) = φLJ(r)− φLJ(rc)− (r − rc)φ′LJ(rc) , (9)

where rc is the distance at which the potential and its first derivative pass
through 0. This cut-off distance is selected to include up to the fifth nearest
neighbors in the undeformed configuration. The crystal is oriented with lattice
vectors

r(1) = r0

1

0

 and r(2) =
r0

2

 1
√

3

 , (10)

where r0 is the interatomic spacing. We choose h
r0

= 212 to distance the frac-
ture process zone from the rigidly imposed boundary conditions. The charac-
teristic dimension of the finite elements near the cleavage plane is hmin = r0.

3 Results and discussion

The parameters for the continuum and atomistic systems are selected to cor-
respond with each as closely as the differing descriptions permit. Due to the
centrosymmetry of the undeformed lattice, the initial elastic properties of the
crystal display Cauchy symmetry, for which λ = µ. The shear modulus µ is
matched to the elastic properties calculated for the crystal, and the density ρ
is selected to correspond with the mass and atomic volume of the undeformed
lattice. The fracture properties of the systems cannot be compared so directly.
The fracture energy φ is not solely dependent on ε, the energy of a single bond,
and the effective opening displacement ∆ (3) does not correspond to the bond
length r.

The fracture parameters in the cohesive relation t(∆) (5) are selected in order
to match the traction distribution on the cleavage plane of the strip model
at the critical boundary displacement. The critical displacement is identified
by applying Griffith’s condition to the atomistic system. The boundaries are
displaced until the static, uncleaved configuration of the strip is no longer en-
ergetically favored. Comparing the bond energy per undeformed volume “far”
ahead of the pre-crack with the reference energy of the crystals yields the frac-
ture energy Gc. The traction distribution for the atomistic system is calculated
from the force in all bonds crossing the cleavage plane, averaged over segments
of length r0 along the fracture surface. This calculation yields a peak traction
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of approximately E/18, where E is Young’s modulus of the crystal. Matching
just these two characteristics yields traction distributions illustrated in Fig-
ure 2(b). Quasistatic analysis of the strip configuration yields a failure strain
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Fig. 2. (a) the traction-separation relation and (b) a comparison of the traction
distribution on the cleavage plane.

εc = δ
h
≈ 1.5 %. The continuum simulation cleaves at a strain within 1% of the

predicted value. Correcting the Griffith analysis to account for the compliance
of the cohesive surface layer reveals that the continuum simulation reproduces
the expected failure strain to within nearly 0.1%. These results indicate that
model has sufficient extent both ahead and behind the crack tip to match
the steady-state cracking assumptions and that the tractions are well resolved
over the elements in the fracture process zone. The atomistic model cleaved at
a strain approximately 4% higher than that predicted by the Griffith analysis,
which we attribute to the nonlinear response of the interatomic potentials.
Figure 2(b) illustrates that the region on the traction distribution behind the
peak is a tail that decays over a distance of approximately 10 r0, and the
stresses ahead of the tip stay well above the farfield values to a distance of
nearly 25 r0.

For the dynamic simulations, the continuum and atomistic system are loaded
from near their critical strains with a constant velocity of cd/δ̇ = 7500, where
cd is the dilatational wave speed in the material. The atomistic system is
loaded to near the critical strain using molecular statics, and an energy con-
serving conserving time integration scheme is used for the dynamic phase of
the simulations. The variation of the crack velocity as a function of crack
length is shown in Figure 3(a). The velocity is normalized by the Rayleigh
wave speed cR, the limit speed for cracks propagating under mode I loading.
While the crack speed in the continuum simulation steadily climbs towards
the limiting speed with increasing driving force, the crack speed in the atom-
istic simulation does not exceed approximately 20% cR. Figure 3(b) reveals the
markedly different energetics associated with crack growth for each system.
The figure shows the rate of kinetic energy generation with crack extension
∆T
∆a

as a function of crack length. The continuum simulation shows that ap-
proximately 3% of the strain energy required for quasistatic crack growth is
converted to kinetic energy for 1 < a

h
< 4, corresponding to 0.2 < ȧ

cR
< 0.7.

For a
h
> 4, acceleration of the crack slows and the rate of kinetic energy gener-
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Fig. 3. Comparison of the continuum simulations with a cohesive surface interface
(dashed lines) with atomistic simulations (solid lines).

ation decreases although the driving force continues to increase. The smoothed
results from the atomistic simulation (dark, solid line in Figure 3(b)) reveal a
steadily increasing rate of kinetic energy generation. The results suggest that
the terminal crack speed for the continuum simulation is determined largely
by limits in the driving strain energy release rate, while the terminal crack
speed in the atomistic system is controlled by an intrinsic limit on the rate of
bond breaking at the crack tip. Excess energy is converted to kinetic energy
rather than increasing the speed of fracture.

In summary, we have compared the response of a continuum and atomistic sys-
tem under conditions of quasistatic and dynamic fracture. Under quasistatic
conditions, the cohesive surface approach reproduces the predicted response
of the strip model. This result is expected since traction potential (4), with
a simple change of variables, is equivalent to the J-integral evaluated on a
contour over crack surfaces surrounding the tip. Under dynamic conditions,
simply adopting a cohesive approach cannot reproduce crack dynamics of an
atomistic system even when restricted to purely brittle propagation. We are
currently assessing methods in which the continuum simulation approach can
be improved to account for the dispersive behavior displayed by the atomistic
system.
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ABSTRACT 
 
The digital speckle correlation method (DSCM) is a rapidly developing new photomechanics technique used 
to measure the surface deformation. With its advantages of non-contact, real time, whole field and direct 
measurement, it can be used from macro-scale area to nano-scale area. This paper describes the use of this 
method in the experiment of the fracture of copper thin film. The displacement field and strain field in a crack 
tip region of a thin film are measured. Based on the displacement field and strain field of the crack tip region, 
the figure of plastic zone is determined. The experimental results indicate that DSCM is a useful method for 
studying the fracture behavior of thin film. 
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INTRODUCTION 
 
With the rapid development of microelectronics and communication technology, the thin film finds wide 
applications in microelectromechanical system, microelectronics and molectron, etc. As the mechanical 
behaviors of film materials are different from which of normal materials and they are directly relevant to the 
life span and the reliability of the subassembly, the study on mechanical behaviors of films, including fracture 
behavior, have become a necessary research field. Several techniques have developed to evaluate the 
mechanical properties of thin film, hardness, Young’s modulus and fracture strength , Poisson’s ratio [1,2,3], 
etc., but the study of the crack tip region of thin film remain not sufficiently documented. The difficulty lies in 
there’s few techniques can be applied to thin film material. The formulae and theories of fracture mechanics 
yielded from macro-scale bodies and the traditional experimental measuring methods are also not always 
available for thin film materials as the influence of geometrical scale. Therefore, the study on displacement 
field and strain field in crack tip region of thin film material by experimental means is essential. How to 
measure the displacement fields and strain fields in crack tip region of thin film material is an unresolved issue 
till now. The DSCM is used in this paper to test the fracture behavior of thin film. 
 
 
THE DIGITAL SPECKLE CORRELATION METHOD 
 
The digital speckle correlation method was proposed in 1982 [4,5]. It can measure directly the surface 
displacement vector and strain tensor to subpixel accuracy [6,7,8,9] and captures wide attention in the 



development of experimental mechanics recently. This method involves recording, digitizing and processing a 
pair of speckle patterns of a specimen in different deformation states, one before deformation and another after 
deformation. If a speckle area in the speckle field before deformation is defined as reference subset and the 
speckle area corresponding to the subset after deformation is defined as object subset, what is required is to 
identify the corresponding relation between the two subsets. The difference between the two subsets includes 
the deformation information of the specimen. Then DSCM becomes a job of comparing subsets between the 
two digital patterns and the measurement process is converted to a calculation process. 
 
The method for comparing the two subsets is commonly given by use of the correlation coefficient. The 
correlation coefficient for the two random variables  and  can be written in the discrete form 
as  

),( yxf *)*,( yxg
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in which (x, y) and (x*, y*) are Cartesian coordinates of a material point in the subset of the undeformed pattern 
and deformed pattern, respectively.  and  are light intensities of that point in the 
corresponding pattern subsets. The correlation coefficient S(X) shows how closely the two random variables 

 and  are related with S(X)=0 corresponding to perfect correlation. 

),( yxf *)*,( yxg

),( yxf *)*,( yxg
 
In general, the coordinates (x, y) are taken at a pixel location, but (x* ,y*) are normally not. The relations 
between x and x*, y and y* are given by the following equations: 
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in which u and v are the in-plane displacement components of the center point of a subset, ∂u/∂x、∂u/∂y、∂v/∂x 
and ∂v/∂y are displacement gradients, and ∆x and ∆y are components of a distance vector between (x, y) and 
the subset’s center point (x0, y0 ).  
 
 
EXPERIMENT 
 
The double edge-cracked specimen used in the test was made of copper that was produced in Shanghai 
smeltery. Its thickness was 40µm. The chemical composition of it is shown in Table 1. The film was made into 
double-edge cracked specimen in the rolling direction. Its geometry and dimensions are shown in Figure 1. In 
order to obtain a high quality speckle pattern and improve the sensitivity and accuracy, the speckle was made 
artificially. A random speckle pattern is shown in Figure 2. 
 
 

TABLE 1  
CHEMICAL COMPOSITION OF EXPERIMENTAL MATERIAL (%)  

 

Cu Fe Zn O Pb S Ni 

99.91 0.0035 0.001 0.003 0.001 0.001 0.001 

 
 
The specimen was placed into the specially designed clamp. Then the locations of the CCD camera, lens and 
light source were adjusted until the speckle pattern was satisfied. The imaging system for the tests is shown in 
Figure 3. In order to diminish the out-of-plane displacement, an initial load F0 was applied. Then the digital 



speckle pattern was recorded before and after a load F1, respectively. The couple digital patterns were the 
original data for the digital speckle correlation method. The digital correlation technique was then applied to 
analyze the digital images. 
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Figure 1: Dimensions of the specimen
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Figure 2: A Speckle pattern 
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Figure 3: Image system used in the test

 



It is necessary to know the displacement field and strain field during studying the crack tip region and the 
plastic zone is the area of interest. Firstly, a pre-load 6.6N was applied, then the first speckle pattern was 
recorded. Secondly, a load 188.1N was applied and the second speckle pattern was recorded. At last, the digital 
correlation technique was applied to analyze the first and second digital images. The digitized region and the 
region calculated by DSCM are shown in Figure 1 and Figure 4. The distributions of the displacement v(x, y) 
and the normal strain εy of the crack tip region were obtained, as shown in Figure 5. 
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Figure 4: Illustration of the region calculated by DSCM  
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Figure 5: Distribution of displacement field and strain field at the crack tip 

 
From Figure 5, we can see the shape and the size of the plastic zone at the crack tip under given a given load.  



 
CONCLUSION 
 
In this paper the digital speckle correlation method is applied to the experiment of mechanical properties of the 
copper film. The measurement of displacement field and strain field of the crack tip region is achieved and the 
contour maps of displacement field and strain field of the crack tip region under given load are shown. The 
figure and size of the plastic zone are also determined. The present experimental results indicate that DSCM is 
a useful test technique in studying the fracture behavior of thin film material in future. And it is possible using 
this technique to study the propagating of the plastic zone in the crack tip region with the loading increase. 
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ABSTRACT 

The problem of the elastic and perfectly-plastic plane-strain asymptotic fields for the interfacial free-edge 
joint singularity is examined and compared with the interfacial crack tip.  The geometries are idealised as 
isotropic elastic and elastic-perfectly-plastic materials bonded to a rigid elastic substrate.  Under elastic 
behaviour it is difficult to compare directly the asymptotic fields between the joint and the crack due to 
the difference in singularity order and stress distributions.  The elastic-perfectly-plastic fields for the 
interfacial free-edge joint were determined as polar stress components and as idealised plastic slip-line 
sectors.  A fourth-order Runge-Kutta numerical method provides solutions to fundamental equations of 
equilibrium and compatibility that are verified with those of a highly focused finite element (FE) analysis.  
A successful attempt to show that a direct comparison between the solutions for the interfacial free-edge 
joint and the Mode I interfacial crack exists if the deviatoric stresses are considered. 
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Figure 1: Schematic (a) interfacial free-edge joint and (b) interfacial crack-tip geometries including 
polar and Cartesian co-ordinate schemes. 
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INTRODUCTION 

Interface-controlled fracture is the initial microscopic event leading to ultimate macroscopic rupture in 
many polycrystalline and composite materials.  Failure frequently initiates within the interfacial free-edge 
singularity being the source of unbounded elastic stresses and/or a plastic zone.  The fracture process 
continues through propagation of an interface crack driven by complex stress intensity factors (SIFs).  
However, the actual events that take place between the former (initiation) and latter (propagation) are not 
well understood.  From a design perspective, one may choose to prevent initial debonding of the 
interfacial joint or to prevent crack propagation.  To add to the confusion though, it has been shown by 
Klingbeil and Bleuth [1] that conflicting solutions are obtained if designing to prevent debonding of the 
interfacial free-edge and subsequent propagation of the interfacial crack.  Thus far, at least, it has been 
shown by Akinsaya and Fleck [2] that in the interim stage between initiation and propagation that an 
interface crack has SIFs amplified if it is embedded in a free-edge singularity field.  This may seem an 
issue related only to interfacial systems but considering that the vast majority of structural materials are 
either polycrystalline metals or composite materials it is more fundamental than perhaps first considered. 

One approach to understand the events that take place between crack initiation at the interfacial free edge 
and propagation of an interface crack would be to examine the change in stress state from the initiating 
stage to the final stage.  However, to link the two fields in terms of elastic stresses and strains is 
problematic due to the general difference in singularity orders and resulting angular distributions.  From 
an asymptotic perspective, the problem is incomprehensible given that one either has a free edge (Figure 
1a), or one has a crack (Figure 1b); there is no in-between stage.  Furthermore, most structural materials 
are also known to undergo, in general, small-scale yielding (SSY) before failure.  Consequently, there 
seems little point attempting to establish a direct link between crack initiation and propagation in the 
purely elastic regime.  It seems more important to link the asymptotic fields of the interfacial free-edge 
joint and interfacial crack tip under elasto-plastic (SSY) conditions. Our understanding of the toughness 
of interfacial systems would be then be increased with this link between the events of crack initiation, i.e. 
debonding of the interfacial free-edge joint and the propagation of an interfacial crack. 

In this paper, the structure of the asymptotic field at the interfacial free-edge is determined for an elastic-
perfectly-plastic material bonded perfectly to a rigid elastic material forming a half plane.  Stresses and 
displacements in the asymptotic fields are numerically calculated in an approach similar to Sharma and 
Aravas [3] and are verified by finite element (FE) analysis.  To determine a pathological link between 
crack initiation at the interfacial free-edge and growth of an interface crack the two fields are compared 
directly.  To compare for a range of possibilities the distributions of polar stress components are 
determined for the interfacial free-edge and crack-tip singular fields for the purely elastic and perfectly-
plastic cases. In the latter case, direct comparisons are possible since the singularities are removed by 
material yielding except in the case of the radial shear strain.  The plastic slip-line field for the interface 
crack-tip characterised by Zywicz and Parks [4] is used to show that the interfacial free-edge joint 
solution is very similar to its counterpart the crack-tip having a null elastic wedge sector. 

FORMULATION OF THE PROBLEM 

The singularity order of the interfacial crack tip under elastic conditions is always -0.5 in comparison to 
the free-edge joint that varies according to the elastic properties of the two materials.  In general, the 
interface crack between two isotropic materials suffers a singularity stress field characterised by the 
complex SIF, K=K1+iK2, and is of the form: 

( ) ( )θε=θσ ε+− ,, i5.0
ijij gKrr  (1)

where ε is the oscillatory index and gij are known non-dimensional functions.  A singularity at the 
interfacial free-edge is predicted by Bogy [5] to be of order depending on the elastic constants of the 
materials.  For the interfacial free-edge joint the stress singularity corresponds to the form: 
 



 

( ) ( )θλ=θσ −λ ,, 1
ijij fHrr  (2)

where H is its intensity, λ-1 is the singularity order, and fij are known non-dimensional functions of (λ,θ).  
The order of the singularity λ is dependent on the degree of material mismatch and the intensity H 
depends on the far-field geometry and loading.  For the purposes of this study the singularity order for the 
elastic case is assumed to be λ-1=-0.28. 

A fracture mechanics’ description of the critical state prior to separation using continuum-based 
mechanics usually involves the elastic solution for the crack.  It is of limited use for describing materials 
that yield and undergo inelastic deformation at high strains.  The elasto-plastic interfacial crack problem 
has received considerable attention in the last decade enabling a thorough understanding to be developed.  
Using a J-integral argument Rice and Rosengren [6], and Hutchinson [7] have shown that crack problems 
under SSY conditions result in a 1/r singularity in the strain-energy density and the radial shear strain 
fields. The analysis of interfacial free-edge is just as important to our understanding of crack initiation 
and growth though in comparison to its counterpart the interface crack it has received far less attention.  It 
appears no effort has been made to understand the elasto-plastic behaviour of the free-edge singularity. 

The constitutive behaviour of a homogeneous isotropic elasto-plastic material may be characterised by the 
J2 deformation theory for a Ramberg-Osgood uniaxial stress-strain behaviour, i.e.: 
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where εij is the infinitesimal strain tensor, σo is the yield stress, σe is the Mises equivalent stress, 
, and sE/σ=ε )oo ij is the deviatoric stress.  Also, n is the power-law hardening exponent (1 , E is 

the Young’s moduli,  is the Kronecker delta, and α is a material constant.  Putting n=∞ then the 
behaviour is elastic-perfectly-plastic. 
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Asymptotic solutions to the crack-tip behaviour under elastic-perfectly-plastic conditions may be obtained 
in polar co-ordinate form (r,θ) using the expansion form given by Sharma and Aravas [3].  To obtain the 
asymptotic solution the problem is formulated in terms of the leading order stresses  and 
displacements u(0) that are substituted into the governing equations of equilibrium, compatibility, and 
stress-strain relationship.  Terms having like powers of radius r are collected and hierarchy of problems is 
obtained.  The leading order problem that defines σ(0) and u(0) consists of five non-linear ordinary 
differential equations, where s is the stress singularity order: 
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The focus of the paper is the leading order solution for the interfacial free-edge joint and its similarities 
with that of the crack tip where s=-1(1+n). 

 



 

DEVELOPMENT OF THE ELASTIC-PERFECTLY-PLASTIC FIELD FOR THE 
INTERFACIAL FREE-EDGE JOINT 

A fourth-order Runge-Kutta solution to the equations (4) was obtained for an elastic-perfectly-plastic 
hardening exponent (n>1000), using the proprietary software Mathcad (v.2000), distributed by Adept 
Scientific Ltd.  An iteration scheme was used to determine the solution s to the non-linear eigenvalue 
problem and the subsequent distributions for the stresses and displacements that satisfy the governing 
equations and imposed boundary conditions.  This asymptotic solution was verified by a FE analysis 
performed using the software Lusas (v13.3, distributed by FEA Ltd., Kingston, UK).  Highly-focused, 
refined meshes for the interfacial free-edge joint were prepared using four-noded linear elements until 
satisfactory convergent results were obtained. 
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sector, and the quasi-constant-state sector [4].  Elastic crack-tip sectors are also admissible and 
asymptotically they behave as semi-infinite elastic wedges loaded by constant surface tractions.  The 
solution for the plastic slip-line field was determined and is shown in Figure 3(b).  A quasi-constant-state 
sector exists at the interface followed by comparatively large angular distributions of centered fan and 
constant state.  A characteristic of the centered fan region is a singularity in the shear strain as seen in 
Figure 2(d) and the order was found to be approximately –0.8 (c.f. –1 for the crack). 
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RISONS OF INTERFACIAL FREE-EDGE JOINT AND CRACK-TIP 
TOTIC FIELDS 
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ABSTRACT 
 
An alternative approach to the extended finite element method (XFEM) and generalised finite element 
method (GFEM) is introduced to enrich the finite element approximation of the crack tip node as well as its 
surrounding nodes. These nodes are enriched with not only the first term but also the higher order terms of 
the crack tip asymptotic field using a partition of unity method (PUM). The first term only is used in the 
XFEM to enrich the surrounding nodes, and in the GFEM to enrich the crack tip node. This approach also 
differs from the XFEM in that the additional coefficients of the enriched nodes are the actual coefficients of 
the crack tip asymptotic field. Numerical results show that together with a reduced quadrature rule, the 
current approach predicts accurate stress intensity factors directly after constraining the enriched nodes 
properly but without extra post-processing. 
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INTRODUCTION 
 
For crack problems, Tong and Pian [1] have shown that, in general, the convergence rate for the finite 
element (FE) method is dominated by the nature of the solution near the point of singularity, and the error 
from the elements immediately adjacent to the point is of the same order as that of the remainder of the 
elements. Hence neither the use of the regular high accuracy elements using high order polynomials as 
interpolation functions nor finer elements improve the accuracy efficiently. In order to improve the 
convergence rate of the FE solution, various singular elements have been introduced to account for the 
required crack tip singularity [2-4]. Recently, Belytschko et al. [5-7] proposed the extended finite element 
method (XFEM) for modelling cracks in the FE framework, which seems promising for fracture problems 
since it avoids using a mesh conforming with the crack as is the case with the traditional FEM. By using 
XFEM, a standard FE mesh for the problem is first created without accounting for the crack. A crack is then 
represented independently of the mesh by enriching the standard displacement approximation with both 
discontinuous displacement fields along the crack face and the singular asymptotic fields at nodes 
surrounding the crack tip through a partition of unity method (PUM). The additional coefficients at each 
enriched node are independent. Strouboulis et al. [8] also discussed the possibility of enriching the crack tip 
node with the asymptotic field in their generalised finite element method (GFEM). The difference between 
the XFEM and the GFEM is that the former enriches the surrounding nodes instead of the crack tip, while 
the latter only enriches the crack tip. The weakness of most singular elements as well as the XFEM and the 



GFEM is that they predict accurate global displacements but not accurate SIFs at the crack tip. The SIF has 
to be evaluated with the help of energy related parameters such as the J-integral by a post-processing 
procedure. This limits the application of singular elements, XFEM or GFEM in fracture simulation.  
 
In order to determine the SIF directly without extra post-processing, an alternative approach is introduced to 
enrich the FE approximation of the crack tip node as well as its surrounding nodes with not only the first 
term but also the higher order terms of the crack tip asymptotic field using the PUM. It differs from the 
XFEM in that the enriched fields are the actual crack tip asymptotic fields and the additional coefficients of 
the enriched nodes are the relevant coefficients of this expansion. Sensitivity to the quadrature rule and 
number of retained terms, as well as the effect of constraining the enriched nodes, are studied. The computed 
SIFs of typical cracked specimens will be validated with results available in the literature.  
 
 
ENRICHING THE CRACK TIP FE APPROXIMATION USING PUM 
 
For our purposes and without loss of generality, we consider only Mode I crack problems. The truncated N 
terms of the displacement expansions near the tip of a crack can be written as [3, 4] 
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where (r, �) are the polar coordinates with the origin at the crack tip, and the angular functions 
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The coefficient of the first term is related to the mode I SIF IK  as  π21 IKa = . 
 
In order to use higher order terms, r is normalised as 
 

mrrr =  (4) 
 
where rm is a characteristic length of the elements with enriched nodes, e.g., the length of a side or of the 
diagonal of a rectangular element.  Taking into account of (4), displacements (1) become 
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with the coefficients being related as 
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For an element near a crack tip (cf. Figure 1), the approximation of displacements enriched with the 
truncated crack tip asymptotic fields (5) using the PUM can be written as 
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where I is the node set of an element, e.g., for elements i and j in Figure 1, I= { }4321 iiii  and 

{ }4321 jjjj , respectively. E is the set of the enriched nodes of the element, E= { }4321 iiii  for 

element i, and E= { }21 jj  for element j. Approximation (7) may be simplified in actual cases. For an 
element which includes the crack tip, e.g. element i in Figure 1, I=E. Noting the consistency condition 
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While for an element which does not include the crack tip, e.g. element j, we have 
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If all enriched nodes are constrained, i.e., the nodal displacements are set to be zero, the displacement 
approximation for elements including the crack tip (e.g., shaded elements in Figure 1) become the truncated 
crack tip asymptotic field. The outer ring of elements surrounding these elements actually match the crack 
tip field with the standard FE approximation. However, the current approach differs from all existing 
singular elements in that higher order terms have been taken into account.  
 
From (7), we have the strain vector 
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where q  is the general nodal displacement vector, and { }N

T aaaa ′′′=′ L21 . The additional matrix 
 

[ ]Nn BBBBB LL21=  (11) 
 
with its nth element or column being 
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Figure 1: A schematic picture of the elements and enriched 
nodes near a crack tip 
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With the use of the enriched strain-displacement relation (10), the element stiffness matrix can be formed in 
the general way. 
 
 
NUMERICAL EXAMPLES 
 
A single edge crack in a finite rectangular plate (SEC) shown in Figure 2 is chosen first as a benchmark 
problem. The coefficient of the singular term 1a  computed by the present method will be compared with the 
reference KI solution given in [9] 
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which is claimed to be accurate to within 1� for 1≥wh  and 6.0≤wc . An eccentric through crack in a 
finite rectangular plate (Figure 3) is analysed next to show the potential of the present method in treating 
multiple crack tips. For both specimens, h=w=1 are used. As the coefficients in the asymptotic expansions 
(1) are independent of the material constants, in the computations Young's modulus E is set at 1, and 
Poisson's ratio � at 0.25. The load (Figures 2 and 3) is chosen as � =1 with its units consistent with that of E. 
A state of plane stress is considered and the thickness is assumed to be unity.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Only the upper half of the plate in Figure 2 or 3 is considered and divided into 10�10=100 regular elements 
because of symmetry. The bilinear 4-node isoparametric element is used together with a 2�2 Gauss 

quadrature. The normal nodal displacements are fixed on the axis of symmetry. rm=0.1 2 is used throughout 
the computations. 
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Figure 2: A single edge crack in 

a finite rectangular plate 

Figure 3: An eccentric through crack 

in a finite rectangular plate 



For the SEC with c/w=0.3, the computed a1 with N=42 and various ngaus, order of Gauss quadrature, is 
plotted in Figure 4. The results obtained with or without constraining the enriched nodes are included. 
Obviously, results obtained by constraining the enriched nodes and a reduced integration (ngaus=2) are the 
most accurate. Quadratures higher than order three give almost identical results. Hence in the following we 
will constrain the enriched nodes. But the quadrature rule will be tested extensively.  

 

 
 
 
Again for the SEC with c/w=0.3, the convergence of the computed a1 with an increase in the retained terms 
N of various integration orders is studied and reported in Figure 5. It is clear that the second order Gauss 
integration again gives the most accurate results. Using only the first term or a few higher order terms 
improves the accuracy but not by much. Desirable accuracy has been maintained by using 40 terms. 
 
By retaining 40-50 terms (a deeper crack needs more terms) and choosing ngaus=2, the computed a1 for 
various crack lengths is listed in Table 1 and compared with the solution given by (13). It is clear that very 
high accuracy (about 1%) has been obtained by the present method. 
 

Figure 4: Computed a1 for various quadrature orders with 
different constraints on the enriched nodes 

0.5

0.55

0.6

0.65

0.7

0 10 20 30 40

N

ngaus=2
ngaus=3
ngaus=6
Reference

Figure 5: Convergence of the computed a1 with an increase in the 
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TABLE 1 
COMPUTED a1 FOR VARIOUS CRACK LENGTHS FOR THE SEC 

 
c/w 0.2 0.3 0.4 0.5 0.6 0.7 0.8 

Computed a1 0.433 0.648 0.936 1.404 2.165 3.554 5.668 
(13) 0.434 0.645 0.945 1.421 2.219 3.555 5.731 

 
The eccentric crack in Figure 3 can be easily treated by the present method. d=0.2, c=0.4 and ngaus=2 are 
used and 43 terms are retained. The computed a1 for the left and right tips are 0.453 and 0.337, respectively. 
 
The stiffness matrix of an enriched element as well as the system is generally rank deficient. This problem 
cannot be overcome completely by accurate integration. However, this kind of rank deficiency can be taken 
care of numerically [8]. In our computations, we used the program given in [10].  
 
 
DISCUSSION AND CONCLUSIONS 
 
By enriching the FE approximation of the crack tip node as well as its surrounding nodes with not only the 
first term but also the higher order terms of the crack tip asymptotic field, accurate SIFs are determined 
directly without extra post-processing. To maintain high accuracy, 40-50 terms in the crack tip asymptotic 
field should be retained, a reduced quadrature (2�2 Gauss quadrature used in this paper) is desirable, and the 
enriched nodes should be constrained properly.  
 
Since the general bilinear interpolation cannot improve the approximation of the crack tip field, constraining 
the enriched nodes improves the condition of rank deficiency and thus the accuracy of the results.  
 
2�2 Gauss quadrature provides the most accurate results because the truncation errors are mainly 
compensated by the higher order terms, while using accurate integration the errors are averaged among all 
terms. 
 
Although only Mode I cracks are reported, it is straightforward to employ this method to more complicated 
crack configurations and/or loading conditions, especially together with the method for incorporating 
discontinuous displacement fields across the crack face away from the crack tip [5-7]. 
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ABSTRACT 

The effects of molecular weight on fatigue crack propagation of polyimide (PI) are investigated for four 
kinds of molecular weight (Mw) from 2.5×104 g/mol to 3.8×104 g/mol. The rate of fatigue crack growth 
follows the Paris law under the ∆K range tested, and decreases with the increase of Mw. Except for the 
highest Mw case, the discontinuous crack growth (DCG) bands were observed on the fracture surfaces 
under lower ∆K. The width of DCG bands is almost independent of ∆K and increases with increase of Mw. 
The number of cycles needed to form one DCG band increases with increase of Mw, which is cause of the 
higher fatigue resistance for higher Mw. The critical values of craze stress at the onset of crack jump in 
DCG are estimated by Dugdale’s model and are smaller for higher Mw. This result suggests that materials 
with higher Mw sustain more damage accumulation. 

KEYWARDS 

Discontinuous Crack Growth, Polyimide, Fatigue, Crack Propagation, Molecular Weight, SEM 
observation 

INTRODUCTION 

Polyimide (PI) is one of most useful engineering plastics and we have already investigated the effect of 
molecular weight on some mechanical properties, e.g. Young’s modulus, JIC and so on [1]. For applying the 
structural components, the behavior of fatigue crack propagation (FCP) of PI might be estimated. In some 
polymers, the crack does not propagate on one load cycle in spite of following the Paris law. This FCP 
process is called as discontinuous crack growth (DCG) [2]. For instance, Takemori [3] has investigated the 
DCG mechanism of amorphous polymer, e.g. PC. Although he indicated that this behavior occurs as a 
consequence of both crazing and shear banding ahead of the crack tip, there is little consideration about the 
width of DCG. While, Skibo [4] studied the fatigue processes in polystyrene and indicated the width of 
DCG bands was the same as the length of craze region at crack tip. In this study we investigated the effect 
of molecular weight on the FCP of PI and discussed the mechanism of DCG process.  

METHOD 

Table 1 Material properties of specimens. 

M olecula
Type

r
weight
[g/m ol]

Young's
m odulus
[G Pa]

Tensile
strength
[M Pa]

Poisson's
ratio

JIC

[kN/m ]

A 2.5×104 3.18 88.3 0.395 3.6

B 2.8×104 2.98 88.3 0.399 5.7

C 3.0×104 3.14 86.6 0.390 6.6

D 3.8×104 3.68 110.0 0.382 7.8

Notch
  Depth 10.0
  Width 0.6

Fig. 1 Dimensions of CT specimen. 



Thermoplastic polyimides with four kinds of mo
a olecular 

n 

procedure were applied at the lower and higher ∆K
of crack was measured with a traveling microscope.  

Stress Intensity Factor Range and Crack Propagation 
Stress intensity factor range ∆K is calculated by,  

lecular weight are used. They are called as Type A, B, C 
weight, Young’s modulus, tensile strength and 

terial [1]. The dimensions of compact tension specime
ade by the injection molding. An initial notch with 0.6 

achine. 

-loop testing machine at room temperature. 
K-decreasing procedure and constant-load-amplitude 

, respectively, according to ASTM E647-95. The length 

0 1 2
10-6

10-5

10-4

10-3

10-2 PI
PVC (by Rimnac et al.)
PMMA (by Kim et al.)

da
/d

N
[m

m
/c

yc
le

]

nd D for convenient. Table 1 shows m
elastic-plastic fracture toughness, JIC of these ma
are shown in Figure 1, which is cut from the plate m
mm width is introduced by a precision cutting blade m

Procedure 
Fatigue tests were performed with electrohydraulic closed
Frequency was 7.5Hz and stress ratio R was 0.1. 

10 10 10

 ( )αP∆ f
BW

K 2/1=∆  

 ( ) ( )( 64.4886.02 ααα +
=f

 Wa /

+

=α  
where ∆P, B, W and a are the range of load, the thickne

.  respectively
The crack propagation rate da/dN is obtained as follow

 
ii

ii

a NN
aa

dN
da

−
−

=







+

+

1

1  

where ai and Ni are the crack length and the number o
length, ( ) 2/1 ii aaa += +  is used to obtain ∆K. 

RESULTS and DISCUSSION 

atigue crack propagation pr
The relationship between the 
F operties 

∆K and da/dN are shown

 KC
dN

 

where C and m

(da
∆= )m

 are material constants and are given 
increases with the increase of Mw. The values of da/dN

alue for type D is estim
PVC by Rimnac[5] and PMMA 6] are also s
v tion of thated by the extrapola

 by Kim[
properties of PI is excellent.  

SEM observation 

Fig. 2 Influence of molecular weight on fatigue 
crack propagation. 
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Fig. 4 SEM fractograph showing the DCG (a), the transition from DCG to FCP process (b) and the FCP
process(c). The diagram (d) shows the observation point on ∆K-da/dN relation for each photo.  
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Fig. 5 Schematic diagram showing the 
discontinuous crack growth in each Mw.  

Type
DC G  band spacing

[µm ] Num ber of C ycles σc
 [M Pa]

A 3.6 10 231
B 8.6 100 150
C 9.2 240 145

Type A B C D

C 7.93×10-4 2.27×10-4 1.32×10-4 1.12×10-5

m 3.35 3.58 3.79 5.26

Table 3 The space of DCG bands and the number of
loading cycles for making DCG band. In addition, 
the critical fracture craze stress is derived from the 
Dugdale model.  

Table 2 Coefficients of Paris law for each specimen.

between photos (a) and (b).) Any striation can’t be seen on the fracture surface during CCG as shown in 
Figure 4(c). These behaviors are the same as that of type A and C. While, the morphology of the type D 
fracture surface is different from the others and DCG bands can’t be seen on the any fracture surfaces.  

Discontinuous Crack Growth 
Several studies [4,6,7] have shown that the Dugdale formulation,  

 2

2

8 C

K
σ

πω
∆

=  (5) 

gives the relationship between the critical fracture craze stress σc at the crack jump due to damage 
accumulation and the width of DCG bands ω. The ω at ∆K = 0.7 mMPa  measured by the SEM photos, 
the number of cycle for a crack jump and σc by Eq. (5) are shown in Table 3. The ω increases with the 
increase of Mw. Figure 5 shows a schematic figure of the craze region of a DCG band. With the increase of 
Mw the more damage accumulates at the craze region of the higher Mw specimen for a crack jump. 
Subsequently, the craze region can be extended at crack tip, that is ωh > ωl. While, σc decreases with the 
increase of Mw because of this damage accumulation. This decrease of σc needs the more number of cycles 
for a crack jump, that is Nh > Nl. Consequently, da/dN decreases with the increase of Mw.  
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